1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
|
/*
* random.c -- A strong random number generator
*
* Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
*
* Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
*
* Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
* rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, and the entire permission notice in its entirety,
* including the disclaimer of warranties.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote
* products derived from this software without specific prior
* written permission.
*
* ALTERNATIVELY, this product may be distributed under the terms of
* the GNU General Public License, in which case the provisions of the GPL are
* required INSTEAD OF the above restrictions. (This clause is
* necessary due to a potential bad interaction between the GPL and
* the restrictions contained in a BSD-style copyright.)
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
* WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
* USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*/
/*
* (now, with legal B.S. out of the way.....)
*
* This routine gathers environmental noise from device drivers, etc.,
* and returns good random numbers, suitable for cryptographic use.
* Besides the obvious cryptographic uses, these numbers are also good
* for seeding TCP sequence numbers, and other places where it is
* desirable to have numbers which are not only random, but hard to
* predict by an attacker.
*
* Theory of operation
* ===================
*
* Computers are very predictable devices. Hence it is extremely hard
* to produce truly random numbers on a computer --- as opposed to
* pseudo-random numbers, which can easily generated by using a
* algorithm. Unfortunately, it is very easy for attackers to guess
* the sequence of pseudo-random number generators, and for some
* applications this is not acceptable. So instead, we must try to
* gather "environmental noise" from the computer's environment, which
* must be hard for outside attackers to observe, and use that to
* generate random numbers. In a Unix environment, this is best done
* from inside the kernel.
*
* Sources of randomness from the environment include inter-keyboard
* timings, inter-interrupt timings from some interrupts, and other
* events which are both (a) non-deterministic and (b) hard for an
* outside observer to measure. Randomness from these sources are
* added to an "entropy pool", which is mixed using a CRC-like function.
* This is not cryptographically strong, but it is adequate assuming
* the randomness is not chosen maliciously, and it is fast enough that
* the overhead of doing it on every interrupt is very reasonable.
* As random bytes are mixed into the entropy pool, the routines keep
* an *estimate* of how many bits of randomness have been stored into
* the random number generator's internal state.
*
* When random bytes are desired, they are obtained by taking the BLAKE2s
* hash of the contents of the "entropy pool". The BLAKE2s hash avoids
* exposing the internal state of the entropy pool. It is believed to
* be computationally infeasible to derive any useful information
* about the input of BLAKE2s from its output. Even if it is possible to
* analyze BLAKE2s in some clever way, as long as the amount of data
* returned from the generator is less than the inherent entropy in
* the pool, the output data is totally unpredictable. For this
* reason, the routine decreases its internal estimate of how many
* bits of "true randomness" are contained in the entropy pool as it
* outputs random numbers.
*
* If this estimate goes to zero, the routine can still generate
* random numbers; however, an attacker may (at least in theory) be
* able to infer the future output of the generator from prior
* outputs. This requires successful cryptanalysis of BLAKE2s, which is
* not believed to be feasible, but there is a remote possibility.
* Nonetheless, these numbers should be useful for the vast majority
* of purposes.
*
* Exported interfaces ---- output
* ===============================
*
* There are four exported interfaces; two for use within the kernel,
* and two for use from userspace.
*
* Exported interfaces ---- userspace output
* -----------------------------------------
*
* The userspace interfaces are two character devices /dev/random and
* /dev/urandom. /dev/random is suitable for use when very high
* quality randomness is desired (for example, for key generation or
* one-time pads), as it will only return a maximum of the number of
* bits of randomness (as estimated by the random number generator)
* contained in the entropy pool.
*
* The /dev/urandom device does not have this limit, and will return
* as many bytes as are requested. As more and more random bytes are
* requested without giving time for the entropy pool to recharge,
* this will result in random numbers that are merely cryptographically
* strong. For many applications, however, this is acceptable.
*
* Exported interfaces ---- kernel output
* --------------------------------------
*
* The primary kernel interface is
*
* void get_random_bytes(void *buf, int nbytes);
*
* This interface will return the requested number of random bytes,
* and place it in the requested buffer. This is equivalent to a
* read from /dev/urandom.
*
* For less critical applications, there are the functions:
*
* u32 get_random_u32()
* u64 get_random_u64()
* unsigned int get_random_int()
* unsigned long get_random_long()
*
* These are produced by a cryptographic RNG seeded from get_random_bytes,
* and so do not deplete the entropy pool as much. These are recommended
* for most in-kernel operations *if the result is going to be stored in
* the kernel*.
*
* Specifically, the get_random_int() family do not attempt to do
* "anti-backtracking". If you capture the state of the kernel (e.g.
* by snapshotting the VM), you can figure out previous get_random_int()
* return values. But if the value is stored in the kernel anyway,
* this is not a problem.
*
* It *is* safe to expose get_random_int() output to attackers (e.g. as
* network cookies); given outputs 1..n, it's not feasible to predict
* outputs 0 or n+1. The only concern is an attacker who breaks into
* the kernel later; the get_random_int() engine is not reseeded as
* often as the get_random_bytes() one.
*
* get_random_bytes() is needed for keys that need to stay secret after
* they are erased from the kernel. For example, any key that will
* be wrapped and stored encrypted. And session encryption keys: we'd
* like to know that after the session is closed and the keys erased,
* the plaintext is unrecoverable to someone who recorded the ciphertext.
*
* But for network ports/cookies, stack canaries, PRNG seeds, address
* space layout randomization, session *authentication* keys, or other
* applications where the sensitive data is stored in the kernel in
* plaintext for as long as it's sensitive, the get_random_int() family
* is just fine.
*
* Consider ASLR. We want to keep the address space secret from an
* outside attacker while the process is running, but once the address
* space is torn down, it's of no use to an attacker any more. And it's
* stored in kernel data structures as long as it's alive, so worrying
* about an attacker's ability to extrapolate it from the get_random_int()
* CRNG is silly.
*
* Even some cryptographic keys are safe to generate with get_random_int().
* In particular, keys for SipHash are generally fine. Here, knowledge
* of the key authorizes you to do something to a kernel object (inject
* packets to a network connection, or flood a hash table), and the
* key is stored with the object being protected. Once it goes away,
* we no longer care if anyone knows the key.
*
* prandom_u32()
* -------------
*
* For even weaker applications, see the pseudorandom generator
* prandom_u32(), prandom_max(), and prandom_bytes(). If the random
* numbers aren't security-critical at all, these are *far* cheaper.
* Useful for self-tests, random error simulation, randomized backoffs,
* and any other application where you trust that nobody is trying to
* maliciously mess with you by guessing the "random" numbers.
*
* Exported interfaces ---- input
* ==============================
*
* The current exported interfaces for gathering environmental noise
* from the devices are:
*
* void add_device_randomness(const void *buf, unsigned int size);
* void add_input_randomness(unsigned int type, unsigned int code,
* unsigned int value);
* void add_interrupt_randomness(int irq);
* void add_disk_randomness(struct gendisk *disk);
* void add_hwgenerator_randomness(const char *buffer, size_t count,
* size_t entropy);
* void add_bootloader_randomness(const void *buf, unsigned int size);
*
* add_device_randomness() is for adding data to the random pool that
* is likely to differ between two devices (or possibly even per boot).
* This would be things like MAC addresses or serial numbers, or the
* read-out of the RTC. This does *not* add any actual entropy to the
* pool, but it initializes the pool to different values for devices
* that might otherwise be identical and have very little entropy
* available to them (particularly common in the embedded world).
*
* add_input_randomness() uses the input layer interrupt timing, as well as
* the event type information from the hardware.
*
* add_interrupt_randomness() uses the interrupt timing as random
* inputs to the entropy pool. Using the cycle counters and the irq source
* as inputs, it feeds the randomness roughly once a second.
*
* add_disk_randomness() uses what amounts to the seek time of block
* layer request events, on a per-disk_devt basis, as input to the
* entropy pool. Note that high-speed solid state drives with very low
* seek times do not make for good sources of entropy, as their seek
* times are usually fairly consistent.
*
* All of these routines try to estimate how many bits of randomness a
* particular randomness source. They do this by keeping track of the
* first and second order deltas of the event timings.
*
* add_hwgenerator_randomness() is for true hardware RNGs, and will credit
* entropy as specified by the caller. If the entropy pool is full it will
* block until more entropy is needed.
*
* add_bootloader_randomness() is the same as add_hwgenerator_randomness() or
* add_device_randomness(), depending on whether or not the configuration
* option CONFIG_RANDOM_TRUST_BOOTLOADER is set.
*
* Ensuring unpredictability at system startup
* ============================================
*
* When any operating system starts up, it will go through a sequence
* of actions that are fairly predictable by an adversary, especially
* if the start-up does not involve interaction with a human operator.
* This reduces the actual number of bits of unpredictability in the
* entropy pool below the value in entropy_count. In order to
* counteract this effect, it helps to carry information in the
* entropy pool across shut-downs and start-ups. To do this, put the
* following lines an appropriate script which is run during the boot
* sequence:
*
* echo "Initializing random number generator..."
* random_seed=/var/run/random-seed
* # Carry a random seed from start-up to start-up
* # Load and then save the whole entropy pool
* if [ -f $random_seed ]; then
* cat $random_seed >/dev/urandom
* else
* touch $random_seed
* fi
* chmod 600 $random_seed
* dd if=/dev/urandom of=$random_seed count=1 bs=512
*
* and the following lines in an appropriate script which is run as
* the system is shutdown:
*
* # Carry a random seed from shut-down to start-up
* # Save the whole entropy pool
* echo "Saving random seed..."
* random_seed=/var/run/random-seed
* touch $random_seed
* chmod 600 $random_seed
* dd if=/dev/urandom of=$random_seed count=1 bs=512
*
* For example, on most modern systems using the System V init
* scripts, such code fragments would be found in
* /etc/rc.d/init.d/random. On older Linux systems, the correct script
* location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
*
* Effectively, these commands cause the contents of the entropy pool
* to be saved at shut-down time and reloaded into the entropy pool at
* start-up. (The 'dd' in the addition to the bootup script is to
* make sure that /etc/random-seed is different for every start-up,
* even if the system crashes without executing rc.0.) Even with
* complete knowledge of the start-up activities, predicting the state
* of the entropy pool requires knowledge of the previous history of
* the system.
*
* Configuring the /dev/random driver under Linux
* ==============================================
*
* The /dev/random driver under Linux uses minor numbers 8 and 9 of
* the /dev/mem major number (#1). So if your system does not have
* /dev/random and /dev/urandom created already, they can be created
* by using the commands:
*
* mknod /dev/random c 1 8
* mknod /dev/urandom c 1 9
*
* Acknowledgements:
* =================
*
* Ideas for constructing this random number generator were derived
* from Pretty Good Privacy's random number generator, and from private
* discussions with Phil Karn. Colin Plumb provided a faster random
* number generator, which speed up the mixing function of the entropy
* pool, taken from PGPfone. Dale Worley has also contributed many
* useful ideas and suggestions to improve this driver.
*
* Any flaws in the design are solely my responsibility, and should
* not be attributed to the Phil, Colin, or any of authors of PGP.
*
* Further background information on this topic may be obtained from
* RFC 1750, "Randomness Recommendations for Security", by Donald
* Eastlake, Steve Crocker, and Jeff Schiller.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/utsname.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/string.h>
#include <linux/fcntl.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/poll.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/genhd.h>
#include <linux/interrupt.h>
#include <linux/mm.h>
#include <linux/nodemask.h>
#include <linux/spinlock.h>
#include <linux/kthread.h>
#include <linux/percpu.h>
#include <linux/ptrace.h>
#include <linux/workqueue.h>
#include <linux/irq.h>
#include <linux/ratelimit.h>
#include <linux/syscalls.h>
#include <linux/completion.h>
#include <linux/uuid.h>
#include <crypto/chacha.h>
#include <crypto/blake2s.h>
#include <asm/processor.h>
#include <linux/uaccess.h>
#include <asm/irq.h>
#include <asm/irq_regs.h>
#include <asm/io.h>
#define CREATE_TRACE_POINTS
#include <trace/events/random.h>
/* #define ADD_INTERRUPT_BENCH */
/*
* If the entropy count falls under this number of bits, then we
* should wake up processes which are selecting or polling on write
* access to /dev/random.
*/
static int random_write_wakeup_bits = 28 * (1 << 5);
/*
* Originally, we used a primitive polynomial of degree .poolwords
* over GF(2). The taps for various sizes are defined below. They
* were chosen to be evenly spaced except for the last tap, which is 1
* to get the twisting happening as fast as possible.
*
* For the purposes of better mixing, we use the CRC-32 polynomial as
* well to make a (modified) twisted Generalized Feedback Shift
* Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
* generators. ACM Transactions on Modeling and Computer Simulation
* 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
* GFSR generators II. ACM Transactions on Modeling and Computer
* Simulation 4:254-266)
*
* Thanks to Colin Plumb for suggesting this.
*
* The mixing operation is much less sensitive than the output hash,
* where we use BLAKE2s. All that we want of mixing operation is that
* it be a good non-cryptographic hash; i.e. it not produce collisions
* when fed "random" data of the sort we expect to see. As long as
* the pool state differs for different inputs, we have preserved the
* input entropy and done a good job. The fact that an intelligent
* attacker can construct inputs that will produce controlled
* alterations to the pool's state is not important because we don't
* consider such inputs to contribute any randomness. The only
* property we need with respect to them is that the attacker can't
* increase his/her knowledge of the pool's state. Since all
* additions are reversible (knowing the final state and the input,
* you can reconstruct the initial state), if an attacker has any
* uncertainty about the initial state, he/she can only shuffle that
* uncertainty about, but never cause any collisions (which would
* decrease the uncertainty).
*
* Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
* Videau in their paper, "The Linux Pseudorandom Number Generator
* Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
* paper, they point out that we are not using a true Twisted GFSR,
* since Matsumoto & Kurita used a trinomial feedback polynomial (that
* is, with only three taps, instead of the six that we are using).
* As a result, the resulting polynomial is neither primitive nor
* irreducible, and hence does not have a maximal period over
* GF(2**32). They suggest a slight change to the generator
* polynomial which improves the resulting TGFSR polynomial to be
* irreducible, which we have made here.
*/
enum poolinfo {
POOL_WORDS = 128,
POOL_WORDMASK = POOL_WORDS - 1,
POOL_BYTES = POOL_WORDS * sizeof(u32),
POOL_BITS = POOL_BYTES * 8,
POOL_BITSHIFT = ilog2(POOL_BITS),
/* To allow fractional bits to be tracked, the entropy_count field is
* denominated in units of 1/8th bits. */
POOL_ENTROPY_SHIFT = 3,
#define POOL_ENTROPY_BITS() (input_pool.entropy_count >> POOL_ENTROPY_SHIFT)
POOL_FRACBITS = POOL_BITS << POOL_ENTROPY_SHIFT,
/* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
POOL_TAP1 = 104,
POOL_TAP2 = 76,
POOL_TAP3 = 51,
POOL_TAP4 = 25,
POOL_TAP5 = 1,
EXTRACT_SIZE = BLAKE2S_HASH_SIZE / 2
};
/*
* Static global variables
*/
static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
static struct fasync_struct *fasync;
static DEFINE_SPINLOCK(random_ready_list_lock);
static LIST_HEAD(random_ready_list);
struct crng_state {
u32 state[16];
unsigned long init_time;
spinlock_t lock;
};
static struct crng_state primary_crng = {
.lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
.state[0] = CHACHA_CONSTANT_EXPA,
.state[1] = CHACHA_CONSTANT_ND_3,
.state[2] = CHACHA_CONSTANT_2_BY,
.state[3] = CHACHA_CONSTANT_TE_K,
};
/*
* crng_init = 0 --> Uninitialized
* 1 --> Initialized
* 2 --> Initialized from input_pool
*
* crng_init is protected by primary_crng->lock, and only increases
* its value (from 0->1->2).
*/
static int crng_init = 0;
static bool crng_need_final_init = false;
#define crng_ready() (likely(crng_init > 1))
static int crng_init_cnt = 0;
static unsigned long crng_global_init_time = 0;
#define CRNG_INIT_CNT_THRESH (2 * CHACHA_KEY_SIZE)
static void _extract_crng(struct crng_state *crng, u8 out[CHACHA_BLOCK_SIZE]);
static void _crng_backtrack_protect(struct crng_state *crng,
u8 tmp[CHACHA_BLOCK_SIZE], int used);
static void process_random_ready_list(void);
static void _get_random_bytes(void *buf, int nbytes);
static struct ratelimit_state unseeded_warning =
RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
static struct ratelimit_state urandom_warning =
RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
static int ratelimit_disable __read_mostly;
module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
/**********************************************************************
*
* OS independent entropy store. Here are the functions which handle
* storing entropy in an entropy pool.
*
**********************************************************************/
static u32 input_pool_data[POOL_WORDS] __latent_entropy;
static struct {
spinlock_t lock;
u16 add_ptr;
u16 input_rotate;
int entropy_count;
} input_pool = {
.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
};
static ssize_t extract_entropy(void *buf, size_t nbytes, int min);
static ssize_t _extract_entropy(void *buf, size_t nbytes);
static void crng_reseed(struct crng_state *crng, bool use_input_pool);
static const u32 twist_table[8] = {
0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
/*
* This function adds bytes into the entropy "pool". It does not
* update the entropy estimate. The caller should call
* credit_entropy_bits if this is appropriate.
*
* The pool is stirred with a primitive polynomial of the appropriate
* degree, and then twisted. We twist by three bits at a time because
* it's cheap to do so and helps slightly in the expected case where
* the entropy is concentrated in the low-order bits.
*/
static void _mix_pool_bytes(const void *in, int nbytes)
{
unsigned long i;
int input_rotate;
const u8 *bytes = in;
u32 w;
input_rotate = input_pool.input_rotate;
i = input_pool.add_ptr;
/* mix one byte at a time to simplify size handling and churn faster */
while (nbytes--) {
w = rol32(*bytes++, input_rotate);
i = (i - 1) & POOL_WORDMASK;
/* XOR in the various taps */
w ^= input_pool_data[i];
w ^= input_pool_data[(i + POOL_TAP1) & POOL_WORDMASK];
w ^= input_pool_data[(i + POOL_TAP2) & POOL_WORDMASK];
w ^= input_pool_data[(i + POOL_TAP3) & POOL_WORDMASK];
w ^= input_pool_data[(i + POOL_TAP4) & POOL_WORDMASK];
w ^= input_pool_data[(i + POOL_TAP5) & POOL_WORDMASK];
/* Mix the result back in with a twist */
input_pool_data[i] = (w >> 3) ^ twist_table[w & 7];
/*
* Normally, we add 7 bits of rotation to the pool.
* At the beginning of the pool, add an extra 7 bits
* rotation, so that successive passes spread the
* input bits across the pool evenly.
*/
input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
}
input_pool.input_rotate = input_rotate;
input_pool.add_ptr = i;
}
static void __mix_pool_bytes(const void *in, int nbytes)
{
trace_mix_pool_bytes_nolock(nbytes, _RET_IP_);
_mix_pool_bytes(in, nbytes);
}
static void mix_pool_bytes(const void *in, int nbytes)
{
unsigned long flags;
trace_mix_pool_bytes(nbytes, _RET_IP_);
spin_lock_irqsave(&input_pool.lock, flags);
_mix_pool_bytes(in, nbytes);
spin_unlock_irqrestore(&input_pool.lock, flags);
}
struct fast_pool {
u32 pool[4];
unsigned long last;
u16 reg_idx;
u8 count;
};
/*
* This is a fast mixing routine used by the interrupt randomness
* collector. It's hardcoded for an 128 bit pool and assumes that any
* locks that might be needed are taken by the caller.
*/
static void fast_mix(struct fast_pool *f)
{
u32 a = f->pool[0], b = f->pool[1];
u32 c = f->pool[2], d = f->pool[3];
a += b; c += d;
b = rol32(b, 6); d = rol32(d, 27);
d ^= a; b ^= c;
a += b; c += d;
b = rol32(b, 16); d = rol32(d, 14);
d ^= a; b ^= c;
a += b; c += d;
b = rol32(b, 6); d = rol32(d, 27);
d ^= a; b ^= c;
a += b; c += d;
b = rol32(b, 16); d = rol32(d, 14);
d ^= a; b ^= c;
f->pool[0] = a; f->pool[1] = b;
f->pool[2] = c; f->pool[3] = d;
f->count++;
}
static void process_random_ready_list(void)
{
unsigned long flags;
struct random_ready_callback *rdy, *tmp;
spin_lock_irqsave(&random_ready_list_lock, flags);
list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
struct module *owner = rdy->owner;
list_del_init(&rdy->list);
rdy->func(rdy);
module_put(owner);
}
spin_unlock_irqrestore(&random_ready_list_lock, flags);
}
/*
* Credit (or debit) the entropy store with n bits of entropy.
* Use credit_entropy_bits_safe() if the value comes from userspace
* or otherwise should be checked for extreme values.
*/
static void credit_entropy_bits(int nbits)
{
int entropy_count, entropy_bits, orig;
int nfrac = nbits << POOL_ENTROPY_SHIFT;
/* Ensure that the multiplication can avoid being 64 bits wide. */
BUILD_BUG_ON(2 * (POOL_ENTROPY_SHIFT + POOL_BITSHIFT) > 31);
if (!nbits)
return;
retry:
entropy_count = orig = READ_ONCE(input_pool.entropy_count);
if (nfrac < 0) {
/* Debit */
entropy_count += nfrac;
} else {
/*
* Credit: we have to account for the possibility of
* overwriting already present entropy. Even in the
* ideal case of pure Shannon entropy, new contributions
* approach the full value asymptotically:
*
* entropy <- entropy + (pool_size - entropy) *
* (1 - exp(-add_entropy/pool_size))
*
* For add_entropy <= pool_size/2 then
* (1 - exp(-add_entropy/pool_size)) >=
* (add_entropy/pool_size)*0.7869...
* so we can approximate the exponential with
* 3/4*add_entropy/pool_size and still be on the
* safe side by adding at most pool_size/2 at a time.
*
* The use of pool_size-2 in the while statement is to
* prevent rounding artifacts from making the loop
* arbitrarily long; this limits the loop to log2(pool_size)*2
* turns no matter how large nbits is.
*/
int pnfrac = nfrac;
const int s = POOL_BITSHIFT + POOL_ENTROPY_SHIFT + 2;
/* The +2 corresponds to the /4 in the denominator */
do {
unsigned int anfrac = min(pnfrac, POOL_FRACBITS / 2);
unsigned int add =
((POOL_FRACBITS - entropy_count) * anfrac * 3) >> s;
entropy_count += add;
pnfrac -= anfrac;
} while (unlikely(entropy_count < POOL_FRACBITS - 2 && pnfrac));
}
if (WARN_ON(entropy_count < 0)) {
pr_warn("negative entropy/overflow: count %d\n", entropy_count);
entropy_count = 0;
} else if (entropy_count > POOL_FRACBITS)
entropy_count = POOL_FRACBITS;
if (cmpxchg(&input_pool.entropy_count, orig, entropy_count) != orig)
goto retry;
trace_credit_entropy_bits(nbits, entropy_count >> POOL_ENTROPY_SHIFT, _RET_IP_);
entropy_bits = entropy_count >> POOL_ENTROPY_SHIFT;
if (crng_init < 2 && entropy_bits >= 128)
crng_reseed(&primary_crng, true);
}
static int credit_entropy_bits_safe(int nbits)
{
if (nbits < 0)
return -EINVAL;
/* Cap the value to avoid overflows */
nbits = min(nbits, POOL_BITS);
credit_entropy_bits(nbits);
return 0;
}
/*********************************************************************
*
* CRNG using CHACHA20
*
*********************************************************************/
#define CRNG_RESEED_INTERVAL (300 * HZ)
static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
/*
* Hack to deal with crazy userspace progams when they are all trying
* to access /dev/urandom in parallel. The programs are almost
* certainly doing something terribly wrong, but we'll work around
* their brain damage.
*/
static struct crng_state **crng_node_pool __read_mostly;
static void invalidate_batched_entropy(void);
static void numa_crng_init(void);
static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
static int __init parse_trust_cpu(char *arg)
{
return kstrtobool(arg, &trust_cpu);
}
early_param("random.trust_cpu", parse_trust_cpu);
static bool crng_init_try_arch(struct crng_state *crng)
{
int i;
bool arch_init = true;
unsigned long rv;
for (i = 4; i < 16; i++) {
if (!arch_get_random_seed_long(&rv) &&
!arch_get_random_long(&rv)) {
rv = random_get_entropy();
arch_init = false;
}
crng->state[i] ^= rv;
}
return arch_init;
}
static bool __init crng_init_try_arch_early(struct crng_state *crng)
{
int i;
bool arch_init = true;
unsigned long rv;
for (i = 4; i < 16; i++) {
if (!arch_get_random_seed_long_early(&rv) &&
!arch_get_random_long_early(&rv)) {
rv = random_get_entropy();
arch_init = false;
}
crng->state[i] ^= rv;
}
return arch_init;
}
static void crng_initialize_secondary(struct crng_state *crng)
{
chacha_init_consts(crng->state);
_get_random_bytes(&crng->state[4], sizeof(u32) * 12);
crng_init_try_arch(crng);
crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
}
static void __init crng_initialize_primary(struct crng_state *crng)
{
_extract_entropy(&crng->state[4], sizeof(u32) * 12);
if (crng_init_try_arch_early(crng) && trust_cpu && crng_init < 2) {
invalidate_batched_entropy();
numa_crng_init();
crng_init = 2;
pr_notice("crng init done (trusting CPU's manufacturer)\n");
}
crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
}
static void crng_finalize_init(struct crng_state *crng)
{
if (crng != &primary_crng || crng_init >= 2)
return;
if (!system_wq) {
/* We can't call numa_crng_init until we have workqueues,
* so mark this for processing later. */
crng_need_final_init = true;
return;
}
invalidate_batched_entropy();
numa_crng_init();
crng_init = 2;
process_random_ready_list();
wake_up_interruptible(&crng_init_wait);
kill_fasync(&fasync, SIGIO, POLL_IN);
pr_notice("crng init done\n");
if (unseeded_warning.missed) {
pr_notice("%d get_random_xx warning(s) missed due to ratelimiting\n",
unseeded_warning.missed);
unseeded_warning.missed = 0;
}
if (urandom_warning.missed) {
pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
urandom_warning.missed);
urandom_warning.missed = 0;
}
}
static void do_numa_crng_init(struct work_struct *work)
{
int i;
struct crng_state *crng;
struct crng_state **pool;
pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL | __GFP_NOFAIL);
for_each_online_node(i) {
crng = kmalloc_node(sizeof(struct crng_state),
GFP_KERNEL | __GFP_NOFAIL, i);
spin_lock_init(&crng->lock);
crng_initialize_secondary(crng);
pool[i] = crng;
}
/* pairs with READ_ONCE() in select_crng() */
if (cmpxchg_release(&crng_node_pool, NULL, pool) != NULL) {
for_each_node(i)
kfree(pool[i]);
kfree(pool);
}
}
static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init);
static void numa_crng_init(void)
{
if (IS_ENABLED(CONFIG_NUMA))
schedule_work(&numa_crng_init_work);
}
static struct crng_state *select_crng(void)
{
if (IS_ENABLED(CONFIG_NUMA)) {
struct crng_state **pool;
int nid = numa_node_id();
/* pairs with cmpxchg_release() in do_numa_crng_init() */
pool = READ_ONCE(crng_node_pool);
if (pool && pool[nid])
return pool[nid];
}
return &primary_crng;
}
/*
* crng_fast_load() can be called by code in the interrupt service
* path. So we can't afford to dilly-dally. Returns the number of
* bytes processed from cp.
*/
static size_t crng_fast_load(const u8 *cp, size_t len)
{
unsigned long flags;
u8 *p;
size_t ret = 0;
if (!spin_trylock_irqsave(&primary_crng.lock, flags))
return 0;
if (crng_init != 0) {
spin_unlock_irqrestore(&primary_crng.lock, flags);
return 0;
}
p = (u8 *)&primary_crng.state[4];
while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
p[crng_init_cnt % CHACHA_KEY_SIZE] ^= *cp;
cp++; crng_init_cnt++; len--; ret++;
}
spin_unlock_irqrestore(&primary_crng.lock, flags);
if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
invalidate_batched_entropy();
crng_init = 1;
pr_notice("fast init done\n");
}
return ret;
}
/*
* crng_slow_load() is called by add_device_randomness, which has two
* attributes. (1) We can't trust the buffer passed to it is
* guaranteed to be unpredictable (so it might not have any entropy at
* all), and (2) it doesn't have the performance constraints of
* crng_fast_load().
*
* So we do something more comprehensive which is guaranteed to touch
* all of the primary_crng's state, and which uses a LFSR with a
* period of 255 as part of the mixing algorithm. Finally, we do
* *not* advance crng_init_cnt since buffer we may get may be something
* like a fixed DMI table (for example), which might very well be
* unique to the machine, but is otherwise unvarying.
*/
static int crng_slow_load(const u8 *cp, size_t len)
{
unsigned long flags;
static u8 lfsr = 1;
u8 tmp;
unsigned int i, max = CHACHA_KEY_SIZE;
const u8 *src_buf = cp;
u8 *dest_buf = (u8 *)&primary_crng.state[4];
if (!spin_trylock_irqsave(&primary_crng.lock, flags))
return 0;
if (crng_init != 0) {
spin_unlock_irqrestore(&primary_crng.lock, flags);
return 0;
}
if (len > max)
max = len;
for (i = 0; i < max; i++) {
tmp = lfsr;
lfsr >>= 1;
if (tmp & 1)
lfsr ^= 0xE1;
tmp = dest_buf[i % CHACHA_KEY_SIZE];
dest_buf[i % CHACHA_KEY_SIZE] ^= src_buf[i % len] ^ lfsr;
lfsr += (tmp << 3) | (tmp >> 5);
}
spin_unlock_irqrestore(&primary_crng.lock, flags);
return 1;
}
static void crng_reseed(struct crng_state *crng, bool use_input_pool)
{
unsigned long flags;
int i, num;
union {
u8 block[CHACHA_BLOCK_SIZE];
u32 key[8];
} buf;
if (use_input_pool) {
num = extract_entropy(&buf, 32, 16);
if (num == 0)
return;
} else {
_extract_crng(&primary_crng, buf.block);
_crng_backtrack_protect(&primary_crng, buf.block,
CHACHA_KEY_SIZE);
}
spin_lock_irqsave(&crng->lock, flags);
for (i = 0; i < 8; i++) {
unsigned long rv;
if (!arch_get_random_seed_long(&rv) &&
!arch_get_random_long(&rv))
rv = random_get_entropy();
crng->state[i + 4] ^= buf.key[i] ^ rv;
}
memzero_explicit(&buf, sizeof(buf));
WRITE_ONCE(crng->init_time, jiffies);
spin_unlock_irqrestore(&crng->lock, flags);
crng_finalize_init(crng);
}
static void _extract_crng(struct crng_state *crng, u8 out[CHACHA_BLOCK_SIZE])
{
unsigned long flags, init_time;
if (crng_ready()) {
init_time = READ_ONCE(crng->init_time);
if (time_after(READ_ONCE(crng_global_init_time), init_time) ||
time_after(jiffies, init_time + CRNG_RESEED_INTERVAL))
crng_reseed(crng, crng == &primary_crng);
}
spin_lock_irqsave(&crng->lock, flags);
chacha20_block(&crng->state[0], out);
if (crng->state[12] == 0)
crng->state[13]++;
spin_unlock_irqrestore(&crng->lock, flags);
}
static void extract_crng(u8 out[CHACHA_BLOCK_SIZE])
{
_extract_crng(select_crng(), out);
}
/*
* Use the leftover bytes from the CRNG block output (if there is
* enough) to mutate the CRNG key to provide backtracking protection.
*/
static void _crng_backtrack_protect(struct crng_state *crng,
u8 tmp[CHACHA_BLOCK_SIZE], int used)
{
unsigned long flags;
u32 *s, *d;
int i;
used = round_up(used, sizeof(u32));
if (used + CHACHA_KEY_SIZE > CHACHA_BLOCK_SIZE) {
extract_crng(tmp);
used = 0;
}
spin_lock_irqsave(&crng->lock, flags);
s = (u32 *)&tmp[used];
d = &crng->state[4];
for (i = 0; i < 8; i++)
*d++ ^= *s++;
spin_unlock_irqrestore(&crng->lock, flags);
}
static void crng_backtrack_protect(u8 tmp[CHACHA_BLOCK_SIZE], int used)
{
_crng_backtrack_protect(select_crng(), tmp, used);
}
static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
{
ssize_t ret = 0, i = CHACHA_BLOCK_SIZE;
u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
int large_request = (nbytes > 256);
while (nbytes) {
if (large_request && need_resched()) {
if (signal_pending(current)) {
if (ret == 0)
ret = -ERESTARTSYS;
break;
}
schedule();
}
extract_crng(tmp);
i = min_t(int, nbytes, CHACHA_BLOCK_SIZE);
if (copy_to_user(buf, tmp, i)) {
ret = -EFAULT;
break;
}
nbytes -= i;
buf += i;
ret += i;
}
crng_backtrack_protect(tmp, i);
/* Wipe data just written to memory */
memzero_explicit(tmp, sizeof(tmp));
return ret;
}
/*********************************************************************
*
* Entropy input management
*
*********************************************************************/
/* There is one of these per entropy source */
struct timer_rand_state {
cycles_t last_time;
long last_delta, last_delta2;
};
#define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
/*
* Add device- or boot-specific data to the input pool to help
* initialize it.
*
* None of this adds any entropy; it is meant to avoid the problem of
* the entropy pool having similar initial state across largely
* identical devices.
*/
void add_device_randomness(const void *buf, unsigned int size)
{
unsigned long time = random_get_entropy() ^ jiffies;
unsigned long flags;
if (!crng_ready() && size)
crng_slow_load(buf, size);
trace_add_device_randomness(size, _RET_IP_);
spin_lock_irqsave(&input_pool.lock, flags);
_mix_pool_bytes(buf, size);
_mix_pool_bytes(&time, sizeof(time));
spin_unlock_irqrestore(&input_pool.lock, flags);
}
EXPORT_SYMBOL(add_device_randomness);
static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
/*
* This function adds entropy to the entropy "pool" by using timing
* delays. It uses the timer_rand_state structure to make an estimate
* of how many bits of entropy this call has added to the pool.
*
* The number "num" is also added to the pool - it should somehow describe
* the type of event which just happened. This is currently 0-255 for
* keyboard scan codes, and 256 upwards for interrupts.
*
*/
static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
{
struct {
long jiffies;
unsigned int cycles;
unsigned int num;
} sample;
long delta, delta2, delta3;
sample.jiffies = jiffies;
sample.cycles = random_get_entropy();
sample.num = num;
mix_pool_bytes(&sample, sizeof(sample));
/*
* Calculate number of bits of randomness we probably added.
* We take into account the first, second and third-order deltas
* in order to make our estimate.
*/
delta = sample.jiffies - READ_ONCE(state->last_time);
WRITE_ONCE(state->last_time, sample.jiffies);
delta2 = delta - READ_ONCE(state->last_delta);
WRITE_ONCE(state->last_delta, delta);
delta3 = delta2 - READ_ONCE(state->last_delta2);
WRITE_ONCE(state->last_delta2, delta2);
if (delta < 0)
delta = -delta;
if (delta2 < 0)
delta2 = -delta2;
if (delta3 < 0)
delta3 = -delta3;
if (delta > delta2)
delta = delta2;
if (delta > delta3)
delta = delta3;
/*
* delta is now minimum absolute delta.
* Round down by 1 bit on general principles,
* and limit entropy estimate to 12 bits.
*/
credit_entropy_bits(min_t(int, fls(delta >> 1), 11));
}
void add_input_randomness(unsigned int type, unsigned int code,
unsigned int value)
{
static unsigned char last_value;
/* ignore autorepeat and the like */
if (value == last_value)
return;
last_value = value;
add_timer_randomness(&input_timer_state,
(type << 4) ^ code ^ (code >> 4) ^ value);
trace_add_input_randomness(POOL_ENTROPY_BITS());
}
EXPORT_SYMBOL_GPL(add_input_randomness);
static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
#ifdef ADD_INTERRUPT_BENCH
static unsigned long avg_cycles, avg_deviation;
#define AVG_SHIFT 8 /* Exponential average factor k=1/256 */
#define FIXED_1_2 (1 << (AVG_SHIFT - 1))
static void add_interrupt_bench(cycles_t start)
{
long delta = random_get_entropy() - start;
/* Use a weighted moving average */
delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
avg_cycles += delta;
/* And average deviation */
delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
avg_deviation += delta;
}
#else
#define add_interrupt_bench(x)
#endif
static u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
{
u32 *ptr = (u32 *)regs;
unsigned int idx;
if (regs == NULL)
return 0;
idx = READ_ONCE(f->reg_idx);
if (idx >= sizeof(struct pt_regs) / sizeof(u32))
idx = 0;
ptr += idx++;
WRITE_ONCE(f->reg_idx, idx);
return *ptr;
}
void add_interrupt_randomness(int irq)
{
struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
struct pt_regs *regs = get_irq_regs();
unsigned long now = jiffies;
cycles_t cycles = random_get_entropy();
u32 c_high, j_high;
u64 ip;
if (cycles == 0)
cycles = get_reg(fast_pool, regs);
c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
j_high = (sizeof(now) > 4) ? now >> 32 : 0;
fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
fast_pool->pool[1] ^= now ^ c_high;
ip = regs ? instruction_pointer(regs) : _RET_IP_;
fast_pool->pool[2] ^= ip;
fast_pool->pool[3] ^=
(sizeof(ip) > 4) ? ip >> 32 : get_reg(fast_pool, regs);
fast_mix(fast_pool);
add_interrupt_bench(cycles);
if (unlikely(crng_init == 0)) {
if ((fast_pool->count >= 64) &&
crng_fast_load((u8 *)fast_pool->pool, sizeof(fast_pool->pool)) > 0) {
fast_pool->count = 0;
fast_pool->last = now;
}
return;
}
if ((fast_pool->count < 64) && !time_after(now, fast_pool->last + HZ))
return;
if (!spin_trylock(&input_pool.lock))
return;
fast_pool->last = now;
__mix_pool_bytes(&fast_pool->pool, sizeof(fast_pool->pool));
spin_unlock(&input_pool.lock);
fast_pool->count = 0;
/* award one bit for the contents of the fast pool */
credit_entropy_bits(1);
}
EXPORT_SYMBOL_GPL(add_interrupt_randomness);
#ifdef CONFIG_BLOCK
void add_disk_randomness(struct gendisk *disk)
{
if (!disk || !disk->random)
return;
/* first major is 1, so we get >= 0x200 here */
add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
trace_add_disk_randomness(disk_devt(disk), POOL_ENTROPY_BITS());
}
EXPORT_SYMBOL_GPL(add_disk_randomness);
#endif
/*********************************************************************
*
* Entropy extraction routines
*
*********************************************************************/
/*
* This function decides how many bytes to actually take from the
* given pool, and also debits the entropy count accordingly.
*/
static size_t account(size_t nbytes, int min)
{
int entropy_count, orig;
size_t ibytes, nfrac;
BUG_ON(input_pool.entropy_count > POOL_FRACBITS);
/* Can we pull enough? */
retry:
entropy_count = orig = READ_ONCE(input_pool.entropy_count);
if (WARN_ON(entropy_count < 0)) {
pr_warn("negative entropy count: count %d\n", entropy_count);
entropy_count = 0;
}
/* never pull more than available */
ibytes = min_t(size_t, nbytes, entropy_count >> (POOL_ENTROPY_SHIFT + 3));
if (ibytes < min)
ibytes = 0;
nfrac = ibytes << (POOL_ENTROPY_SHIFT + 3);
if ((size_t)entropy_count > nfrac)
entropy_count -= nfrac;
else
entropy_count = 0;
if (cmpxchg(&input_pool.entropy_count, orig, entropy_count) != orig)
goto retry;
trace_debit_entropy(8 * ibytes);
if (ibytes && POOL_ENTROPY_BITS() < random_write_wakeup_bits) {
wake_up_interruptible(&random_write_wait);
kill_fasync(&fasync, SIGIO, POLL_OUT);
}
return ibytes;
}
/*
* This function does the actual extraction for extract_entropy.
*
* Note: we assume that .poolwords is a multiple of 16 words.
*/
static void extract_buf(u8 *out)
{
struct blake2s_state state __aligned(__alignof__(unsigned long));
u8 hash[BLAKE2S_HASH_SIZE];
unsigned long *salt;
unsigned long flags;
blake2s_init(&state, sizeof(hash));
/*
* If we have an architectural hardware random number
* generator, use it for BLAKE2's salt & personal fields.
*/
for (salt = (unsigned long *)&state.h[4];
salt < (unsigned long *)&state.h[8]; ++salt) {
unsigned long v;
if (!arch_get_random_long(&v))
break;
*salt ^= v;
}
/* Generate a hash across the pool */
spin_lock_irqsave(&input_pool.lock, flags);
blake2s_update(&state, (const u8 *)input_pool_data, POOL_BYTES);
blake2s_final(&state, hash); /* final zeros out state */
/*
* We mix the hash back into the pool to prevent backtracking
* attacks (where the attacker knows the state of the pool
* plus the current outputs, and attempts to find previous
* outputs), unless the hash function can be inverted. By
* mixing at least a hash worth of hash data back, we make
* brute-forcing the feedback as hard as brute-forcing the
* hash.
*/
__mix_pool_bytes(hash, sizeof(hash));
spin_unlock_irqrestore(&input_pool.lock, flags);
/* Note that EXTRACT_SIZE is half of hash size here, because above
* we've dumped the full length back into mixer. By reducing the
* amount that we emit, we retain a level of forward secrecy.
*/
memcpy(out, hash, EXTRACT_SIZE);
memzero_explicit(hash, sizeof(hash));
}
static ssize_t _extract_entropy(void *buf, size_t nbytes)
{
ssize_t ret = 0, i;
u8 tmp[EXTRACT_SIZE];
while (nbytes) {
extract_buf(tmp);
i = min_t(int, nbytes, EXTRACT_SIZE);
memcpy(buf, tmp, i);
nbytes -= i;
buf += i;
ret += i;
}
/* Wipe data just returned from memory */
memzero_explicit(tmp, sizeof(tmp));
return ret;
}
/*
* This function extracts randomness from the "entropy pool", and
* returns it in a buffer.
*
* The min parameter specifies the minimum amount we can pull before
* failing to avoid races that defeat catastrophic reseeding.
*/
static ssize_t extract_entropy(void *buf, size_t nbytes, int min)
{
trace_extract_entropy(nbytes, POOL_ENTROPY_BITS(), _RET_IP_);
nbytes = account(nbytes, min);
return _extract_entropy(buf, nbytes);
}
#define warn_unseeded_randomness(previous) \
_warn_unseeded_randomness(__func__, (void *)_RET_IP_, (previous))
static void _warn_unseeded_randomness(const char *func_name, void *caller, void **previous)
{
#ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
const bool print_once = false;
#else
static bool print_once __read_mostly;
#endif
if (print_once || crng_ready() ||
(previous && (caller == READ_ONCE(*previous))))
return;
WRITE_ONCE(*previous, caller);
#ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
print_once = true;
#endif
if (__ratelimit(&unseeded_warning))
printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n",
func_name, caller, crng_init);
}
/*
* This function is the exported kernel interface. It returns some
* number of good random numbers, suitable for key generation, seeding
* TCP sequence numbers, etc. It does not rely on the hardware random
* number generator. For random bytes direct from the hardware RNG
* (when available), use get_random_bytes_arch(). In order to ensure
* that the randomness provided by this function is okay, the function
* wait_for_random_bytes() should be called and return 0 at least once
* at any point prior.
*/
static void _get_random_bytes(void *buf, int nbytes)
{
u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
trace_get_random_bytes(nbytes, _RET_IP_);
while (nbytes >= CHACHA_BLOCK_SIZE) {
extract_crng(buf);
buf += CHACHA_BLOCK_SIZE;
nbytes -= CHACHA_BLOCK_SIZE;
}
if (nbytes > 0) {
extract_crng(tmp);
memcpy(buf, tmp, nbytes);
crng_backtrack_protect(tmp, nbytes);
} else
crng_backtrack_protect(tmp, CHACHA_BLOCK_SIZE);
memzero_explicit(tmp, sizeof(tmp));
}
void get_random_bytes(void *buf, int nbytes)
{
static void *previous;
warn_unseeded_randomness(&previous);
_get_random_bytes(buf, nbytes);
}
EXPORT_SYMBOL(get_random_bytes);
/*
* Each time the timer fires, we expect that we got an unpredictable
* jump in the cycle counter. Even if the timer is running on another
* CPU, the timer activity will be touching the stack of the CPU that is
* generating entropy..
*
* Note that we don't re-arm the timer in the timer itself - we are
* happy to be scheduled away, since that just makes the load more
* complex, but we do not want the timer to keep ticking unless the
* entropy loop is running.
*
* So the re-arming always happens in the entropy loop itself.
*/
static void entropy_timer(struct timer_list *t)
{
credit_entropy_bits(1);
}
/*
* If we have an actual cycle counter, see if we can
* generate enough entropy with timing noise
*/
static void try_to_generate_entropy(void)
{
struct {
unsigned long now;
struct timer_list timer;
} stack;
stack.now = random_get_entropy();
/* Slow counter - or none. Don't even bother */
if (stack.now == random_get_entropy())
return;
timer_setup_on_stack(&stack.timer, entropy_timer, 0);
while (!crng_ready()) {
if (!timer_pending(&stack.timer))
mod_timer(&stack.timer, jiffies + 1);
mix_pool_bytes(&stack.now, sizeof(stack.now));
schedule();
stack.now = random_get_entropy();
}
del_timer_sync(&stack.timer);
destroy_timer_on_stack(&stack.timer);
mix_pool_bytes(&stack.now, sizeof(stack.now));
}
/*
* Wait for the urandom pool to be seeded and thus guaranteed to supply
* cryptographically secure random numbers. This applies to: the /dev/urandom
* device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
* family of functions. Using any of these functions without first calling
* this function forfeits the guarantee of security.
*
* Returns: 0 if the urandom pool has been seeded.
* -ERESTARTSYS if the function was interrupted by a signal.
*/
int wait_for_random_bytes(void)
{
if (likely(crng_ready()))
return 0;
do {
int ret;
ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
if (ret)
return ret > 0 ? 0 : ret;
try_to_generate_entropy();
} while (!crng_ready());
return 0;
}
EXPORT_SYMBOL(wait_for_random_bytes);
/*
* Returns whether or not the urandom pool has been seeded and thus guaranteed
* to supply cryptographically secure random numbers. This applies to: the
* /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
* ,u64,int,long} family of functions.
*
* Returns: true if the urandom pool has been seeded.
* false if the urandom pool has not been seeded.
*/
bool rng_is_initialized(void)
{
return crng_ready();
}
EXPORT_SYMBOL(rng_is_initialized);
/*
* Add a callback function that will be invoked when the nonblocking
* pool is initialised.
*
* returns: 0 if callback is successfully added
* -EALREADY if pool is already initialised (callback not called)
* -ENOENT if module for callback is not alive
*/
int add_random_ready_callback(struct random_ready_callback *rdy)
{
struct module *owner;
unsigned long flags;
int err = -EALREADY;
if (crng_ready())
return err;
owner = rdy->owner;
if (!try_module_get(owner))
return -ENOENT;
spin_lock_irqsave(&random_ready_list_lock, flags);
if (crng_ready())
goto out;
owner = NULL;
list_add(&rdy->list, &random_ready_list);
err = 0;
out:
spin_unlock_irqrestore(&random_ready_list_lock, flags);
module_put(owner);
return err;
}
EXPORT_SYMBOL(add_random_ready_callback);
/*
* Delete a previously registered readiness callback function.
*/
void del_random_ready_callback(struct random_ready_callback *rdy)
{
unsigned long flags;
struct module *owner = NULL;
spin_lock_irqsave(&random_ready_list_lock, flags);
if (!list_empty(&rdy->list)) {
list_del_init(&rdy->list);
owner = rdy->owner;
}
spin_unlock_irqrestore(&random_ready_list_lock, flags);
module_put(owner);
}
EXPORT_SYMBOL(del_random_ready_callback);
/*
* This function will use the architecture-specific hardware random
* number generator if it is available. The arch-specific hw RNG will
* almost certainly be faster than what we can do in software, but it
* is impossible to verify that it is implemented securely (as
* opposed, to, say, the AES encryption of a sequence number using a
* key known by the NSA). So it's useful if we need the speed, but
* only if we're willing to trust the hardware manufacturer not to
* have put in a back door.
*
* Return number of bytes filled in.
*/
int __must_check get_random_bytes_arch(void *buf, int nbytes)
{
int left = nbytes;
u8 *p = buf;
trace_get_random_bytes_arch(left, _RET_IP_);
while (left) {
unsigned long v;
int chunk = min_t(int, left, sizeof(unsigned long));
if (!arch_get_random_long(&v))
break;
memcpy(p, &v, chunk);
p += chunk;
left -= chunk;
}
return nbytes - left;
}
EXPORT_SYMBOL(get_random_bytes_arch);
/*
* init_std_data - initialize pool with system data
*
* This function clears the pool's entropy count and mixes some system
* data into the pool to prepare it for use. The pool is not cleared
* as that can only decrease the entropy in the pool.
*/
static void __init init_std_data(void)
{
int i;
ktime_t now = ktime_get_real();
unsigned long rv;
mix_pool_bytes(&now, sizeof(now));
for (i = POOL_BYTES; i > 0; i -= sizeof(rv)) {
if (!arch_get_random_seed_long(&rv) &&
!arch_get_random_long(&rv))
rv = random_get_entropy();
mix_pool_bytes(&rv, sizeof(rv));
}
mix_pool_bytes(utsname(), sizeof(*(utsname())));
}
/*
* Note that setup_arch() may call add_device_randomness()
* long before we get here. This allows seeding of the pools
* with some platform dependent data very early in the boot
* process. But it limits our options here. We must use
* statically allocated structures that already have all
* initializations complete at compile time. We should also
* take care not to overwrite the precious per platform data
* we were given.
*/
int __init rand_initialize(void)
{
init_std_data();
if (crng_need_final_init)
crng_finalize_init(&primary_crng);
crng_initialize_primary(&primary_crng);
crng_global_init_time = jiffies;
if (ratelimit_disable) {
urandom_warning.interval = 0;
unseeded_warning.interval = 0;
}
return 0;
}
#ifdef CONFIG_BLOCK
void rand_initialize_disk(struct gendisk *disk)
{
struct timer_rand_state *state;
/*
* If kzalloc returns null, we just won't use that entropy
* source.
*/
state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
if (state) {
state->last_time = INITIAL_JIFFIES;
disk->random = state;
}
}
#endif
static ssize_t urandom_read_nowarn(struct file *file, char __user *buf,
size_t nbytes, loff_t *ppos)
{
int ret;
nbytes = min_t(size_t, nbytes, INT_MAX >> (POOL_ENTROPY_SHIFT + 3));
ret = extract_crng_user(buf, nbytes);
trace_urandom_read(8 * nbytes, 0, POOL_ENTROPY_BITS());
return ret;
}
static ssize_t urandom_read(struct file *file, char __user *buf, size_t nbytes,
loff_t *ppos)
{
static int maxwarn = 10;
if (!crng_ready() && maxwarn > 0) {
maxwarn--;
if (__ratelimit(&urandom_warning))
pr_notice("%s: uninitialized urandom read (%zd bytes read)\n",
current->comm, nbytes);
}
return urandom_read_nowarn(file, buf, nbytes, ppos);
}
static ssize_t random_read(struct file *file, char __user *buf, size_t nbytes,
loff_t *ppos)
{
int ret;
ret = wait_for_random_bytes();
if (ret != 0)
return ret;
return urandom_read_nowarn(file, buf, nbytes, ppos);
}
static __poll_t random_poll(struct file *file, poll_table *wait)
{
__poll_t mask;
poll_wait(file, &crng_init_wait, wait);
poll_wait(file, &random_write_wait, wait);
mask = 0;
if (crng_ready())
mask |= EPOLLIN | EPOLLRDNORM;
if (POOL_ENTROPY_BITS() < random_write_wakeup_bits)
mask |= EPOLLOUT | EPOLLWRNORM;
return mask;
}
static int write_pool(const char __user *buffer, size_t count)
{
size_t bytes;
u32 t, buf[16];
const char __user *p = buffer;
while (count > 0) {
int b, i = 0;
bytes = min(count, sizeof(buf));
if (copy_from_user(&buf, p, bytes))
return -EFAULT;
for (b = bytes; b > 0; b -= sizeof(u32), i++) {
if (!arch_get_random_int(&t))
break;
buf[i] ^= t;
}
count -= bytes;
p += bytes;
mix_pool_bytes(buf, bytes);
cond_resched();
}
return 0;
}
static ssize_t random_write(struct file *file, const char __user *buffer,
size_t count, loff_t *ppos)
{
size_t ret;
ret = write_pool(buffer, count);
if (ret)
return ret;
return (ssize_t)count;
}
static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
{
int size, ent_count;
int __user *p = (int __user *)arg;
int retval;
switch (cmd) {
case RNDGETENTCNT:
/* inherently racy, no point locking */
ent_count = POOL_ENTROPY_BITS();
if (put_user(ent_count, p))
return -EFAULT;
return 0;
case RNDADDTOENTCNT:
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (get_user(ent_count, p))
return -EFAULT;
return credit_entropy_bits_safe(ent_count);
case RNDADDENTROPY:
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (get_user(ent_count, p++))
return -EFAULT;
if (ent_count < 0)
return -EINVAL;
if (get_user(size, p++))
return -EFAULT;
retval = write_pool((const char __user *)p, size);
if (retval < 0)
return retval;
return credit_entropy_bits_safe(ent_count);
case RNDZAPENTCNT:
case RNDCLEARPOOL:
/*
* Clear the entropy pool counters. We no longer clear
* the entropy pool, as that's silly.
*/
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
input_pool.entropy_count = 0;
return 0;
case RNDRESEEDCRNG:
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (crng_init < 2)
return -ENODATA;
crng_reseed(&primary_crng, true);
WRITE_ONCE(crng_global_init_time, jiffies - 1);
return 0;
default:
return -EINVAL;
}
}
static int random_fasync(int fd, struct file *filp, int on)
{
return fasync_helper(fd, filp, on, &fasync);
}
const struct file_operations random_fops = {
.read = random_read,
.write = random_write,
.poll = random_poll,
.unlocked_ioctl = random_ioctl,
.compat_ioctl = compat_ptr_ioctl,
.fasync = random_fasync,
.llseek = noop_llseek,
};
const struct file_operations urandom_fops = {
.read = urandom_read,
.write = random_write,
.unlocked_ioctl = random_ioctl,
.compat_ioctl = compat_ptr_ioctl,
.fasync = random_fasync,
.llseek = noop_llseek,
};
SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count, unsigned int,
flags)
{
int ret;
if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
return -EINVAL;
/*
* Requesting insecure and blocking randomness at the same time makes
* no sense.
*/
if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
return -EINVAL;
if (count > INT_MAX)
count = INT_MAX;
if (!(flags & GRND_INSECURE) && !crng_ready()) {
if (flags & GRND_NONBLOCK)
return -EAGAIN;
ret = wait_for_random_bytes();
if (unlikely(ret))
return ret;
}
return urandom_read_nowarn(NULL, buf, count, NULL);
}
/********************************************************************
*
* Sysctl interface
*
********************************************************************/
#ifdef CONFIG_SYSCTL
#include <linux/sysctl.h>
static int min_write_thresh;
static int max_write_thresh = POOL_BITS;
static int random_min_urandom_seed = 60;
static char sysctl_bootid[16];
/*
* This function is used to return both the bootid UUID, and random
* UUID. The difference is in whether table->data is NULL; if it is,
* then a new UUID is generated and returned to the user.
*
* If the user accesses this via the proc interface, the UUID will be
* returned as an ASCII string in the standard UUID format; if via the
* sysctl system call, as 16 bytes of binary data.
*/
static int proc_do_uuid(struct ctl_table *table, int write, void *buffer,
size_t *lenp, loff_t *ppos)
{
struct ctl_table fake_table;
unsigned char buf[64], tmp_uuid[16], *uuid;
uuid = table->data;
if (!uuid) {
uuid = tmp_uuid;
generate_random_uuid(uuid);
} else {
static DEFINE_SPINLOCK(bootid_spinlock);
spin_lock(&bootid_spinlock);
if (!uuid[8])
generate_random_uuid(uuid);
spin_unlock(&bootid_spinlock);
}
sprintf(buf, "%pU", uuid);
fake_table.data = buf;
fake_table.maxlen = sizeof(buf);
return proc_dostring(&fake_table, write, buffer, lenp, ppos);
}
/*
* Return entropy available scaled to integral bits
*/
static int proc_do_entropy(struct ctl_table *table, int write, void *buffer,
size_t *lenp, loff_t *ppos)
{
struct ctl_table fake_table;
int entropy_count;
entropy_count = *(int *)table->data >> POOL_ENTROPY_SHIFT;
fake_table.data = &entropy_count;
fake_table.maxlen = sizeof(entropy_count);
return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
}
static int sysctl_poolsize = POOL_BITS;
static struct ctl_table random_table[] = {
{
.procname = "poolsize",
.data = &sysctl_poolsize,
.maxlen = sizeof(int),
.mode = 0444,
.proc_handler = proc_dointvec,
},
{
.procname = "entropy_avail",
.maxlen = sizeof(int),
.mode = 0444,
.proc_handler = proc_do_entropy,
.data = &input_pool.entropy_count,
},
{
.procname = "write_wakeup_threshold",
.data = &random_write_wakeup_bits,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = &min_write_thresh,
.extra2 = &max_write_thresh,
},
{
.procname = "urandom_min_reseed_secs",
.data = &random_min_urandom_seed,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.procname = "boot_id",
.data = &sysctl_bootid,
.maxlen = 16,
.mode = 0444,
.proc_handler = proc_do_uuid,
},
{
.procname = "uuid",
.maxlen = 16,
.mode = 0444,
.proc_handler = proc_do_uuid,
},
#ifdef ADD_INTERRUPT_BENCH
{
.procname = "add_interrupt_avg_cycles",
.data = &avg_cycles,
.maxlen = sizeof(avg_cycles),
.mode = 0444,
.proc_handler = proc_doulongvec_minmax,
},
{
.procname = "add_interrupt_avg_deviation",
.data = &avg_deviation,
.maxlen = sizeof(avg_deviation),
.mode = 0444,
.proc_handler = proc_doulongvec_minmax,
},
#endif
{ }
};
/*
* rand_initialize() is called before sysctl_init(),
* so we cannot call register_sysctl_init() in rand_initialize()
*/
static int __init random_sysctls_init(void)
{
register_sysctl_init("kernel/random", random_table);
return 0;
}
device_initcall(random_sysctls_init);
#endif /* CONFIG_SYSCTL */
struct batched_entropy {
union {
u64 entropy_u64[CHACHA_BLOCK_SIZE / sizeof(u64)];
u32 entropy_u32[CHACHA_BLOCK_SIZE / sizeof(u32)];
};
unsigned int position;
spinlock_t batch_lock;
};
/*
* Get a random word for internal kernel use only. The quality of the random
* number is good as /dev/urandom, but there is no backtrack protection, with
* the goal of being quite fast and not depleting entropy. In order to ensure
* that the randomness provided by this function is okay, the function
* wait_for_random_bytes() should be called and return 0 at least once at any
* point prior.
*/
static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = {
.batch_lock = __SPIN_LOCK_UNLOCKED(batched_entropy_u64.lock),
};
u64 get_random_u64(void)
{
u64 ret;
unsigned long flags;
struct batched_entropy *batch;
static void *previous;
warn_unseeded_randomness(&previous);
batch = raw_cpu_ptr(&batched_entropy_u64);
spin_lock_irqsave(&batch->batch_lock, flags);
if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
extract_crng((u8 *)batch->entropy_u64);
batch->position = 0;
}
ret = batch->entropy_u64[batch->position++];
spin_unlock_irqrestore(&batch->batch_lock, flags);
return ret;
}
EXPORT_SYMBOL(get_random_u64);
static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = {
.batch_lock = __SPIN_LOCK_UNLOCKED(batched_entropy_u32.lock),
};
u32 get_random_u32(void)
{
u32 ret;
unsigned long flags;
struct batched_entropy *batch;
static void *previous;
warn_unseeded_randomness(&previous);
batch = raw_cpu_ptr(&batched_entropy_u32);
spin_lock_irqsave(&batch->batch_lock, flags);
if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
extract_crng((u8 *)batch->entropy_u32);
batch->position = 0;
}
ret = batch->entropy_u32[batch->position++];
spin_unlock_irqrestore(&batch->batch_lock, flags);
return ret;
}
EXPORT_SYMBOL(get_random_u32);
/* It's important to invalidate all potential batched entropy that might
* be stored before the crng is initialized, which we can do lazily by
* simply resetting the counter to zero so that it's re-extracted on the
* next usage. */
static void invalidate_batched_entropy(void)
{
int cpu;
unsigned long flags;
for_each_possible_cpu(cpu) {
struct batched_entropy *batched_entropy;
batched_entropy = per_cpu_ptr(&batched_entropy_u32, cpu);
spin_lock_irqsave(&batched_entropy->batch_lock, flags);
batched_entropy->position = 0;
spin_unlock(&batched_entropy->batch_lock);
batched_entropy = per_cpu_ptr(&batched_entropy_u64, cpu);
spin_lock(&batched_entropy->batch_lock);
batched_entropy->position = 0;
spin_unlock_irqrestore(&batched_entropy->batch_lock, flags);
}
}
/**
* randomize_page - Generate a random, page aligned address
* @start: The smallest acceptable address the caller will take.
* @range: The size of the area, starting at @start, within which the
* random address must fall.
*
* If @start + @range would overflow, @range is capped.
*
* NOTE: Historical use of randomize_range, which this replaces, presumed that
* @start was already page aligned. We now align it regardless.
*
* Return: A page aligned address within [start, start + range). On error,
* @start is returned.
*/
unsigned long randomize_page(unsigned long start, unsigned long range)
{
if (!PAGE_ALIGNED(start)) {
range -= PAGE_ALIGN(start) - start;
start = PAGE_ALIGN(start);
}
if (start > ULONG_MAX - range)
range = ULONG_MAX - start;
range >>= PAGE_SHIFT;
if (range == 0)
return start;
return start + (get_random_long() % range << PAGE_SHIFT);
}
/* Interface for in-kernel drivers of true hardware RNGs.
* Those devices may produce endless random bits and will be throttled
* when our pool is full.
*/
void add_hwgenerator_randomness(const char *buffer, size_t count,
size_t entropy)
{
if (unlikely(crng_init == 0)) {
size_t ret = crng_fast_load(buffer, count);
mix_pool_bytes(buffer, ret);
count -= ret;
buffer += ret;
if (!count || crng_init == 0)
return;
}
/* Throttle writing if we're above the trickle threshold.
* We'll be woken up again once below random_write_wakeup_thresh,
* when the calling thread is about to terminate, or once
* CRNG_RESEED_INTERVAL has lapsed.
*/
wait_event_interruptible_timeout(random_write_wait,
!system_wq || kthread_should_stop() ||
POOL_ENTROPY_BITS() <= random_write_wakeup_bits,
CRNG_RESEED_INTERVAL);
mix_pool_bytes(buffer, count);
credit_entropy_bits(entropy);
}
EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
/* Handle random seed passed by bootloader.
* If the seed is trustworthy, it would be regarded as hardware RNGs. Otherwise
* it would be regarded as device data.
* The decision is controlled by CONFIG_RANDOM_TRUST_BOOTLOADER.
*/
void add_bootloader_randomness(const void *buf, unsigned int size)
{
if (IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER))
add_hwgenerator_randomness(buf, size, size * 8);
else
add_device_randomness(buf, size);
}
EXPORT_SYMBOL_GPL(add_bootloader_randomness);
|