summaryrefslogtreecommitdiffstats
path: root/drivers/clk/sunxi/clk-sunxi.c
blob: f76f2327e0e4a0610e5c25fc0854e5ce38d88c48 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
/*
 * Copyright 2013 Emilio López
 *
 * Emilio López <emilio@elopez.com.ar>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/clk-provider.h>
#include <linux/clkdev.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/reset-controller.h>

#include "clk-factors.h"

static DEFINE_SPINLOCK(clk_lock);

/* Maximum number of parents our clocks have */
#define SUNXI_MAX_PARENTS	5

/**
 * sun4i_get_pll1_factors() - calculates n, k, m, p factors for PLL1
 * PLL1 rate is calculated as follows
 * rate = (parent_rate * n * (k + 1) >> p) / (m + 1);
 * parent_rate is always 24Mhz
 */

static void sun4i_get_pll1_factors(u32 *freq, u32 parent_rate,
				   u8 *n, u8 *k, u8 *m, u8 *p)
{
	u8 div;

	/* Normalize value to a 6M multiple */
	div = *freq / 6000000;
	*freq = 6000000 * div;

	/* we were called to round the frequency, we can now return */
	if (n == NULL)
		return;

	/* m is always zero for pll1 */
	*m = 0;

	/* k is 1 only on these cases */
	if (*freq >= 768000000 || *freq == 42000000 || *freq == 54000000)
		*k = 1;
	else
		*k = 0;

	/* p will be 3 for divs under 10 */
	if (div < 10)
		*p = 3;

	/* p will be 2 for divs between 10 - 20 and odd divs under 32 */
	else if (div < 20 || (div < 32 && (div & 1)))
		*p = 2;

	/* p will be 1 for even divs under 32, divs under 40 and odd pairs
	 * of divs between 40-62 */
	else if (div < 40 || (div < 64 && (div & 2)))
		*p = 1;

	/* any other entries have p = 0 */
	else
		*p = 0;

	/* calculate a suitable n based on k and p */
	div <<= *p;
	div /= (*k + 1);
	*n = div / 4;
}

/**
 * sun6i_a31_get_pll1_factors() - calculates n, k and m factors for PLL1
 * PLL1 rate is calculated as follows
 * rate = parent_rate * (n + 1) * (k + 1) / (m + 1);
 * parent_rate should always be 24MHz
 */
static void sun6i_a31_get_pll1_factors(u32 *freq, u32 parent_rate,
				       u8 *n, u8 *k, u8 *m, u8 *p)
{
	/*
	 * We can operate only on MHz, this will make our life easier
	 * later.
	 */
	u32 freq_mhz = *freq / 1000000;
	u32 parent_freq_mhz = parent_rate / 1000000;

	/*
	 * Round down the frequency to the closest multiple of either
	 * 6 or 16
	 */
	u32 round_freq_6 = round_down(freq_mhz, 6);
	u32 round_freq_16 = round_down(freq_mhz, 16);

	if (round_freq_6 > round_freq_16)
		freq_mhz = round_freq_6;
	else
		freq_mhz = round_freq_16;

	*freq = freq_mhz * 1000000;

	/*
	 * If the factors pointer are null, we were just called to
	 * round down the frequency.
	 * Exit.
	 */
	if (n == NULL)
		return;

	/* If the frequency is a multiple of 32 MHz, k is always 3 */
	if (!(freq_mhz % 32))
		*k = 3;
	/* If the frequency is a multiple of 9 MHz, k is always 2 */
	else if (!(freq_mhz % 9))
		*k = 2;
	/* If the frequency is a multiple of 8 MHz, k is always 1 */
	else if (!(freq_mhz % 8))
		*k = 1;
	/* Otherwise, we don't use the k factor */
	else
		*k = 0;

	/*
	 * If the frequency is a multiple of 2 but not a multiple of
	 * 3, m is 3. This is the first time we use 6 here, yet we
	 * will use it on several other places.
	 * We use this number because it's the lowest frequency we can
	 * generate (with n = 0, k = 0, m = 3), so every other frequency
	 * somehow relates to this frequency.
	 */
	if ((freq_mhz % 6) == 2 || (freq_mhz % 6) == 4)
		*m = 2;
	/*
	 * If the frequency is a multiple of 6MHz, but the factor is
	 * odd, m will be 3
	 */
	else if ((freq_mhz / 6) & 1)
		*m = 3;
	/* Otherwise, we end up with m = 1 */
	else
		*m = 1;

	/* Calculate n thanks to the above factors we already got */
	*n = freq_mhz * (*m + 1) / ((*k + 1) * parent_freq_mhz) - 1;

	/*
	 * If n end up being outbound, and that we can still decrease
	 * m, do it.
	 */
	if ((*n + 1) > 31 && (*m + 1) > 1) {
		*n = (*n + 1) / 2 - 1;
		*m = (*m + 1) / 2 - 1;
	}
}

/**
 * sun4i_get_pll5_factors() - calculates n, k factors for PLL5
 * PLL5 rate is calculated as follows
 * rate = parent_rate * n * (k + 1)
 * parent_rate is always 24Mhz
 */

static void sun4i_get_pll5_factors(u32 *freq, u32 parent_rate,
				   u8 *n, u8 *k, u8 *m, u8 *p)
{
	u8 div;

	/* Normalize value to a parent_rate multiple (24M) */
	div = *freq / parent_rate;
	*freq = parent_rate * div;

	/* we were called to round the frequency, we can now return */
	if (n == NULL)
		return;

	if (div < 31)
		*k = 0;
	else if (div / 2 < 31)
		*k = 1;
	else if (div / 3 < 31)
		*k = 2;
	else
		*k = 3;

	*n = DIV_ROUND_UP(div, (*k+1));
}

/**
 * sun6i_a31_get_pll6_factors() - calculates n, k factors for A31 PLL6
 * PLL6 rate is calculated as follows
 * rate = parent_rate * n * (k + 1) / 2
 * parent_rate is always 24Mhz
 */

static void sun6i_a31_get_pll6_factors(u32 *freq, u32 parent_rate,
				       u8 *n, u8 *k, u8 *m, u8 *p)
{
	u8 div;

	/*
	 * We always have 24MHz / 2, so we can just say that our
	 * parent clock is 12MHz.
	 */
	parent_rate = parent_rate / 2;

	/* Normalize value to a parent_rate multiple (24M / 2) */
	div = *freq / parent_rate;
	*freq = parent_rate * div;

	/* we were called to round the frequency, we can now return */
	if (n == NULL)
		return;

	*k = div / 32;
	if (*k > 3)
		*k = 3;

	*n = DIV_ROUND_UP(div, (*k+1));
}

/**
 * sun4i_get_apb1_factors() - calculates m, p factors for APB1
 * APB1 rate is calculated as follows
 * rate = (parent_rate >> p) / (m + 1);
 */

static void sun4i_get_apb1_factors(u32 *freq, u32 parent_rate,
				   u8 *n, u8 *k, u8 *m, u8 *p)
{
	u8 calcm, calcp;

	if (parent_rate < *freq)
		*freq = parent_rate;

	parent_rate = DIV_ROUND_UP(parent_rate, *freq);

	/* Invalid rate! */
	if (parent_rate > 32)
		return;

	if (parent_rate <= 4)
		calcp = 0;
	else if (parent_rate <= 8)
		calcp = 1;
	else if (parent_rate <= 16)
		calcp = 2;
	else
		calcp = 3;

	calcm = (parent_rate >> calcp) - 1;

	*freq = (parent_rate >> calcp) / (calcm + 1);

	/* we were called to round the frequency, we can now return */
	if (n == NULL)
		return;

	*m = calcm;
	*p = calcp;
}



/**
 * sun4i_get_mod0_factors() - calculates m, n factors for MOD0-style clocks
 * MOD0 rate is calculated as follows
 * rate = (parent_rate >> p) / (m + 1);
 */

static void sun4i_get_mod0_factors(u32 *freq, u32 parent_rate,
				   u8 *n, u8 *k, u8 *m, u8 *p)
{
	u8 div, calcm, calcp;

	/* These clocks can only divide, so we will never be able to achieve
	 * frequencies higher than the parent frequency */
	if (*freq > parent_rate)
		*freq = parent_rate;

	div = DIV_ROUND_UP(parent_rate, *freq);

	if (div < 16)
		calcp = 0;
	else if (div / 2 < 16)
		calcp = 1;
	else if (div / 4 < 16)
		calcp = 2;
	else
		calcp = 3;

	calcm = DIV_ROUND_UP(div, 1 << calcp);

	*freq = (parent_rate >> calcp) / calcm;

	/* we were called to round the frequency, we can now return */
	if (n == NULL)
		return;

	*m = calcm - 1;
	*p = calcp;
}



/**
 * sun7i_a20_get_out_factors() - calculates m, p factors for CLK_OUT_A/B
 * CLK_OUT rate is calculated as follows
 * rate = (parent_rate >> p) / (m + 1);
 */

static void sun7i_a20_get_out_factors(u32 *freq, u32 parent_rate,
				      u8 *n, u8 *k, u8 *m, u8 *p)
{
	u8 div, calcm, calcp;

	/* These clocks can only divide, so we will never be able to achieve
	 * frequencies higher than the parent frequency */
	if (*freq > parent_rate)
		*freq = parent_rate;

	div = DIV_ROUND_UP(parent_rate, *freq);

	if (div < 32)
		calcp = 0;
	else if (div / 2 < 32)
		calcp = 1;
	else if (div / 4 < 32)
		calcp = 2;
	else
		calcp = 3;

	calcm = DIV_ROUND_UP(div, 1 << calcp);

	*freq = (parent_rate >> calcp) / calcm;

	/* we were called to round the frequency, we can now return */
	if (n == NULL)
		return;

	*m = calcm - 1;
	*p = calcp;
}

/**
 * clk_sunxi_mmc_phase_control() - configures MMC clock phase control
 */

void clk_sunxi_mmc_phase_control(struct clk *clk, u8 sample, u8 output)
{
	#define to_clk_composite(_hw) container_of(_hw, struct clk_composite, hw)
	#define to_clk_factors(_hw) container_of(_hw, struct clk_factors, hw)

	struct clk_hw *hw = __clk_get_hw(clk);
	struct clk_composite *composite = to_clk_composite(hw);
	struct clk_hw *rate_hw = composite->rate_hw;
	struct clk_factors *factors = to_clk_factors(rate_hw);
	unsigned long flags = 0;
	u32 reg;

	if (factors->lock)
		spin_lock_irqsave(factors->lock, flags);

	reg = readl(factors->reg);

	/* set sample clock phase control */
	reg &= ~(0x7 << 20);
	reg |= ((sample & 0x7) << 20);

	/* set output clock phase control */
	reg &= ~(0x7 << 8);
	reg |= ((output & 0x7) << 8);

	writel(reg, factors->reg);

	if (factors->lock)
		spin_unlock_irqrestore(factors->lock, flags);
}
EXPORT_SYMBOL(clk_sunxi_mmc_phase_control);


/**
 * sunxi_factors_clk_setup() - Setup function for factor clocks
 */

#define SUNXI_FACTORS_MUX_MASK 0x3

struct factors_data {
	int enable;
	int mux;
	struct clk_factors_config *table;
	void (*getter) (u32 *rate, u32 parent_rate, u8 *n, u8 *k, u8 *m, u8 *p);
	const char *name;
};

static struct clk_factors_config sun4i_pll1_config = {
	.nshift = 8,
	.nwidth = 5,
	.kshift = 4,
	.kwidth = 2,
	.mshift = 0,
	.mwidth = 2,
	.pshift = 16,
	.pwidth = 2,
};

static struct clk_factors_config sun6i_a31_pll1_config = {
	.nshift	= 8,
	.nwidth = 5,
	.kshift = 4,
	.kwidth = 2,
	.mshift = 0,
	.mwidth = 2,
};

static struct clk_factors_config sun4i_pll5_config = {
	.nshift = 8,
	.nwidth = 5,
	.kshift = 4,
	.kwidth = 2,
};

static struct clk_factors_config sun6i_a31_pll6_config = {
	.nshift	= 8,
	.nwidth = 5,
	.kshift = 4,
	.kwidth = 2,
};

static struct clk_factors_config sun4i_apb1_config = {
	.mshift = 0,
	.mwidth = 5,
	.pshift = 16,
	.pwidth = 2,
};

/* user manual says "n" but it's really "p" */
static struct clk_factors_config sun4i_mod0_config = {
	.mshift = 0,
	.mwidth = 4,
	.pshift = 16,
	.pwidth = 2,
};

/* user manual says "n" but it's really "p" */
static struct clk_factors_config sun7i_a20_out_config = {
	.mshift = 8,
	.mwidth = 5,
	.pshift = 20,
	.pwidth = 2,
};

static const struct factors_data sun4i_pll1_data __initconst = {
	.enable = 31,
	.table = &sun4i_pll1_config,
	.getter = sun4i_get_pll1_factors,
};

static const struct factors_data sun6i_a31_pll1_data __initconst = {
	.enable = 31,
	.table = &sun6i_a31_pll1_config,
	.getter = sun6i_a31_get_pll1_factors,
};

static const struct factors_data sun7i_a20_pll4_data __initconst = {
	.enable = 31,
	.table = &sun4i_pll5_config,
	.getter = sun4i_get_pll5_factors,
};

static const struct factors_data sun4i_pll5_data __initconst = {
	.enable = 31,
	.table = &sun4i_pll5_config,
	.getter = sun4i_get_pll5_factors,
	.name = "pll5",
};

static const struct factors_data sun4i_pll6_data __initconst = {
	.enable = 31,
	.table = &sun4i_pll5_config,
	.getter = sun4i_get_pll5_factors,
	.name = "pll6",
};

static const struct factors_data sun6i_a31_pll6_data __initconst = {
	.enable = 31,
	.table = &sun6i_a31_pll6_config,
	.getter = sun6i_a31_get_pll6_factors,
};

static const struct factors_data sun4i_apb1_data __initconst = {
	.table = &sun4i_apb1_config,
	.getter = sun4i_get_apb1_factors,
};

static const struct factors_data sun4i_mod0_data __initconst = {
	.enable = 31,
	.mux = 24,
	.table = &sun4i_mod0_config,
	.getter = sun4i_get_mod0_factors,
};

static const struct factors_data sun7i_a20_out_data __initconst = {
	.enable = 31,
	.mux = 24,
	.table = &sun7i_a20_out_config,
	.getter = sun7i_a20_get_out_factors,
};

static struct clk * __init sunxi_factors_clk_setup(struct device_node *node,
						const struct factors_data *data)
{
	struct clk *clk;
	struct clk_factors *factors;
	struct clk_gate *gate = NULL;
	struct clk_mux *mux = NULL;
	struct clk_hw *gate_hw = NULL;
	struct clk_hw *mux_hw = NULL;
	const char *clk_name = node->name;
	const char *parents[SUNXI_MAX_PARENTS];
	void *reg;
	int i = 0;

	reg = of_iomap(node, 0);

	/* if we have a mux, we will have >1 parents */
	while (i < SUNXI_MAX_PARENTS &&
	       (parents[i] = of_clk_get_parent_name(node, i)) != NULL)
		i++;

	/*
	 * some factor clocks, such as pll5 and pll6, may have multiple
	 * outputs, and have their name designated in factors_data
	 */
	if (data->name)
		clk_name = data->name;
	else
		of_property_read_string(node, "clock-output-names", &clk_name);

	factors = kzalloc(sizeof(struct clk_factors), GFP_KERNEL);
	if (!factors)
		return NULL;

	/* Add a gate if this factor clock can be gated */
	if (data->enable) {
		gate = kzalloc(sizeof(struct clk_gate), GFP_KERNEL);
		if (!gate) {
			kfree(factors);
			return NULL;
		}

		/* set up gate properties */
		gate->reg = reg;
		gate->bit_idx = data->enable;
		gate->lock = &clk_lock;
		gate_hw = &gate->hw;
	}

	/* Add a mux if this factor clock can be muxed */
	if (data->mux) {
		mux = kzalloc(sizeof(struct clk_mux), GFP_KERNEL);
		if (!mux) {
			kfree(factors);
			kfree(gate);
			return NULL;
		}

		/* set up gate properties */
		mux->reg = reg;
		mux->shift = data->mux;
		mux->mask = SUNXI_FACTORS_MUX_MASK;
		mux->lock = &clk_lock;
		mux_hw = &mux->hw;
	}

	/* set up factors properties */
	factors->reg = reg;
	factors->config = data->table;
	factors->get_factors = data->getter;
	factors->lock = &clk_lock;

	clk = clk_register_composite(NULL, clk_name,
			parents, i,
			mux_hw, &clk_mux_ops,
			&factors->hw, &clk_factors_ops,
			gate_hw, &clk_gate_ops, 0);

	if (!IS_ERR(clk)) {
		of_clk_add_provider(node, of_clk_src_simple_get, clk);
		clk_register_clkdev(clk, clk_name, NULL);
	}

	return clk;
}



/**
 * sunxi_mux_clk_setup() - Setup function for muxes
 */

#define SUNXI_MUX_GATE_WIDTH	2

struct mux_data {
	u8 shift;
};

static const struct mux_data sun4i_cpu_mux_data __initconst = {
	.shift = 16,
};

static const struct mux_data sun6i_a31_ahb1_mux_data __initconst = {
	.shift = 12,
};

static const struct mux_data sun4i_apb1_mux_data __initconst = {
	.shift = 24,
};

static void __init sunxi_mux_clk_setup(struct device_node *node,
				       struct mux_data *data)
{
	struct clk *clk;
	const char *clk_name = node->name;
	const char *parents[SUNXI_MAX_PARENTS];
	void *reg;
	int i = 0;

	reg = of_iomap(node, 0);

	while (i < SUNXI_MAX_PARENTS &&
	       (parents[i] = of_clk_get_parent_name(node, i)) != NULL)
		i++;

	of_property_read_string(node, "clock-output-names", &clk_name);

	clk = clk_register_mux(NULL, clk_name, parents, i,
			       CLK_SET_RATE_NO_REPARENT, reg,
			       data->shift, SUNXI_MUX_GATE_WIDTH,
			       0, &clk_lock);

	if (clk) {
		of_clk_add_provider(node, of_clk_src_simple_get, clk);
		clk_register_clkdev(clk, clk_name, NULL);
	}
}



/**
 * sunxi_divider_clk_setup() - Setup function for simple divider clocks
 */

struct div_data {
	u8	shift;
	u8	pow;
	u8	width;
};

static const struct div_data sun4i_axi_data __initconst = {
	.shift	= 0,
	.pow	= 0,
	.width	= 2,
};

static const struct div_data sun4i_ahb_data __initconst = {
	.shift	= 4,
	.pow	= 1,
	.width	= 2,
};

static const struct div_data sun4i_apb0_data __initconst = {
	.shift	= 8,
	.pow	= 1,
	.width	= 2,
};

static const struct div_data sun6i_a31_apb2_div_data __initconst = {
	.shift	= 0,
	.pow	= 0,
	.width	= 4,
};

static void __init sunxi_divider_clk_setup(struct device_node *node,
					   struct div_data *data)
{
	struct clk *clk;
	const char *clk_name = node->name;
	const char *clk_parent;
	void *reg;

	reg = of_iomap(node, 0);

	clk_parent = of_clk_get_parent_name(node, 0);

	of_property_read_string(node, "clock-output-names", &clk_name);

	clk = clk_register_divider(NULL, clk_name, clk_parent, 0,
				   reg, data->shift, data->width,
				   data->pow ? CLK_DIVIDER_POWER_OF_TWO : 0,
				   &clk_lock);
	if (clk) {
		of_clk_add_provider(node, of_clk_src_simple_get, clk);
		clk_register_clkdev(clk, clk_name, NULL);
	}
}



/**
 * sunxi_gates_reset... - reset bits in leaf gate clk registers handling
 */

struct gates_reset_data {
	void __iomem			*reg;
	spinlock_t			*lock;
	struct reset_controller_dev	rcdev;
};

static int sunxi_gates_reset_assert(struct reset_controller_dev *rcdev,
			      unsigned long id)
{
	struct gates_reset_data *data = container_of(rcdev,
						     struct gates_reset_data,
						     rcdev);
	unsigned long flags;
	u32 reg;

	spin_lock_irqsave(data->lock, flags);

	reg = readl(data->reg);
	writel(reg & ~BIT(id), data->reg);

	spin_unlock_irqrestore(data->lock, flags);

	return 0;
}

static int sunxi_gates_reset_deassert(struct reset_controller_dev *rcdev,
				unsigned long id)
{
	struct gates_reset_data *data = container_of(rcdev,
						     struct gates_reset_data,
						     rcdev);
	unsigned long flags;
	u32 reg;

	spin_lock_irqsave(data->lock, flags);

	reg = readl(data->reg);
	writel(reg | BIT(id), data->reg);

	spin_unlock_irqrestore(data->lock, flags);

	return 0;
}

static struct reset_control_ops sunxi_gates_reset_ops = {
	.assert		= sunxi_gates_reset_assert,
	.deassert	= sunxi_gates_reset_deassert,
};

/**
 * sunxi_gates_clk_setup() - Setup function for leaf gates on clocks
 */

#define SUNXI_GATES_MAX_SIZE	64

struct gates_data {
	DECLARE_BITMAP(mask, SUNXI_GATES_MAX_SIZE);
	u32 reset_mask;
};

static const struct gates_data sun4i_axi_gates_data __initconst = {
	.mask = {1},
};

static const struct gates_data sun4i_ahb_gates_data __initconst = {
	.mask = {0x7F77FFF, 0x14FB3F},
};

static const struct gates_data sun5i_a10s_ahb_gates_data __initconst = {
	.mask = {0x147667e7, 0x185915},
};

static const struct gates_data sun5i_a13_ahb_gates_data __initconst = {
	.mask = {0x107067e7, 0x185111},
};

static const struct gates_data sun6i_a31_ahb1_gates_data __initconst = {
	.mask = {0xEDFE7F62, 0x794F931},
};

static const struct gates_data sun7i_a20_ahb_gates_data __initconst = {
	.mask = { 0x12f77fff, 0x16ff3f },
};

static const struct gates_data sun4i_apb0_gates_data __initconst = {
	.mask = {0x4EF},
};

static const struct gates_data sun5i_a10s_apb0_gates_data __initconst = {
	.mask = {0x469},
};

static const struct gates_data sun5i_a13_apb0_gates_data __initconst = {
	.mask = {0x61},
};

static const struct gates_data sun7i_a20_apb0_gates_data __initconst = {
	.mask = { 0x4ff },
};

static const struct gates_data sun4i_apb1_gates_data __initconst = {
	.mask = {0xFF00F7},
};

static const struct gates_data sun5i_a10s_apb1_gates_data __initconst = {
	.mask = {0xf0007},
};

static const struct gates_data sun5i_a13_apb1_gates_data __initconst = {
	.mask = {0xa0007},
};

static const struct gates_data sun6i_a31_apb1_gates_data __initconst = {
	.mask = {0x3031},
};

static const struct gates_data sun6i_a31_apb2_gates_data __initconst = {
	.mask = {0x3F000F},
};

static const struct gates_data sun7i_a20_apb1_gates_data __initconst = {
	.mask = { 0xff80ff },
};

static const struct gates_data sun4i_a10_usb_gates_data __initconst = {
	.mask = {0x1C0},
	.reset_mask = 0x07,
};

static const struct gates_data sun5i_a13_usb_gates_data __initconst = {
	.mask = {0x140},
	.reset_mask = 0x03,
};

static const struct gates_data sun6i_a31_usb_gates_data __initconst = {
	.mask = { BIT(18) | BIT(17) | BIT(16) | BIT(10) | BIT(9) | BIT(8) },
	.reset_mask = BIT(2) | BIT(1) | BIT(0),
};

static void __init sunxi_gates_clk_setup(struct device_node *node,
					 struct gates_data *data)
{
	struct clk_onecell_data *clk_data;
	struct gates_reset_data *reset_data;
	const char *clk_parent;
	const char *clk_name;
	void *reg;
	int qty;
	int i = 0;
	int j = 0;
	int ignore;

	reg = of_iomap(node, 0);

	clk_parent = of_clk_get_parent_name(node, 0);

	/* Worst-case size approximation and memory allocation */
	qty = find_last_bit(data->mask, SUNXI_GATES_MAX_SIZE);
	clk_data = kmalloc(sizeof(struct clk_onecell_data), GFP_KERNEL);
	if (!clk_data)
		return;
	clk_data->clks = kzalloc((qty+1) * sizeof(struct clk *), GFP_KERNEL);
	if (!clk_data->clks) {
		kfree(clk_data);
		return;
	}

	for_each_set_bit(i, data->mask, SUNXI_GATES_MAX_SIZE) {
		of_property_read_string_index(node, "clock-output-names",
					      j, &clk_name);

		/* No driver claims this clock, but it should remain gated */
		ignore = !strcmp("ahb_sdram", clk_name) ? CLK_IGNORE_UNUSED : 0;

		clk_data->clks[i] = clk_register_gate(NULL, clk_name,
						      clk_parent, ignore,
						      reg + 4 * (i/32), i % 32,
						      0, &clk_lock);
		WARN_ON(IS_ERR(clk_data->clks[i]));

		j++;
	}

	/* Adjust to the real max */
	clk_data->clk_num = i;

	of_clk_add_provider(node, of_clk_src_onecell_get, clk_data);

	/* Register a reset controler for gates with reset bits */
	if (data->reset_mask == 0)
		return;

	reset_data = kzalloc(sizeof(*reset_data), GFP_KERNEL);
	if (!reset_data)
		return;

	reset_data->reg = reg;
	reset_data->lock = &clk_lock;
	reset_data->rcdev.nr_resets = __fls(data->reset_mask) + 1;
	reset_data->rcdev.ops = &sunxi_gates_reset_ops;
	reset_data->rcdev.of_node = node;
	reset_controller_register(&reset_data->rcdev);
}



/**
 * sunxi_divs_clk_setup() helper data
 */

#define SUNXI_DIVS_MAX_QTY	2
#define SUNXI_DIVISOR_WIDTH	2

struct divs_data {
	const struct factors_data *factors; /* data for the factor clock */
	struct {
		u8 fixed; /* is it a fixed divisor? if not... */
		struct clk_div_table *table; /* is it a table based divisor? */
		u8 shift; /* otherwise it's a normal divisor with this shift */
		u8 pow;   /* is it power-of-two based? */
		u8 gate;  /* is it independently gateable? */
	} div[SUNXI_DIVS_MAX_QTY];
};

static struct clk_div_table pll6_sata_tbl[] = {
	{ .val = 0, .div = 6, },
	{ .val = 1, .div = 12, },
	{ .val = 2, .div = 18, },
	{ .val = 3, .div = 24, },
	{ } /* sentinel */
};

static const struct divs_data pll5_divs_data __initconst = {
	.factors = &sun4i_pll5_data,
	.div = {
		{ .shift = 0, .pow = 0, }, /* M, DDR */
		{ .shift = 16, .pow = 1, }, /* P, other */
	}
};

static const struct divs_data pll6_divs_data __initconst = {
	.factors = &sun4i_pll6_data,
	.div = {
		{ .shift = 0, .table = pll6_sata_tbl, .gate = 14 }, /* M, SATA */
		{ .fixed = 2 }, /* P, other */
	}
};

/**
 * sunxi_divs_clk_setup() - Setup function for leaf divisors on clocks
 *
 * These clocks look something like this
 *            ________________________
 *           |         ___divisor 1---|----> to consumer
 * parent >--|  pll___/___divisor 2---|----> to consumer
 *           |        \_______________|____> to consumer
 *           |________________________|
 */

static void __init sunxi_divs_clk_setup(struct device_node *node,
					struct divs_data *data)
{
	struct clk_onecell_data *clk_data;
	const char *parent;
	const char *clk_name;
	struct clk **clks, *pclk;
	struct clk_hw *gate_hw, *rate_hw;
	const struct clk_ops *rate_ops;
	struct clk_gate *gate = NULL;
	struct clk_fixed_factor *fix_factor;
	struct clk_divider *divider;
	void *reg;
	int i = 0;
	int flags, clkflags;

	/* Set up factor clock that we will be dividing */
	pclk = sunxi_factors_clk_setup(node, data->factors);
	parent = __clk_get_name(pclk);

	reg = of_iomap(node, 0);

	clk_data = kmalloc(sizeof(struct clk_onecell_data), GFP_KERNEL);
	if (!clk_data)
		return;

	clks = kzalloc((SUNXI_DIVS_MAX_QTY+1) * sizeof(*clks), GFP_KERNEL);
	if (!clks)
		goto free_clkdata;

	clk_data->clks = clks;

	/* It's not a good idea to have automatic reparenting changing
	 * our RAM clock! */
	clkflags = !strcmp("pll5", parent) ? 0 : CLK_SET_RATE_PARENT;

	for (i = 0; i < SUNXI_DIVS_MAX_QTY; i++) {
		if (of_property_read_string_index(node, "clock-output-names",
						  i, &clk_name) != 0)
			break;

		gate_hw = NULL;
		rate_hw = NULL;
		rate_ops = NULL;

		/* If this leaf clock can be gated, create a gate */
		if (data->div[i].gate) {
			gate = kzalloc(sizeof(*gate), GFP_KERNEL);
			if (!gate)
				goto free_clks;

			gate->reg = reg;
			gate->bit_idx = data->div[i].gate;
			gate->lock = &clk_lock;

			gate_hw = &gate->hw;
		}

		/* Leaves can be fixed or configurable divisors */
		if (data->div[i].fixed) {
			fix_factor = kzalloc(sizeof(*fix_factor), GFP_KERNEL);
			if (!fix_factor)
				goto free_gate;

			fix_factor->mult = 1;
			fix_factor->div = data->div[i].fixed;

			rate_hw = &fix_factor->hw;
			rate_ops = &clk_fixed_factor_ops;
		} else {
			divider = kzalloc(sizeof(*divider), GFP_KERNEL);
			if (!divider)
				goto free_gate;

			flags = data->div[i].pow ? CLK_DIVIDER_POWER_OF_TWO : 0;

			divider->reg = reg;
			divider->shift = data->div[i].shift;
			divider->width = SUNXI_DIVISOR_WIDTH;
			divider->flags = flags;
			divider->lock = &clk_lock;
			divider->table = data->div[i].table;

			rate_hw = &divider->hw;
			rate_ops = &clk_divider_ops;
		}

		/* Wrap the (potential) gate and the divisor on a composite
		 * clock to unify them */
		clks[i] = clk_register_composite(NULL, clk_name, &parent, 1,
						 NULL, NULL,
						 rate_hw, rate_ops,
						 gate_hw, &clk_gate_ops,
						 clkflags);

		WARN_ON(IS_ERR(clk_data->clks[i]));
		clk_register_clkdev(clks[i], clk_name, NULL);
	}

	/* The last clock available on the getter is the parent */
	clks[i++] = pclk;

	/* Adjust to the real max */
	clk_data->clk_num = i;

	of_clk_add_provider(node, of_clk_src_onecell_get, clk_data);

	return;

free_gate:
	kfree(gate);
free_clks:
	kfree(clks);
free_clkdata:
	kfree(clk_data);
}



/* Matches for factors clocks */
static const struct of_device_id clk_factors_match[] __initconst = {
	{.compatible = "allwinner,sun4i-a10-pll1-clk", .data = &sun4i_pll1_data,},
	{.compatible = "allwinner,sun6i-a31-pll1-clk", .data = &sun6i_a31_pll1_data,},
	{.compatible = "allwinner,sun7i-a20-pll4-clk", .data = &sun7i_a20_pll4_data,},
	{.compatible = "allwinner,sun6i-a31-pll6-clk", .data = &sun6i_a31_pll6_data,},
	{.compatible = "allwinner,sun4i-a10-apb1-clk", .data = &sun4i_apb1_data,},
	{.compatible = "allwinner,sun4i-a10-mod0-clk", .data = &sun4i_mod0_data,},
	{.compatible = "allwinner,sun7i-a20-out-clk", .data = &sun7i_a20_out_data,},
	{}
};

/* Matches for divider clocks */
static const struct of_device_id clk_div_match[] __initconst = {
	{.compatible = "allwinner,sun4i-a10-axi-clk", .data = &sun4i_axi_data,},
	{.compatible = "allwinner,sun4i-a10-ahb-clk", .data = &sun4i_ahb_data,},
	{.compatible = "allwinner,sun4i-a10-apb0-clk", .data = &sun4i_apb0_data,},
	{.compatible = "allwinner,sun6i-a31-apb2-div-clk", .data = &sun6i_a31_apb2_div_data,},
	{}
};

/* Matches for divided outputs */
static const struct of_device_id clk_divs_match[] __initconst = {
	{.compatible = "allwinner,sun4i-a10-pll5-clk", .data = &pll5_divs_data,},
	{.compatible = "allwinner,sun4i-a10-pll6-clk", .data = &pll6_divs_data,},
	{}
};

/* Matches for mux clocks */
static const struct of_device_id clk_mux_match[] __initconst = {
	{.compatible = "allwinner,sun4i-a10-cpu-clk", .data = &sun4i_cpu_mux_data,},
	{.compatible = "allwinner,sun4i-a10-apb1-mux-clk", .data = &sun4i_apb1_mux_data,},
	{.compatible = "allwinner,sun6i-a31-ahb1-mux-clk", .data = &sun6i_a31_ahb1_mux_data,},
	{}
};

/* Matches for gate clocks */
static const struct of_device_id clk_gates_match[] __initconst = {
	{.compatible = "allwinner,sun4i-a10-axi-gates-clk", .data = &sun4i_axi_gates_data,},
	{.compatible = "allwinner,sun4i-a10-ahb-gates-clk", .data = &sun4i_ahb_gates_data,},
	{.compatible = "allwinner,sun5i-a10s-ahb-gates-clk", .data = &sun5i_a10s_ahb_gates_data,},
	{.compatible = "allwinner,sun5i-a13-ahb-gates-clk", .data = &sun5i_a13_ahb_gates_data,},
	{.compatible = "allwinner,sun6i-a31-ahb1-gates-clk", .data = &sun6i_a31_ahb1_gates_data,},
	{.compatible = "allwinner,sun7i-a20-ahb-gates-clk", .data = &sun7i_a20_ahb_gates_data,},
	{.compatible = "allwinner,sun4i-a10-apb0-gates-clk", .data = &sun4i_apb0_gates_data,},
	{.compatible = "allwinner,sun5i-a10s-apb0-gates-clk", .data = &sun5i_a10s_apb0_gates_data,},
	{.compatible = "allwinner,sun5i-a13-apb0-gates-clk", .data = &sun5i_a13_apb0_gates_data,},
	{.compatible = "allwinner,sun7i-a20-apb0-gates-clk", .data = &sun7i_a20_apb0_gates_data,},
	{.compatible = "allwinner,sun4i-a10-apb1-gates-clk", .data = &sun4i_apb1_gates_data,},
	{.compatible = "allwinner,sun5i-a10s-apb1-gates-clk", .data = &sun5i_a10s_apb1_gates_data,},
	{.compatible = "allwinner,sun5i-a13-apb1-gates-clk", .data = &sun5i_a13_apb1_gates_data,},
	{.compatible = "allwinner,sun6i-a31-apb1-gates-clk", .data = &sun6i_a31_apb1_gates_data,},
	{.compatible = "allwinner,sun7i-a20-apb1-gates-clk", .data = &sun7i_a20_apb1_gates_data,},
	{.compatible = "allwinner,sun6i-a31-apb2-gates-clk", .data = &sun6i_a31_apb2_gates_data,},
	{.compatible = "allwinner,sun4i-a10-usb-clk", .data = &sun4i_a10_usb_gates_data,},
	{.compatible = "allwinner,sun5i-a13-usb-clk", .data = &sun5i_a13_usb_gates_data,},
	{.compatible = "allwinner,sun6i-a31-usb-clk", .data = &sun6i_a31_usb_gates_data,},
	{}
};

static void __init of_sunxi_table_clock_setup(const struct of_device_id *clk_match,
					      void *function)
{
	struct device_node *np;
	const struct div_data *data;
	const struct of_device_id *match;
	void (*setup_function)(struct device_node *, const void *) = function;

	for_each_matching_node_and_match(np, clk_match, &match) {
		data = match->data;
		setup_function(np, data);
	}
}

static void __init sunxi_init_clocks(const char *clocks[], int nclocks)
{
	unsigned int i;

	/* Register factor clocks */
	of_sunxi_table_clock_setup(clk_factors_match, sunxi_factors_clk_setup);

	/* Register divider clocks */
	of_sunxi_table_clock_setup(clk_div_match, sunxi_divider_clk_setup);

	/* Register divided output clocks */
	of_sunxi_table_clock_setup(clk_divs_match, sunxi_divs_clk_setup);

	/* Register mux clocks */
	of_sunxi_table_clock_setup(clk_mux_match, sunxi_mux_clk_setup);

	/* Register gate clocks */
	of_sunxi_table_clock_setup(clk_gates_match, sunxi_gates_clk_setup);

	/* Protect the clocks that needs to stay on */
	for (i = 0; i < nclocks; i++) {
		struct clk *clk = clk_get(NULL, clocks[i]);

		if (!IS_ERR(clk))
			clk_prepare_enable(clk);
	}
}

static const char *sun4i_a10_critical_clocks[] __initdata = {
	"pll5_ddr",
};

static void __init sun4i_a10_init_clocks(struct device_node *node)
{
	sunxi_init_clocks(sun4i_a10_critical_clocks,
			  ARRAY_SIZE(sun4i_a10_critical_clocks));
}
CLK_OF_DECLARE(sun4i_a10_clk_init, "allwinner,sun4i-a10", sun4i_a10_init_clocks);

static const char *sun5i_critical_clocks[] __initdata = {
	"mbus",
	"pll5_ddr",
};

static void __init sun5i_init_clocks(struct device_node *node)
{
	sunxi_init_clocks(sun5i_critical_clocks,
			  ARRAY_SIZE(sun5i_critical_clocks));
}
CLK_OF_DECLARE(sun5i_a10s_clk_init, "allwinner,sun5i-a10s", sun5i_init_clocks);
CLK_OF_DECLARE(sun5i_a13_clk_init, "allwinner,sun5i-a13", sun5i_init_clocks);
CLK_OF_DECLARE(sun7i_a20_clk_init, "allwinner,sun7i-a20", sun5i_init_clocks);

static const char *sun6i_critical_clocks[] __initdata = {
	"cpu",
};

static void __init sun6i_init_clocks(struct device_node *node)
{
	sunxi_init_clocks(sun6i_critical_clocks,
			  ARRAY_SIZE(sun6i_critical_clocks));
}
CLK_OF_DECLARE(sun6i_a31_clk_init, "allwinner,sun6i-a31", sun6i_init_clocks);