summaryrefslogtreecommitdiffstats
path: root/drivers/cpufreq/amd-pstate.c
blob: 7be38bc6a673b09c90d578413b38c731a135dc84 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * amd-pstate.c - AMD Processor P-state Frequency Driver
 *
 * Copyright (C) 2021 Advanced Micro Devices, Inc. All Rights Reserved.
 *
 * Author: Huang Rui <ray.huang@amd.com>
 *
 * AMD P-State introduces a new CPU performance scaling design for AMD
 * processors using the ACPI Collaborative Performance and Power Control (CPPC)
 * feature which works with the AMD SMU firmware providing a finer grained
 * frequency control range. It is to replace the legacy ACPI P-States control,
 * allows a flexible, low-latency interface for the Linux kernel to directly
 * communicate the performance hints to hardware.
 *
 * AMD P-State is supported on recent AMD Zen base CPU series include some of
 * Zen2 and Zen3 processors. _CPC needs to be present in the ACPI tables of AMD
 * P-State supported system. And there are two types of hardware implementations
 * for AMD P-State: 1) Full MSR Solution and 2) Shared Memory Solution.
 * X86_FEATURE_CPPC CPU feature flag is used to distinguish the different types.
 */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/smp.h>
#include <linux/sched.h>
#include <linux/cpufreq.h>
#include <linux/compiler.h>
#include <linux/dmi.h>
#include <linux/slab.h>
#include <linux/acpi.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/uaccess.h>
#include <linux/static_call.h>

#include <acpi/processor.h>
#include <acpi/cppc_acpi.h>

#include <asm/msr.h>
#include <asm/processor.h>
#include <asm/cpufeature.h>
#include <asm/cpu_device_id.h>
#include "amd-pstate-trace.h"

#define AMD_PSTATE_TRANSITION_LATENCY	0x20000
#define AMD_PSTATE_TRANSITION_DELAY	500

/*
 * TODO: We need more time to fine tune processors with shared memory solution
 * with community together.
 *
 * There are some performance drops on the CPU benchmarks which reports from
 * Suse. We are co-working with them to fine tune the shared memory solution. So
 * we disable it by default to go acpi-cpufreq on these processors and add a
 * module parameter to be able to enable it manually for debugging.
 */
static bool shared_mem = false;
module_param(shared_mem, bool, 0444);
MODULE_PARM_DESC(shared_mem,
		 "enable amd-pstate on processors with shared memory solution (false = disabled (default), true = enabled)");

static struct cpufreq_driver amd_pstate_driver;

/**
 * struct  amd_aperf_mperf
 * @aperf: actual performance frequency clock count
 * @mperf: maximum performance frequency clock count
 * @tsc:   time stamp counter
 */
struct amd_aperf_mperf {
	u64 aperf;
	u64 mperf;
	u64 tsc;
};

/**
 * struct amd_cpudata - private CPU data for AMD P-State
 * @cpu: CPU number
 * @req: constraint request to apply
 * @cppc_req_cached: cached performance request hints
 * @highest_perf: the maximum performance an individual processor may reach,
 *		  assuming ideal conditions
 * @nominal_perf: the maximum sustained performance level of the processor,
 *		  assuming ideal operating conditions
 * @lowest_nonlinear_perf: the lowest performance level at which nonlinear power
 *			   savings are achieved
 * @lowest_perf: the absolute lowest performance level of the processor
 * @max_freq: the frequency that mapped to highest_perf
 * @min_freq: the frequency that mapped to lowest_perf
 * @nominal_freq: the frequency that mapped to nominal_perf
 * @lowest_nonlinear_freq: the frequency that mapped to lowest_nonlinear_perf
 * @cur: Difference of Aperf/Mperf/tsc count between last and current sample
 * @prev: Last Aperf/Mperf/tsc count value read from register
 * @freq: current cpu frequency value
 * @boost_supported: check whether the Processor or SBIOS supports boost mode
 *
 * The amd_cpudata is key private data for each CPU thread in AMD P-State, and
 * represents all the attributes and goals that AMD P-State requests at runtime.
 */
struct amd_cpudata {
	int	cpu;

	struct	freq_qos_request req[2];
	u64	cppc_req_cached;

	u32	highest_perf;
	u32	nominal_perf;
	u32	lowest_nonlinear_perf;
	u32	lowest_perf;

	u32	max_freq;
	u32	min_freq;
	u32	nominal_freq;
	u32	lowest_nonlinear_freq;

	struct amd_aperf_mperf cur;
	struct amd_aperf_mperf prev;

	u64 freq;
	bool	boost_supported;
};

static inline int pstate_enable(bool enable)
{
	return wrmsrl_safe(MSR_AMD_CPPC_ENABLE, enable);
}

static int cppc_enable(bool enable)
{
	int cpu, ret = 0;

	for_each_present_cpu(cpu) {
		ret = cppc_set_enable(cpu, enable);
		if (ret)
			return ret;
	}

	return ret;
}

DEFINE_STATIC_CALL(amd_pstate_enable, pstate_enable);

static inline int amd_pstate_enable(bool enable)
{
	return static_call(amd_pstate_enable)(enable);
}

static int pstate_init_perf(struct amd_cpudata *cpudata)
{
	u64 cap1;

	int ret = rdmsrl_safe_on_cpu(cpudata->cpu, MSR_AMD_CPPC_CAP1,
				     &cap1);
	if (ret)
		return ret;

	/*
	 * TODO: Introduce AMD specific power feature.
	 *
	 * CPPC entry doesn't indicate the highest performance in some ASICs.
	 */
	WRITE_ONCE(cpudata->highest_perf, amd_get_highest_perf());

	WRITE_ONCE(cpudata->nominal_perf, AMD_CPPC_NOMINAL_PERF(cap1));
	WRITE_ONCE(cpudata->lowest_nonlinear_perf, AMD_CPPC_LOWNONLIN_PERF(cap1));
	WRITE_ONCE(cpudata->lowest_perf, AMD_CPPC_LOWEST_PERF(cap1));

	return 0;
}

static int cppc_init_perf(struct amd_cpudata *cpudata)
{
	struct cppc_perf_caps cppc_perf;

	int ret = cppc_get_perf_caps(cpudata->cpu, &cppc_perf);
	if (ret)
		return ret;

	WRITE_ONCE(cpudata->highest_perf, amd_get_highest_perf());

	WRITE_ONCE(cpudata->nominal_perf, cppc_perf.nominal_perf);
	WRITE_ONCE(cpudata->lowest_nonlinear_perf,
		   cppc_perf.lowest_nonlinear_perf);
	WRITE_ONCE(cpudata->lowest_perf, cppc_perf.lowest_perf);

	return 0;
}

DEFINE_STATIC_CALL(amd_pstate_init_perf, pstate_init_perf);

static inline int amd_pstate_init_perf(struct amd_cpudata *cpudata)
{
	return static_call(amd_pstate_init_perf)(cpudata);
}

static void pstate_update_perf(struct amd_cpudata *cpudata, u32 min_perf,
			       u32 des_perf, u32 max_perf, bool fast_switch)
{
	if (fast_switch)
		wrmsrl(MSR_AMD_CPPC_REQ, READ_ONCE(cpudata->cppc_req_cached));
	else
		wrmsrl_on_cpu(cpudata->cpu, MSR_AMD_CPPC_REQ,
			      READ_ONCE(cpudata->cppc_req_cached));
}

static void cppc_update_perf(struct amd_cpudata *cpudata,
			     u32 min_perf, u32 des_perf,
			     u32 max_perf, bool fast_switch)
{
	struct cppc_perf_ctrls perf_ctrls;

	perf_ctrls.max_perf = max_perf;
	perf_ctrls.min_perf = min_perf;
	perf_ctrls.desired_perf = des_perf;

	cppc_set_perf(cpudata->cpu, &perf_ctrls);
}

DEFINE_STATIC_CALL(amd_pstate_update_perf, pstate_update_perf);

static inline void amd_pstate_update_perf(struct amd_cpudata *cpudata,
					  u32 min_perf, u32 des_perf,
					  u32 max_perf, bool fast_switch)
{
	static_call(amd_pstate_update_perf)(cpudata, min_perf, des_perf,
					    max_perf, fast_switch);
}

static inline bool amd_pstate_sample(struct amd_cpudata *cpudata)
{
	u64 aperf, mperf, tsc;
	unsigned long flags;

	local_irq_save(flags);
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
	tsc = rdtsc();

	if (cpudata->prev.mperf == mperf || cpudata->prev.tsc == tsc) {
		local_irq_restore(flags);
		return false;
	}

	local_irq_restore(flags);

	cpudata->cur.aperf = aperf;
	cpudata->cur.mperf = mperf;
	cpudata->cur.tsc =  tsc;
	cpudata->cur.aperf -= cpudata->prev.aperf;
	cpudata->cur.mperf -= cpudata->prev.mperf;
	cpudata->cur.tsc -= cpudata->prev.tsc;

	cpudata->prev.aperf = aperf;
	cpudata->prev.mperf = mperf;
	cpudata->prev.tsc = tsc;

	cpudata->freq = div64_u64((cpudata->cur.aperf * cpu_khz), cpudata->cur.mperf);

	return true;
}

static void amd_pstate_update(struct amd_cpudata *cpudata, u32 min_perf,
			      u32 des_perf, u32 max_perf, bool fast_switch)
{
	u64 prev = READ_ONCE(cpudata->cppc_req_cached);
	u64 value = prev;

	value &= ~AMD_CPPC_MIN_PERF(~0L);
	value |= AMD_CPPC_MIN_PERF(min_perf);

	value &= ~AMD_CPPC_DES_PERF(~0L);
	value |= AMD_CPPC_DES_PERF(des_perf);

	value &= ~AMD_CPPC_MAX_PERF(~0L);
	value |= AMD_CPPC_MAX_PERF(max_perf);

	if (trace_amd_pstate_perf_enabled() && amd_pstate_sample(cpudata)) {
		trace_amd_pstate_perf(min_perf, des_perf, max_perf, cpudata->freq,
			cpudata->cur.mperf, cpudata->cur.aperf, cpudata->cur.tsc,
				cpudata->cpu, (value != prev), fast_switch);
	}

	if (value == prev)
		return;

	WRITE_ONCE(cpudata->cppc_req_cached, value);

	amd_pstate_update_perf(cpudata, min_perf, des_perf,
			       max_perf, fast_switch);
}

static int amd_pstate_verify(struct cpufreq_policy_data *policy)
{
	cpufreq_verify_within_cpu_limits(policy);

	return 0;
}

static int amd_pstate_target(struct cpufreq_policy *policy,
			     unsigned int target_freq,
			     unsigned int relation)
{
	struct cpufreq_freqs freqs;
	struct amd_cpudata *cpudata = policy->driver_data;
	unsigned long max_perf, min_perf, des_perf, cap_perf;

	if (!cpudata->max_freq)
		return -ENODEV;

	cap_perf = READ_ONCE(cpudata->highest_perf);
	min_perf = READ_ONCE(cpudata->lowest_nonlinear_perf);
	max_perf = cap_perf;

	freqs.old = policy->cur;
	freqs.new = target_freq;

	des_perf = DIV_ROUND_CLOSEST(target_freq * cap_perf,
				     cpudata->max_freq);

	cpufreq_freq_transition_begin(policy, &freqs);
	amd_pstate_update(cpudata, min_perf, des_perf,
			  max_perf, false);
	cpufreq_freq_transition_end(policy, &freqs, false);

	return 0;
}

static void amd_pstate_adjust_perf(unsigned int cpu,
				   unsigned long _min_perf,
				   unsigned long target_perf,
				   unsigned long capacity)
{
	unsigned long max_perf, min_perf, des_perf,
		      cap_perf, lowest_nonlinear_perf;
	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
	struct amd_cpudata *cpudata = policy->driver_data;

	cap_perf = READ_ONCE(cpudata->highest_perf);
	lowest_nonlinear_perf = READ_ONCE(cpudata->lowest_nonlinear_perf);

	des_perf = cap_perf;
	if (target_perf < capacity)
		des_perf = DIV_ROUND_UP(cap_perf * target_perf, capacity);

	min_perf = READ_ONCE(cpudata->highest_perf);
	if (_min_perf < capacity)
		min_perf = DIV_ROUND_UP(cap_perf * _min_perf, capacity);

	if (min_perf < lowest_nonlinear_perf)
		min_perf = lowest_nonlinear_perf;

	max_perf = cap_perf;
	if (max_perf < min_perf)
		max_perf = min_perf;

	des_perf = clamp_t(unsigned long, des_perf, min_perf, max_perf);

	amd_pstate_update(cpudata, min_perf, des_perf, max_perf, true);
}

static int amd_get_min_freq(struct amd_cpudata *cpudata)
{
	struct cppc_perf_caps cppc_perf;

	int ret = cppc_get_perf_caps(cpudata->cpu, &cppc_perf);
	if (ret)
		return ret;

	/* Switch to khz */
	return cppc_perf.lowest_freq * 1000;
}

static int amd_get_max_freq(struct amd_cpudata *cpudata)
{
	struct cppc_perf_caps cppc_perf;
	u32 max_perf, max_freq, nominal_freq, nominal_perf;
	u64 boost_ratio;

	int ret = cppc_get_perf_caps(cpudata->cpu, &cppc_perf);
	if (ret)
		return ret;

	nominal_freq = cppc_perf.nominal_freq;
	nominal_perf = READ_ONCE(cpudata->nominal_perf);
	max_perf = READ_ONCE(cpudata->highest_perf);

	boost_ratio = div_u64(max_perf << SCHED_CAPACITY_SHIFT,
			      nominal_perf);

	max_freq = nominal_freq * boost_ratio >> SCHED_CAPACITY_SHIFT;

	/* Switch to khz */
	return max_freq * 1000;
}

static int amd_get_nominal_freq(struct amd_cpudata *cpudata)
{
	struct cppc_perf_caps cppc_perf;

	int ret = cppc_get_perf_caps(cpudata->cpu, &cppc_perf);
	if (ret)
		return ret;

	/* Switch to khz */
	return cppc_perf.nominal_freq * 1000;
}

static int amd_get_lowest_nonlinear_freq(struct amd_cpudata *cpudata)
{
	struct cppc_perf_caps cppc_perf;
	u32 lowest_nonlinear_freq, lowest_nonlinear_perf,
	    nominal_freq, nominal_perf;
	u64 lowest_nonlinear_ratio;

	int ret = cppc_get_perf_caps(cpudata->cpu, &cppc_perf);
	if (ret)
		return ret;

	nominal_freq = cppc_perf.nominal_freq;
	nominal_perf = READ_ONCE(cpudata->nominal_perf);

	lowest_nonlinear_perf = cppc_perf.lowest_nonlinear_perf;

	lowest_nonlinear_ratio = div_u64(lowest_nonlinear_perf << SCHED_CAPACITY_SHIFT,
					 nominal_perf);

	lowest_nonlinear_freq = nominal_freq * lowest_nonlinear_ratio >> SCHED_CAPACITY_SHIFT;

	/* Switch to khz */
	return lowest_nonlinear_freq * 1000;
}

static int amd_pstate_set_boost(struct cpufreq_policy *policy, int state)
{
	struct amd_cpudata *cpudata = policy->driver_data;
	int ret;

	if (!cpudata->boost_supported) {
		pr_err("Boost mode is not supported by this processor or SBIOS\n");
		return -EINVAL;
	}

	if (state)
		policy->cpuinfo.max_freq = cpudata->max_freq;
	else
		policy->cpuinfo.max_freq = cpudata->nominal_freq;

	policy->max = policy->cpuinfo.max_freq;

	ret = freq_qos_update_request(&cpudata->req[1],
				      policy->cpuinfo.max_freq);
	if (ret < 0)
		return ret;

	return 0;
}

static void amd_pstate_boost_init(struct amd_cpudata *cpudata)
{
	u32 highest_perf, nominal_perf;

	highest_perf = READ_ONCE(cpudata->highest_perf);
	nominal_perf = READ_ONCE(cpudata->nominal_perf);

	if (highest_perf <= nominal_perf)
		return;

	cpudata->boost_supported = true;
	amd_pstate_driver.boost_enabled = true;
}

static int amd_pstate_cpu_init(struct cpufreq_policy *policy)
{
	int min_freq, max_freq, nominal_freq, lowest_nonlinear_freq, ret;
	struct device *dev;
	struct amd_cpudata *cpudata;

	dev = get_cpu_device(policy->cpu);
	if (!dev)
		return -ENODEV;

	cpudata = kzalloc(sizeof(*cpudata), GFP_KERNEL);
	if (!cpudata)
		return -ENOMEM;

	cpudata->cpu = policy->cpu;

	ret = amd_pstate_init_perf(cpudata);
	if (ret)
		goto free_cpudata1;

	min_freq = amd_get_min_freq(cpudata);
	max_freq = amd_get_max_freq(cpudata);
	nominal_freq = amd_get_nominal_freq(cpudata);
	lowest_nonlinear_freq = amd_get_lowest_nonlinear_freq(cpudata);

	if (min_freq < 0 || max_freq < 0 || min_freq > max_freq) {
		dev_err(dev, "min_freq(%d) or max_freq(%d) value is incorrect\n",
			min_freq, max_freq);
		ret = -EINVAL;
		goto free_cpudata1;
	}

	policy->cpuinfo.transition_latency = AMD_PSTATE_TRANSITION_LATENCY;
	policy->transition_delay_us = AMD_PSTATE_TRANSITION_DELAY;

	policy->min = min_freq;
	policy->max = max_freq;

	policy->cpuinfo.min_freq = min_freq;
	policy->cpuinfo.max_freq = max_freq;

	/* It will be updated by governor */
	policy->cur = policy->cpuinfo.min_freq;

	if (boot_cpu_has(X86_FEATURE_CPPC))
		policy->fast_switch_possible = true;

	ret = freq_qos_add_request(&policy->constraints, &cpudata->req[0],
				   FREQ_QOS_MIN, policy->cpuinfo.min_freq);
	if (ret < 0) {
		dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
		goto free_cpudata1;
	}

	ret = freq_qos_add_request(&policy->constraints, &cpudata->req[1],
				   FREQ_QOS_MAX, policy->cpuinfo.max_freq);
	if (ret < 0) {
		dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
		goto free_cpudata2;
	}

	/* Initial processor data capability frequencies */
	cpudata->max_freq = max_freq;
	cpudata->min_freq = min_freq;
	cpudata->nominal_freq = nominal_freq;
	cpudata->lowest_nonlinear_freq = lowest_nonlinear_freq;

	policy->driver_data = cpudata;

	amd_pstate_boost_init(cpudata);

	return 0;

free_cpudata2:
	freq_qos_remove_request(&cpudata->req[0]);
free_cpudata1:
	kfree(cpudata);
	return ret;
}

static int amd_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	struct amd_cpudata *cpudata;

	cpudata = policy->driver_data;

	freq_qos_remove_request(&cpudata->req[1]);
	freq_qos_remove_request(&cpudata->req[0]);
	kfree(cpudata);

	return 0;
}

/* Sysfs attributes */

/*
 * This frequency is to indicate the maximum hardware frequency.
 * If boost is not active but supported, the frequency will be larger than the
 * one in cpuinfo.
 */
static ssize_t show_amd_pstate_max_freq(struct cpufreq_policy *policy,
					char *buf)
{
	int max_freq;
	struct amd_cpudata *cpudata;

	cpudata = policy->driver_data;

	max_freq = amd_get_max_freq(cpudata);
	if (max_freq < 0)
		return max_freq;

	return sprintf(&buf[0], "%u\n", max_freq);
}

static ssize_t show_amd_pstate_lowest_nonlinear_freq(struct cpufreq_policy *policy,
						     char *buf)
{
	int freq;
	struct amd_cpudata *cpudata;

	cpudata = policy->driver_data;

	freq = amd_get_lowest_nonlinear_freq(cpudata);
	if (freq < 0)
		return freq;

	return sprintf(&buf[0], "%u\n", freq);
}

/*
 * In some of ASICs, the highest_perf is not the one in the _CPC table, so we
 * need to expose it to sysfs.
 */
static ssize_t show_amd_pstate_highest_perf(struct cpufreq_policy *policy,
					    char *buf)
{
	u32 perf;
	struct amd_cpudata *cpudata = policy->driver_data;

	perf = READ_ONCE(cpudata->highest_perf);

	return sprintf(&buf[0], "%u\n", perf);
}

cpufreq_freq_attr_ro(amd_pstate_max_freq);
cpufreq_freq_attr_ro(amd_pstate_lowest_nonlinear_freq);

cpufreq_freq_attr_ro(amd_pstate_highest_perf);

static struct freq_attr *amd_pstate_attr[] = {
	&amd_pstate_max_freq,
	&amd_pstate_lowest_nonlinear_freq,
	&amd_pstate_highest_perf,
	NULL,
};

static struct cpufreq_driver amd_pstate_driver = {
	.flags		= CPUFREQ_CONST_LOOPS | CPUFREQ_NEED_UPDATE_LIMITS,
	.verify		= amd_pstate_verify,
	.target		= amd_pstate_target,
	.init		= amd_pstate_cpu_init,
	.exit		= amd_pstate_cpu_exit,
	.set_boost	= amd_pstate_set_boost,
	.name		= "amd-pstate",
	.attr           = amd_pstate_attr,
};

static int __init amd_pstate_init(void)
{
	int ret;

	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD)
		return -ENODEV;

	if (!acpi_cpc_valid()) {
		pr_debug("the _CPC object is not present in SBIOS\n");
		return -ENODEV;
	}

	/* don't keep reloading if cpufreq_driver exists */
	if (cpufreq_get_current_driver())
		return -EEXIST;

	/* capability check */
	if (boot_cpu_has(X86_FEATURE_CPPC)) {
		pr_debug("AMD CPPC MSR based functionality is supported\n");
		amd_pstate_driver.adjust_perf = amd_pstate_adjust_perf;
	} else if (shared_mem) {
		static_call_update(amd_pstate_enable, cppc_enable);
		static_call_update(amd_pstate_init_perf, cppc_init_perf);
		static_call_update(amd_pstate_update_perf, cppc_update_perf);
	} else {
		pr_info("This processor supports shared memory solution, you can enable it with amd_pstate.shared_mem=1\n");
		return -ENODEV;
	}

	/* enable amd pstate feature */
	ret = amd_pstate_enable(true);
	if (ret) {
		pr_err("failed to enable amd-pstate with return %d\n", ret);
		return ret;
	}

	ret = cpufreq_register_driver(&amd_pstate_driver);
	if (ret)
		pr_err("failed to register amd_pstate_driver with return %d\n",
		       ret);

	return ret;
}

static void __exit amd_pstate_exit(void)
{
	cpufreq_unregister_driver(&amd_pstate_driver);

	amd_pstate_enable(false);
}

module_init(amd_pstate_init);
module_exit(amd_pstate_exit);

MODULE_AUTHOR("Huang Rui <ray.huang@amd.com>");
MODULE_DESCRIPTION("AMD Processor P-state Frequency Driver");
MODULE_LICENSE("GPL");