1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2015 Linaro Ltd.
* Author: Pi-Cheng Chen <pi-cheng.chen@linaro.org>
*/
#include <linux/clk.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/cpumask.h>
#include <linux/minmax.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/pm_opp.h>
#include <linux/regulator/consumer.h>
struct mtk_cpufreq_platform_data {
int min_volt_shift;
int max_volt_shift;
int proc_max_volt;
int sram_min_volt;
int sram_max_volt;
bool ccifreq_supported;
};
/*
* The struct mtk_cpu_dvfs_info holds necessary information for doing CPU DVFS
* on each CPU power/clock domain of Mediatek SoCs. Each CPU cluster in
* Mediatek SoCs has two voltage inputs, Vproc and Vsram. In some cases the two
* voltage inputs need to be controlled under a hardware limitation:
* 100mV < Vsram - Vproc < 200mV
*
* When scaling the clock frequency of a CPU clock domain, the clock source
* needs to be switched to another stable PLL clock temporarily until
* the original PLL becomes stable at target frequency.
*/
struct mtk_cpu_dvfs_info {
struct cpumask cpus;
struct device *cpu_dev;
struct device *cci_dev;
struct regulator *proc_reg;
struct regulator *sram_reg;
struct clk *cpu_clk;
struct clk *inter_clk;
struct list_head list_head;
int intermediate_voltage;
bool need_voltage_tracking;
int vproc_on_boot;
int pre_vproc;
/* Avoid race condition for regulators between notify and policy */
struct mutex reg_lock;
struct notifier_block opp_nb;
unsigned int opp_cpu;
unsigned long current_freq;
const struct mtk_cpufreq_platform_data *soc_data;
int vtrack_max;
bool ccifreq_bound;
};
static struct platform_device *cpufreq_pdev;
static LIST_HEAD(dvfs_info_list);
static struct mtk_cpu_dvfs_info *mtk_cpu_dvfs_info_lookup(int cpu)
{
struct mtk_cpu_dvfs_info *info;
list_for_each_entry(info, &dvfs_info_list, list_head) {
if (cpumask_test_cpu(cpu, &info->cpus))
return info;
}
return NULL;
}
static int mtk_cpufreq_voltage_tracking(struct mtk_cpu_dvfs_info *info,
int new_vproc)
{
const struct mtk_cpufreq_platform_data *soc_data = info->soc_data;
struct regulator *proc_reg = info->proc_reg;
struct regulator *sram_reg = info->sram_reg;
int pre_vproc, pre_vsram, new_vsram, vsram, vproc, ret;
int retry = info->vtrack_max;
pre_vproc = regulator_get_voltage(proc_reg);
if (pre_vproc < 0) {
dev_err(info->cpu_dev,
"invalid Vproc value: %d\n", pre_vproc);
return pre_vproc;
}
pre_vsram = regulator_get_voltage(sram_reg);
if (pre_vsram < 0) {
dev_err(info->cpu_dev, "invalid Vsram value: %d\n", pre_vsram);
return pre_vsram;
}
new_vsram = clamp(new_vproc + soc_data->min_volt_shift,
soc_data->sram_min_volt, soc_data->sram_max_volt);
do {
if (pre_vproc <= new_vproc) {
vsram = clamp(pre_vproc + soc_data->max_volt_shift,
soc_data->sram_min_volt, new_vsram);
ret = regulator_set_voltage(sram_reg, vsram,
soc_data->sram_max_volt);
if (ret)
return ret;
if (vsram == soc_data->sram_max_volt ||
new_vsram == soc_data->sram_min_volt)
vproc = new_vproc;
else
vproc = vsram - soc_data->min_volt_shift;
ret = regulator_set_voltage(proc_reg, vproc,
soc_data->proc_max_volt);
if (ret) {
regulator_set_voltage(sram_reg, pre_vsram,
soc_data->sram_max_volt);
return ret;
}
} else if (pre_vproc > new_vproc) {
vproc = max(new_vproc,
pre_vsram - soc_data->max_volt_shift);
ret = regulator_set_voltage(proc_reg, vproc,
soc_data->proc_max_volt);
if (ret)
return ret;
if (vproc == new_vproc)
vsram = new_vsram;
else
vsram = max(new_vsram,
vproc + soc_data->min_volt_shift);
ret = regulator_set_voltage(sram_reg, vsram,
soc_data->sram_max_volt);
if (ret) {
regulator_set_voltage(proc_reg, pre_vproc,
soc_data->proc_max_volt);
return ret;
}
}
pre_vproc = vproc;
pre_vsram = vsram;
if (--retry < 0) {
dev_err(info->cpu_dev,
"over loop count, failed to set voltage\n");
return -EINVAL;
}
} while (vproc != new_vproc || vsram != new_vsram);
return 0;
}
static int mtk_cpufreq_set_voltage(struct mtk_cpu_dvfs_info *info, int vproc)
{
const struct mtk_cpufreq_platform_data *soc_data = info->soc_data;
int ret;
if (info->need_voltage_tracking)
ret = mtk_cpufreq_voltage_tracking(info, vproc);
else
ret = regulator_set_voltage(info->proc_reg, vproc,
soc_data->proc_max_volt);
if (!ret)
info->pre_vproc = vproc;
return ret;
}
static bool is_ccifreq_ready(struct mtk_cpu_dvfs_info *info)
{
struct device_link *sup_link;
if (info->ccifreq_bound)
return true;
sup_link = device_link_add(info->cpu_dev, info->cci_dev,
DL_FLAG_AUTOREMOVE_CONSUMER);
if (!sup_link) {
dev_err(info->cpu_dev, "cpu%d: sup_link is NULL\n", info->opp_cpu);
return false;
}
if (sup_link->supplier->links.status != DL_DEV_DRIVER_BOUND)
return false;
info->ccifreq_bound = true;
return true;
}
static int mtk_cpufreq_set_target(struct cpufreq_policy *policy,
unsigned int index)
{
struct cpufreq_frequency_table *freq_table = policy->freq_table;
struct clk *cpu_clk = policy->clk;
struct clk *armpll = clk_get_parent(cpu_clk);
struct mtk_cpu_dvfs_info *info = policy->driver_data;
struct device *cpu_dev = info->cpu_dev;
struct dev_pm_opp *opp;
long freq_hz, pre_freq_hz;
int vproc, pre_vproc, inter_vproc, target_vproc, ret;
inter_vproc = info->intermediate_voltage;
pre_freq_hz = clk_get_rate(cpu_clk);
mutex_lock(&info->reg_lock);
if (unlikely(info->pre_vproc <= 0))
pre_vproc = regulator_get_voltage(info->proc_reg);
else
pre_vproc = info->pre_vproc;
if (pre_vproc < 0) {
dev_err(cpu_dev, "invalid Vproc value: %d\n", pre_vproc);
ret = pre_vproc;
goto out;
}
freq_hz = freq_table[index].frequency * 1000;
opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
if (IS_ERR(opp)) {
dev_err(cpu_dev, "cpu%d: failed to find OPP for %ld\n",
policy->cpu, freq_hz);
ret = PTR_ERR(opp);
goto out;
}
vproc = dev_pm_opp_get_voltage(opp);
dev_pm_opp_put(opp);
/*
* If MediaTek cci is supported but is not ready, we will use the value
* of max(target cpu voltage, booting voltage) to prevent high freqeuncy
* low voltage crash.
*/
if (info->soc_data->ccifreq_supported && !is_ccifreq_ready(info))
vproc = max(vproc, info->vproc_on_boot);
/*
* If the new voltage or the intermediate voltage is higher than the
* current voltage, scale up voltage first.
*/
target_vproc = max(inter_vproc, vproc);
if (pre_vproc <= target_vproc) {
ret = mtk_cpufreq_set_voltage(info, target_vproc);
if (ret) {
dev_err(cpu_dev,
"cpu%d: failed to scale up voltage!\n", policy->cpu);
mtk_cpufreq_set_voltage(info, pre_vproc);
goto out;
}
}
/* Reparent the CPU clock to intermediate clock. */
ret = clk_set_parent(cpu_clk, info->inter_clk);
if (ret) {
dev_err(cpu_dev,
"cpu%d: failed to re-parent cpu clock!\n", policy->cpu);
mtk_cpufreq_set_voltage(info, pre_vproc);
goto out;
}
/* Set the original PLL to target rate. */
ret = clk_set_rate(armpll, freq_hz);
if (ret) {
dev_err(cpu_dev,
"cpu%d: failed to scale cpu clock rate!\n", policy->cpu);
clk_set_parent(cpu_clk, armpll);
mtk_cpufreq_set_voltage(info, pre_vproc);
goto out;
}
/* Set parent of CPU clock back to the original PLL. */
ret = clk_set_parent(cpu_clk, armpll);
if (ret) {
dev_err(cpu_dev,
"cpu%d: failed to re-parent cpu clock!\n", policy->cpu);
mtk_cpufreq_set_voltage(info, inter_vproc);
goto out;
}
/*
* If the new voltage is lower than the intermediate voltage or the
* original voltage, scale down to the new voltage.
*/
if (vproc < inter_vproc || vproc < pre_vproc) {
ret = mtk_cpufreq_set_voltage(info, vproc);
if (ret) {
dev_err(cpu_dev,
"cpu%d: failed to scale down voltage!\n", policy->cpu);
clk_set_parent(cpu_clk, info->inter_clk);
clk_set_rate(armpll, pre_freq_hz);
clk_set_parent(cpu_clk, armpll);
goto out;
}
}
info->current_freq = freq_hz;
out:
mutex_unlock(&info->reg_lock);
return ret;
}
#define DYNAMIC_POWER "dynamic-power-coefficient"
static int mtk_cpufreq_opp_notifier(struct notifier_block *nb,
unsigned long event, void *data)
{
struct dev_pm_opp *opp = data;
struct dev_pm_opp *new_opp;
struct mtk_cpu_dvfs_info *info;
unsigned long freq, volt;
struct cpufreq_policy *policy;
int ret = 0;
info = container_of(nb, struct mtk_cpu_dvfs_info, opp_nb);
if (event == OPP_EVENT_ADJUST_VOLTAGE) {
freq = dev_pm_opp_get_freq(opp);
mutex_lock(&info->reg_lock);
if (info->current_freq == freq) {
volt = dev_pm_opp_get_voltage(opp);
ret = mtk_cpufreq_set_voltage(info, volt);
if (ret)
dev_err(info->cpu_dev,
"failed to scale voltage: %d\n", ret);
}
mutex_unlock(&info->reg_lock);
} else if (event == OPP_EVENT_DISABLE) {
freq = dev_pm_opp_get_freq(opp);
/* case of current opp item is disabled */
if (info->current_freq == freq) {
freq = 1;
new_opp = dev_pm_opp_find_freq_ceil(info->cpu_dev,
&freq);
if (IS_ERR(new_opp)) {
dev_err(info->cpu_dev,
"all opp items are disabled\n");
ret = PTR_ERR(new_opp);
return notifier_from_errno(ret);
}
dev_pm_opp_put(new_opp);
policy = cpufreq_cpu_get(info->opp_cpu);
if (policy) {
cpufreq_driver_target(policy, freq / 1000,
CPUFREQ_RELATION_L);
cpufreq_cpu_put(policy);
}
}
}
return notifier_from_errno(ret);
}
static struct device *of_get_cci(struct device *cpu_dev)
{
struct device_node *np;
struct platform_device *pdev;
np = of_parse_phandle(cpu_dev->of_node, "mediatek,cci", 0);
if (!np)
return ERR_PTR(-ENODEV);
pdev = of_find_device_by_node(np);
of_node_put(np);
if (!pdev)
return ERR_PTR(-ENODEV);
return &pdev->dev;
}
static int mtk_cpu_dvfs_info_init(struct mtk_cpu_dvfs_info *info, int cpu)
{
struct device *cpu_dev;
struct dev_pm_opp *opp;
unsigned long rate;
int ret;
cpu_dev = get_cpu_device(cpu);
if (!cpu_dev) {
dev_err(cpu_dev, "failed to get cpu%d device\n", cpu);
return -ENODEV;
}
info->cpu_dev = cpu_dev;
info->ccifreq_bound = false;
if (info->soc_data->ccifreq_supported) {
info->cci_dev = of_get_cci(info->cpu_dev);
if (IS_ERR(info->cci_dev)) {
ret = PTR_ERR(info->cci_dev);
dev_err(cpu_dev, "cpu%d: failed to get cci device\n", cpu);
return -ENODEV;
}
}
info->cpu_clk = clk_get(cpu_dev, "cpu");
if (IS_ERR(info->cpu_clk)) {
ret = PTR_ERR(info->cpu_clk);
return dev_err_probe(cpu_dev, ret,
"cpu%d: failed to get cpu clk\n", cpu);
}
info->inter_clk = clk_get(cpu_dev, "intermediate");
if (IS_ERR(info->inter_clk)) {
ret = PTR_ERR(info->inter_clk);
dev_err_probe(cpu_dev, ret,
"cpu%d: failed to get intermediate clk\n", cpu);
goto out_free_mux_clock;
}
info->proc_reg = regulator_get_optional(cpu_dev, "proc");
if (IS_ERR(info->proc_reg)) {
ret = PTR_ERR(info->proc_reg);
dev_err_probe(cpu_dev, ret,
"cpu%d: failed to get proc regulator\n", cpu);
goto out_free_inter_clock;
}
ret = regulator_enable(info->proc_reg);
if (ret) {
dev_warn(cpu_dev, "cpu%d: failed to enable vproc\n", cpu);
goto out_free_proc_reg;
}
/* Both presence and absence of sram regulator are valid cases. */
info->sram_reg = regulator_get_optional(cpu_dev, "sram");
if (IS_ERR(info->sram_reg)) {
ret = PTR_ERR(info->sram_reg);
if (ret == -EPROBE_DEFER)
goto out_disable_proc_reg;
info->sram_reg = NULL;
} else {
ret = regulator_enable(info->sram_reg);
if (ret) {
dev_warn(cpu_dev, "cpu%d: failed to enable vsram\n", cpu);
goto out_free_sram_reg;
}
}
/* Get OPP-sharing information from "operating-points-v2" bindings */
ret = dev_pm_opp_of_get_sharing_cpus(cpu_dev, &info->cpus);
if (ret) {
dev_err(cpu_dev,
"cpu%d: failed to get OPP-sharing information\n", cpu);
goto out_disable_sram_reg;
}
ret = dev_pm_opp_of_cpumask_add_table(&info->cpus);
if (ret) {
dev_warn(cpu_dev, "cpu%d: no OPP table\n", cpu);
goto out_disable_sram_reg;
}
ret = clk_prepare_enable(info->cpu_clk);
if (ret)
goto out_free_opp_table;
ret = clk_prepare_enable(info->inter_clk);
if (ret)
goto out_disable_mux_clock;
if (info->soc_data->ccifreq_supported) {
info->vproc_on_boot = regulator_get_voltage(info->proc_reg);
if (info->vproc_on_boot < 0) {
ret = info->vproc_on_boot;
dev_err(info->cpu_dev,
"invalid Vproc value: %d\n", info->vproc_on_boot);
goto out_disable_inter_clock;
}
}
/* Search a safe voltage for intermediate frequency. */
rate = clk_get_rate(info->inter_clk);
opp = dev_pm_opp_find_freq_ceil(cpu_dev, &rate);
if (IS_ERR(opp)) {
dev_err(cpu_dev, "cpu%d: failed to get intermediate opp\n", cpu);
ret = PTR_ERR(opp);
goto out_disable_inter_clock;
}
info->intermediate_voltage = dev_pm_opp_get_voltage(opp);
dev_pm_opp_put(opp);
mutex_init(&info->reg_lock);
info->current_freq = clk_get_rate(info->cpu_clk);
info->opp_cpu = cpu;
info->opp_nb.notifier_call = mtk_cpufreq_opp_notifier;
ret = dev_pm_opp_register_notifier(cpu_dev, &info->opp_nb);
if (ret) {
dev_err(cpu_dev, "cpu%d: failed to register opp notifier\n", cpu);
goto out_disable_inter_clock;
}
/*
* If SRAM regulator is present, software "voltage tracking" is needed
* for this CPU power domain.
*/
info->need_voltage_tracking = (info->sram_reg != NULL);
/*
* We assume min voltage is 0 and tracking target voltage using
* min_volt_shift for each iteration.
* The vtrack_max is 3 times of expeted iteration count.
*/
info->vtrack_max = 3 * DIV_ROUND_UP(max(info->soc_data->sram_max_volt,
info->soc_data->proc_max_volt),
info->soc_data->min_volt_shift);
return 0;
out_disable_inter_clock:
clk_disable_unprepare(info->inter_clk);
out_disable_mux_clock:
clk_disable_unprepare(info->cpu_clk);
out_free_opp_table:
dev_pm_opp_of_cpumask_remove_table(&info->cpus);
out_disable_sram_reg:
if (info->sram_reg)
regulator_disable(info->sram_reg);
out_free_sram_reg:
if (info->sram_reg)
regulator_put(info->sram_reg);
out_disable_proc_reg:
regulator_disable(info->proc_reg);
out_free_proc_reg:
regulator_put(info->proc_reg);
out_free_inter_clock:
clk_put(info->inter_clk);
out_free_mux_clock:
clk_put(info->cpu_clk);
return ret;
}
static void mtk_cpu_dvfs_info_release(struct mtk_cpu_dvfs_info *info)
{
regulator_disable(info->proc_reg);
regulator_put(info->proc_reg);
if (info->sram_reg) {
regulator_disable(info->sram_reg);
regulator_put(info->sram_reg);
}
clk_disable_unprepare(info->cpu_clk);
clk_put(info->cpu_clk);
clk_disable_unprepare(info->inter_clk);
clk_put(info->inter_clk);
dev_pm_opp_of_cpumask_remove_table(&info->cpus);
dev_pm_opp_unregister_notifier(info->cpu_dev, &info->opp_nb);
}
static int mtk_cpufreq_init(struct cpufreq_policy *policy)
{
struct mtk_cpu_dvfs_info *info;
struct cpufreq_frequency_table *freq_table;
int ret;
info = mtk_cpu_dvfs_info_lookup(policy->cpu);
if (!info) {
pr_err("dvfs info for cpu%d is not initialized.\n",
policy->cpu);
return -EINVAL;
}
ret = dev_pm_opp_init_cpufreq_table(info->cpu_dev, &freq_table);
if (ret) {
dev_err(info->cpu_dev,
"failed to init cpufreq table for cpu%d: %d\n",
policy->cpu, ret);
return ret;
}
cpumask_copy(policy->cpus, &info->cpus);
policy->freq_table = freq_table;
policy->driver_data = info;
policy->clk = info->cpu_clk;
return 0;
}
static int mtk_cpufreq_exit(struct cpufreq_policy *policy)
{
struct mtk_cpu_dvfs_info *info = policy->driver_data;
dev_pm_opp_free_cpufreq_table(info->cpu_dev, &policy->freq_table);
return 0;
}
static struct cpufreq_driver mtk_cpufreq_driver = {
.flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK |
CPUFREQ_HAVE_GOVERNOR_PER_POLICY |
CPUFREQ_IS_COOLING_DEV,
.verify = cpufreq_generic_frequency_table_verify,
.target_index = mtk_cpufreq_set_target,
.get = cpufreq_generic_get,
.init = mtk_cpufreq_init,
.exit = mtk_cpufreq_exit,
.register_em = cpufreq_register_em_with_opp,
.name = "mtk-cpufreq",
.attr = cpufreq_generic_attr,
};
static int mtk_cpufreq_probe(struct platform_device *pdev)
{
const struct mtk_cpufreq_platform_data *data;
struct mtk_cpu_dvfs_info *info, *tmp;
int cpu, ret;
data = dev_get_platdata(&pdev->dev);
if (!data) {
dev_err(&pdev->dev,
"failed to get mtk cpufreq platform data\n");
return -ENODEV;
}
for_each_possible_cpu(cpu) {
info = mtk_cpu_dvfs_info_lookup(cpu);
if (info)
continue;
info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
if (!info) {
ret = -ENOMEM;
goto release_dvfs_info_list;
}
info->soc_data = data;
ret = mtk_cpu_dvfs_info_init(info, cpu);
if (ret) {
dev_err(&pdev->dev,
"failed to initialize dvfs info for cpu%d\n",
cpu);
goto release_dvfs_info_list;
}
list_add(&info->list_head, &dvfs_info_list);
}
ret = cpufreq_register_driver(&mtk_cpufreq_driver);
if (ret) {
dev_err(&pdev->dev, "failed to register mtk cpufreq driver\n");
goto release_dvfs_info_list;
}
return 0;
release_dvfs_info_list:
list_for_each_entry_safe(info, tmp, &dvfs_info_list, list_head) {
mtk_cpu_dvfs_info_release(info);
list_del(&info->list_head);
}
return ret;
}
static struct platform_driver mtk_cpufreq_platdrv = {
.driver = {
.name = "mtk-cpufreq",
},
.probe = mtk_cpufreq_probe,
};
static const struct mtk_cpufreq_platform_data mt2701_platform_data = {
.min_volt_shift = 100000,
.max_volt_shift = 200000,
.proc_max_volt = 1150000,
.sram_min_volt = 0,
.sram_max_volt = 1150000,
.ccifreq_supported = false,
};
static const struct mtk_cpufreq_platform_data mt7622_platform_data = {
.min_volt_shift = 100000,
.max_volt_shift = 200000,
.proc_max_volt = 1360000,
.sram_min_volt = 0,
.sram_max_volt = 1360000,
.ccifreq_supported = false,
};
static const struct mtk_cpufreq_platform_data mt8183_platform_data = {
.min_volt_shift = 100000,
.max_volt_shift = 200000,
.proc_max_volt = 1150000,
.sram_min_volt = 0,
.sram_max_volt = 1150000,
.ccifreq_supported = true,
};
static const struct mtk_cpufreq_platform_data mt8186_platform_data = {
.min_volt_shift = 100000,
.max_volt_shift = 250000,
.proc_max_volt = 1118750,
.sram_min_volt = 850000,
.sram_max_volt = 1118750,
.ccifreq_supported = true,
};
static const struct mtk_cpufreq_platform_data mt8516_platform_data = {
.min_volt_shift = 100000,
.max_volt_shift = 200000,
.proc_max_volt = 1310000,
.sram_min_volt = 0,
.sram_max_volt = 1310000,
.ccifreq_supported = false,
};
/* List of machines supported by this driver */
static const struct of_device_id mtk_cpufreq_machines[] __initconst = {
{ .compatible = "mediatek,mt2701", .data = &mt2701_platform_data },
{ .compatible = "mediatek,mt2712", .data = &mt2701_platform_data },
{ .compatible = "mediatek,mt7622", .data = &mt7622_platform_data },
{ .compatible = "mediatek,mt7623", .data = &mt7622_platform_data },
{ .compatible = "mediatek,mt8167", .data = &mt8516_platform_data },
{ .compatible = "mediatek,mt817x", .data = &mt2701_platform_data },
{ .compatible = "mediatek,mt8173", .data = &mt2701_platform_data },
{ .compatible = "mediatek,mt8176", .data = &mt2701_platform_data },
{ .compatible = "mediatek,mt8183", .data = &mt8183_platform_data },
{ .compatible = "mediatek,mt8186", .data = &mt8186_platform_data },
{ .compatible = "mediatek,mt8365", .data = &mt2701_platform_data },
{ .compatible = "mediatek,mt8516", .data = &mt8516_platform_data },
{ }
};
MODULE_DEVICE_TABLE(of, mtk_cpufreq_machines);
static int __init mtk_cpufreq_driver_init(void)
{
struct device_node *np;
const struct of_device_id *match;
const struct mtk_cpufreq_platform_data *data;
int err;
np = of_find_node_by_path("/");
if (!np)
return -ENODEV;
match = of_match_node(mtk_cpufreq_machines, np);
of_node_put(np);
if (!match) {
pr_debug("Machine is not compatible with mtk-cpufreq\n");
return -ENODEV;
}
data = match->data;
err = platform_driver_register(&mtk_cpufreq_platdrv);
if (err)
return err;
/*
* Since there's no place to hold device registration code and no
* device tree based way to match cpufreq driver yet, both the driver
* and the device registration codes are put here to handle defer
* probing.
*/
cpufreq_pdev = platform_device_register_data(NULL, "mtk-cpufreq", -1,
data, sizeof(*data));
if (IS_ERR(cpufreq_pdev)) {
pr_err("failed to register mtk-cpufreq platform device\n");
platform_driver_unregister(&mtk_cpufreq_platdrv);
return PTR_ERR(cpufreq_pdev);
}
return 0;
}
module_init(mtk_cpufreq_driver_init)
static void __exit mtk_cpufreq_driver_exit(void)
{
platform_device_unregister(cpufreq_pdev);
platform_driver_unregister(&mtk_cpufreq_platdrv);
}
module_exit(mtk_cpufreq_driver_exit)
MODULE_DESCRIPTION("MediaTek CPUFreq driver");
MODULE_AUTHOR("Pi-Cheng Chen <pi-cheng.chen@linaro.org>");
MODULE_LICENSE("GPL v2");
|