summaryrefslogtreecommitdiffstats
path: root/drivers/crypto/inside-secure/safexcel_cipher.c
blob: 9a51da28fb627bf094e04322911e8d20e644d277 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
/*
 * Copyright (C) 2017 Marvell
 *
 * Antoine Tenart <antoine.tenart@free-electrons.com>
 *
 * This file is licensed under the terms of the GNU General Public
 * License version 2. This program is licensed "as is" without any
 * warranty of any kind, whether express or implied.
 */

#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>

#include <crypto/aes.h>
#include <crypto/skcipher.h>
#include <crypto/internal/skcipher.h>

#include "safexcel.h"

enum safexcel_cipher_direction {
	SAFEXCEL_ENCRYPT,
	SAFEXCEL_DECRYPT,
};

struct safexcel_cipher_ctx {
	struct safexcel_context base;
	struct safexcel_crypto_priv *priv;

	u32 mode;

	__le32 key[8];
	unsigned int key_len;
};

struct safexcel_cipher_req {
	enum safexcel_cipher_direction direction;
	bool needs_inv;
};

static void safexcel_cipher_token(struct safexcel_cipher_ctx *ctx,
				  struct crypto_async_request *async,
				  struct safexcel_command_desc *cdesc,
				  u32 length)
{
	struct skcipher_request *req = skcipher_request_cast(async);
	struct safexcel_token *token;
	unsigned offset = 0;

	if (ctx->mode == CONTEXT_CONTROL_CRYPTO_MODE_CBC) {
		offset = AES_BLOCK_SIZE / sizeof(u32);
		memcpy(cdesc->control_data.token, req->iv, AES_BLOCK_SIZE);

		cdesc->control_data.options |= EIP197_OPTION_4_TOKEN_IV_CMD;
	}

	token = (struct safexcel_token *)(cdesc->control_data.token + offset);

	token[0].opcode = EIP197_TOKEN_OPCODE_DIRECTION;
	token[0].packet_length = length;
	token[0].stat = EIP197_TOKEN_STAT_LAST_PACKET |
			EIP197_TOKEN_STAT_LAST_HASH;
	token[0].instructions = EIP197_TOKEN_INS_LAST |
				EIP197_TOKEN_INS_TYPE_CRYTO |
				EIP197_TOKEN_INS_TYPE_OUTPUT;
}

static int safexcel_aes_setkey(struct crypto_skcipher *ctfm, const u8 *key,
			       unsigned int len)
{
	struct crypto_tfm *tfm = crypto_skcipher_tfm(ctfm);
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
	struct safexcel_crypto_priv *priv = ctx->priv;
	struct crypto_aes_ctx aes;
	int ret, i;

	ret = crypto_aes_expand_key(&aes, key, len);
	if (ret) {
		crypto_skcipher_set_flags(ctfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
		return ret;
	}

	if (priv->version == EIP197 && ctx->base.ctxr_dma) {
		for (i = 0; i < len / sizeof(u32); i++) {
			if (ctx->key[i] != cpu_to_le32(aes.key_enc[i])) {
				ctx->base.needs_inv = true;
				break;
			}
		}
	}

	for (i = 0; i < len / sizeof(u32); i++)
		ctx->key[i] = cpu_to_le32(aes.key_enc[i]);

	ctx->key_len = len;

	memzero_explicit(&aes, sizeof(aes));
	return 0;
}

static int safexcel_context_control(struct safexcel_cipher_ctx *ctx,
				    struct crypto_async_request *async,
				    struct safexcel_command_desc *cdesc)
{
	struct safexcel_crypto_priv *priv = ctx->priv;
	struct skcipher_request *req = skcipher_request_cast(async);
	struct safexcel_cipher_req *sreq = skcipher_request_ctx(req);
	int ctrl_size;

	if (sreq->direction == SAFEXCEL_ENCRYPT)
		cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_CRYPTO_OUT;
	else
		cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_CRYPTO_IN;

	cdesc->control_data.control0 |= CONTEXT_CONTROL_KEY_EN;
	cdesc->control_data.control1 |= ctx->mode;

	switch (ctx->key_len) {
	case AES_KEYSIZE_128:
		cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_AES128;
		ctrl_size = 4;
		break;
	case AES_KEYSIZE_192:
		cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_AES192;
		ctrl_size = 6;
		break;
	case AES_KEYSIZE_256:
		cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_AES256;
		ctrl_size = 8;
		break;
	default:
		dev_err(priv->dev, "aes keysize not supported: %u\n",
			ctx->key_len);
		return -EINVAL;
	}
	cdesc->control_data.control0 |= CONTEXT_CONTROL_SIZE(ctrl_size);

	return 0;
}

static int safexcel_handle_req_result(struct safexcel_crypto_priv *priv, int ring,
				      struct crypto_async_request *async,
				      bool *should_complete, int *ret)
{
	struct skcipher_request *req = skcipher_request_cast(async);
	struct safexcel_result_desc *rdesc;
	int ndesc = 0;

	*ret = 0;

	spin_lock_bh(&priv->ring[ring].egress_lock);
	do {
		rdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].rdr);
		if (IS_ERR(rdesc)) {
			dev_err(priv->dev,
				"cipher: result: could not retrieve the result descriptor\n");
			*ret = PTR_ERR(rdesc);
			break;
		}

		if (rdesc->result_data.error_code) {
			dev_err(priv->dev,
				"cipher: result: result descriptor error (%d)\n",
				rdesc->result_data.error_code);
			*ret = -EIO;
		}

		ndesc++;
	} while (!rdesc->last_seg);

	safexcel_complete(priv, ring);
	spin_unlock_bh(&priv->ring[ring].egress_lock);

	if (req->src == req->dst) {
		dma_unmap_sg(priv->dev, req->src,
			     sg_nents_for_len(req->src, req->cryptlen),
			     DMA_BIDIRECTIONAL);
	} else {
		dma_unmap_sg(priv->dev, req->src,
			     sg_nents_for_len(req->src, req->cryptlen),
			     DMA_TO_DEVICE);
		dma_unmap_sg(priv->dev, req->dst,
			     sg_nents_for_len(req->dst, req->cryptlen),
			     DMA_FROM_DEVICE);
	}

	*should_complete = true;

	return ndesc;
}

static int safexcel_aes_send(struct crypto_async_request *async,
			     int ring, struct safexcel_request *request,
			     int *commands, int *results)
{
	struct skcipher_request *req = skcipher_request_cast(async);
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
	struct safexcel_crypto_priv *priv = ctx->priv;
	struct safexcel_command_desc *cdesc;
	struct safexcel_result_desc *rdesc;
	struct scatterlist *sg;
	int nr_src, nr_dst, n_cdesc = 0, n_rdesc = 0, queued = req->cryptlen;
	int i, ret = 0;

	if (req->src == req->dst) {
		nr_src = dma_map_sg(priv->dev, req->src,
				    sg_nents_for_len(req->src, req->cryptlen),
				    DMA_BIDIRECTIONAL);
		nr_dst = nr_src;
		if (!nr_src)
			return -EINVAL;
	} else {
		nr_src = dma_map_sg(priv->dev, req->src,
				    sg_nents_for_len(req->src, req->cryptlen),
				    DMA_TO_DEVICE);
		if (!nr_src)
			return -EINVAL;

		nr_dst = dma_map_sg(priv->dev, req->dst,
				    sg_nents_for_len(req->dst, req->cryptlen),
				    DMA_FROM_DEVICE);
		if (!nr_dst) {
			dma_unmap_sg(priv->dev, req->src,
				     sg_nents_for_len(req->src, req->cryptlen),
				     DMA_TO_DEVICE);
			return -EINVAL;
		}
	}

	memcpy(ctx->base.ctxr->data, ctx->key, ctx->key_len);

	spin_lock_bh(&priv->ring[ring].egress_lock);

	/* command descriptors */
	for_each_sg(req->src, sg, nr_src, i) {
		int len = sg_dma_len(sg);

		/* Do not overflow the request */
		if (queued - len < 0)
			len = queued;

		cdesc = safexcel_add_cdesc(priv, ring, !n_cdesc, !(queued - len),
					   sg_dma_address(sg), len, req->cryptlen,
					   ctx->base.ctxr_dma);
		if (IS_ERR(cdesc)) {
			/* No space left in the command descriptor ring */
			ret = PTR_ERR(cdesc);
			goto cdesc_rollback;
		}
		n_cdesc++;

		if (n_cdesc == 1) {
			safexcel_context_control(ctx, async, cdesc);
			safexcel_cipher_token(ctx, async, cdesc, req->cryptlen);
		}

		queued -= len;
		if (!queued)
			break;
	}

	/* result descriptors */
	for_each_sg(req->dst, sg, nr_dst, i) {
		bool first = !i, last = (i == nr_dst - 1);
		u32 len = sg_dma_len(sg);

		rdesc = safexcel_add_rdesc(priv, ring, first, last,
					   sg_dma_address(sg), len);
		if (IS_ERR(rdesc)) {
			/* No space left in the result descriptor ring */
			ret = PTR_ERR(rdesc);
			goto rdesc_rollback;
		}
		n_rdesc++;
	}

	spin_unlock_bh(&priv->ring[ring].egress_lock);

	request->req = &req->base;

	*commands = n_cdesc;
	*results = n_rdesc;
	return 0;

rdesc_rollback:
	for (i = 0; i < n_rdesc; i++)
		safexcel_ring_rollback_wptr(priv, &priv->ring[ring].rdr);
cdesc_rollback:
	for (i = 0; i < n_cdesc; i++)
		safexcel_ring_rollback_wptr(priv, &priv->ring[ring].cdr);

	spin_unlock_bh(&priv->ring[ring].egress_lock);

	if (req->src == req->dst) {
		dma_unmap_sg(priv->dev, req->src,
			     sg_nents_for_len(req->src, req->cryptlen),
			     DMA_BIDIRECTIONAL);
	} else {
		dma_unmap_sg(priv->dev, req->src,
			     sg_nents_for_len(req->src, req->cryptlen),
			     DMA_TO_DEVICE);
		dma_unmap_sg(priv->dev, req->dst,
			     sg_nents_for_len(req->dst, req->cryptlen),
			     DMA_FROM_DEVICE);
	}

	return ret;
}

static int safexcel_handle_inv_result(struct safexcel_crypto_priv *priv,
				      int ring,
				      struct crypto_async_request *async,
				      bool *should_complete, int *ret)
{
	struct skcipher_request *req = skcipher_request_cast(async);
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
	struct safexcel_result_desc *rdesc;
	int ndesc = 0, enq_ret;

	*ret = 0;

	spin_lock_bh(&priv->ring[ring].egress_lock);
	do {
		rdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].rdr);
		if (IS_ERR(rdesc)) {
			dev_err(priv->dev,
				"cipher: invalidate: could not retrieve the result descriptor\n");
			*ret = PTR_ERR(rdesc);
			break;
		}

		if (rdesc->result_data.error_code) {
			dev_err(priv->dev, "cipher: invalidate: result descriptor error (%d)\n",
				rdesc->result_data.error_code);
			*ret = -EIO;
		}

		ndesc++;
	} while (!rdesc->last_seg);

	safexcel_complete(priv, ring);
	spin_unlock_bh(&priv->ring[ring].egress_lock);

	if (ctx->base.exit_inv) {
		dma_pool_free(priv->context_pool, ctx->base.ctxr,
			      ctx->base.ctxr_dma);

		*should_complete = true;

		return ndesc;
	}

	ring = safexcel_select_ring(priv);
	ctx->base.ring = ring;

	spin_lock_bh(&priv->ring[ring].queue_lock);
	enq_ret = crypto_enqueue_request(&priv->ring[ring].queue, async);
	spin_unlock_bh(&priv->ring[ring].queue_lock);

	if (enq_ret != -EINPROGRESS)
		*ret = enq_ret;

	queue_work(priv->ring[ring].workqueue,
		   &priv->ring[ring].work_data.work);

	*should_complete = false;

	return ndesc;
}

static int safexcel_handle_result(struct safexcel_crypto_priv *priv, int ring,
				  struct crypto_async_request *async,
				  bool *should_complete, int *ret)
{
	struct skcipher_request *req = skcipher_request_cast(async);
	struct safexcel_cipher_req *sreq = skcipher_request_ctx(req);
	int err;

	if (sreq->needs_inv) {
		sreq->needs_inv = false;
		err = safexcel_handle_inv_result(priv, ring, async,
						 should_complete, ret);
	} else {
		err = safexcel_handle_req_result(priv, ring, async,
						 should_complete, ret);
	}

	return err;
}

static int safexcel_cipher_send_inv(struct crypto_async_request *async,
				    int ring, struct safexcel_request *request,
				    int *commands, int *results)
{
	struct skcipher_request *req = skcipher_request_cast(async);
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
	struct safexcel_crypto_priv *priv = ctx->priv;
	int ret;

	ret = safexcel_invalidate_cache(async, priv,
					ctx->base.ctxr_dma, ring, request);
	if (unlikely(ret))
		return ret;

	*commands = 1;
	*results = 1;

	return 0;
}

static int safexcel_send(struct crypto_async_request *async,
			 int ring, struct safexcel_request *request,
			 int *commands, int *results)
{
	struct skcipher_request *req = skcipher_request_cast(async);
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
	struct safexcel_cipher_req *sreq = skcipher_request_ctx(req);
	struct safexcel_crypto_priv *priv = ctx->priv;
	int ret;

	BUG_ON(priv->version == EIP97 && sreq->needs_inv);

	if (sreq->needs_inv)
		ret = safexcel_cipher_send_inv(async, ring, request,
					       commands, results);
	else
		ret = safexcel_aes_send(async, ring, request,
					commands, results);
	return ret;
}

static int safexcel_cipher_exit_inv(struct crypto_tfm *tfm)
{
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
	struct safexcel_crypto_priv *priv = ctx->priv;
	EIP197_REQUEST_ON_STACK(req, skcipher, EIP197_SKCIPHER_REQ_SIZE);
	struct safexcel_cipher_req *sreq = skcipher_request_ctx(req);
	struct safexcel_inv_result result = {};
	int ring = ctx->base.ring;

	memset(req, 0, sizeof(struct skcipher_request));

	/* create invalidation request */
	init_completion(&result.completion);
	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
				      safexcel_inv_complete, &result);

	skcipher_request_set_tfm(req, __crypto_skcipher_cast(tfm));
	ctx = crypto_tfm_ctx(req->base.tfm);
	ctx->base.exit_inv = true;
	sreq->needs_inv = true;

	spin_lock_bh(&priv->ring[ring].queue_lock);
	crypto_enqueue_request(&priv->ring[ring].queue, &req->base);
	spin_unlock_bh(&priv->ring[ring].queue_lock);

	queue_work(priv->ring[ring].workqueue,
		   &priv->ring[ring].work_data.work);

	wait_for_completion(&result.completion);

	if (result.error) {
		dev_warn(priv->dev,
			"cipher: sync: invalidate: completion error %d\n",
			 result.error);
		return result.error;
	}

	return 0;
}

static int safexcel_aes(struct skcipher_request *req,
			enum safexcel_cipher_direction dir, u32 mode)
{
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
	struct safexcel_cipher_req *sreq = skcipher_request_ctx(req);
	struct safexcel_crypto_priv *priv = ctx->priv;
	int ret, ring;

	sreq->needs_inv = false;
	sreq->direction = dir;
	ctx->mode = mode;

	if (ctx->base.ctxr) {
		if (priv->version == EIP197 && ctx->base.needs_inv) {
			sreq->needs_inv = true;
			ctx->base.needs_inv = false;
		}
	} else {
		ctx->base.ring = safexcel_select_ring(priv);
		ctx->base.ctxr = dma_pool_zalloc(priv->context_pool,
						 EIP197_GFP_FLAGS(req->base),
						 &ctx->base.ctxr_dma);
		if (!ctx->base.ctxr)
			return -ENOMEM;
	}

	ring = ctx->base.ring;

	spin_lock_bh(&priv->ring[ring].queue_lock);
	ret = crypto_enqueue_request(&priv->ring[ring].queue, &req->base);
	spin_unlock_bh(&priv->ring[ring].queue_lock);

	queue_work(priv->ring[ring].workqueue,
		   &priv->ring[ring].work_data.work);

	return ret;
}

static int safexcel_ecb_aes_encrypt(struct skcipher_request *req)
{
	return safexcel_aes(req, SAFEXCEL_ENCRYPT,
			    CONTEXT_CONTROL_CRYPTO_MODE_ECB);
}

static int safexcel_ecb_aes_decrypt(struct skcipher_request *req)
{
	return safexcel_aes(req, SAFEXCEL_DECRYPT,
			    CONTEXT_CONTROL_CRYPTO_MODE_ECB);
}

static int safexcel_skcipher_cra_init(struct crypto_tfm *tfm)
{
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
	struct safexcel_alg_template *tmpl =
		container_of(tfm->__crt_alg, struct safexcel_alg_template,
			     alg.skcipher.base);

	ctx->priv = tmpl->priv;
	ctx->base.send = safexcel_send;
	ctx->base.handle_result = safexcel_handle_result;

	crypto_skcipher_set_reqsize(__crypto_skcipher_cast(tfm),
				    sizeof(struct safexcel_cipher_req));

	return 0;
}

static void safexcel_skcipher_cra_exit(struct crypto_tfm *tfm)
{
	struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
	struct safexcel_crypto_priv *priv = ctx->priv;
	int ret;

	memzero_explicit(ctx->key, 8 * sizeof(u32));

	/* context not allocated, skip invalidation */
	if (!ctx->base.ctxr)
		return;

	memzero_explicit(ctx->base.ctxr->data, 8 * sizeof(u32));

	if (priv->version == EIP197) {
		ret = safexcel_cipher_exit_inv(tfm);
		if (ret)
			dev_warn(priv->dev, "cipher: invalidation error %d\n", ret);
	} else {
		dma_pool_free(priv->context_pool, ctx->base.ctxr,
			      ctx->base.ctxr_dma);
	}
}

struct safexcel_alg_template safexcel_alg_ecb_aes = {
	.type = SAFEXCEL_ALG_TYPE_SKCIPHER,
	.alg.skcipher = {
		.setkey = safexcel_aes_setkey,
		.encrypt = safexcel_ecb_aes_encrypt,
		.decrypt = safexcel_ecb_aes_decrypt,
		.min_keysize = AES_MIN_KEY_SIZE,
		.max_keysize = AES_MAX_KEY_SIZE,
		.base = {
			.cra_name = "ecb(aes)",
			.cra_driver_name = "safexcel-ecb-aes",
			.cra_priority = 300,
			.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_ASYNC |
				     CRYPTO_ALG_KERN_DRIVER_ONLY,
			.cra_blocksize = AES_BLOCK_SIZE,
			.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
			.cra_alignmask = 0,
			.cra_init = safexcel_skcipher_cra_init,
			.cra_exit = safexcel_skcipher_cra_exit,
			.cra_module = THIS_MODULE,
		},
	},
};

static int safexcel_cbc_aes_encrypt(struct skcipher_request *req)
{
	return safexcel_aes(req, SAFEXCEL_ENCRYPT,
			    CONTEXT_CONTROL_CRYPTO_MODE_CBC);
}

static int safexcel_cbc_aes_decrypt(struct skcipher_request *req)
{
	return safexcel_aes(req, SAFEXCEL_DECRYPT,
			    CONTEXT_CONTROL_CRYPTO_MODE_CBC);
}

struct safexcel_alg_template safexcel_alg_cbc_aes = {
	.type = SAFEXCEL_ALG_TYPE_SKCIPHER,
	.alg.skcipher = {
		.setkey = safexcel_aes_setkey,
		.encrypt = safexcel_cbc_aes_encrypt,
		.decrypt = safexcel_cbc_aes_decrypt,
		.min_keysize = AES_MIN_KEY_SIZE,
		.max_keysize = AES_MAX_KEY_SIZE,
		.ivsize = AES_BLOCK_SIZE,
		.base = {
			.cra_name = "cbc(aes)",
			.cra_driver_name = "safexcel-cbc-aes",
			.cra_priority = 300,
			.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_ASYNC |
				     CRYPTO_ALG_KERN_DRIVER_ONLY,
			.cra_blocksize = AES_BLOCK_SIZE,
			.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
			.cra_alignmask = 0,
			.cra_init = safexcel_skcipher_cra_init,
			.cra_exit = safexcel_skcipher_cra_exit,
			.cra_module = THIS_MODULE,
		},
	},
};