summaryrefslogtreecommitdiffstats
path: root/drivers/crypto/intel/keembay/keembay-ocs-ecc.c
blob: 2269df17514ce32d46b312bfbfbe475834d7f30c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Intel Keem Bay OCS ECC Crypto Driver.
 *
 * Copyright (C) 2019-2021 Intel Corporation
 */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/crypto.h>
#include <linux/delay.h>
#include <linux/fips.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/irq.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/scatterlist.h>
#include <linux/slab.h>
#include <linux/types.h>

#include <crypto/ecc_curve.h>
#include <crypto/ecdh.h>
#include <crypto/engine.h>
#include <crypto/kpp.h>
#include <crypto/rng.h>

#include <crypto/internal/ecc.h>
#include <crypto/internal/kpp.h>

#define DRV_NAME			"keembay-ocs-ecc"

#define KMB_OCS_ECC_PRIORITY		350

#define HW_OFFS_OCS_ECC_COMMAND		0x00000000
#define HW_OFFS_OCS_ECC_STATUS		0x00000004
#define HW_OFFS_OCS_ECC_DATA_IN		0x00000080
#define HW_OFFS_OCS_ECC_CX_DATA_OUT	0x00000100
#define HW_OFFS_OCS_ECC_CY_DATA_OUT	0x00000180
#define HW_OFFS_OCS_ECC_ISR		0x00000400
#define HW_OFFS_OCS_ECC_IER		0x00000404

#define HW_OCS_ECC_ISR_INT_STATUS_DONE	BIT(0)
#define HW_OCS_ECC_COMMAND_INS_BP	BIT(0)

#define HW_OCS_ECC_COMMAND_START_VAL	BIT(0)

#define OCS_ECC_OP_SIZE_384		BIT(8)
#define OCS_ECC_OP_SIZE_256		0

/* ECC Instruction : for ECC_COMMAND */
#define OCS_ECC_INST_WRITE_AX		(0x1 << HW_OCS_ECC_COMMAND_INS_BP)
#define OCS_ECC_INST_WRITE_AY		(0x2 << HW_OCS_ECC_COMMAND_INS_BP)
#define OCS_ECC_INST_WRITE_BX_D		(0x3 << HW_OCS_ECC_COMMAND_INS_BP)
#define OCS_ECC_INST_WRITE_BY_L		(0x4 << HW_OCS_ECC_COMMAND_INS_BP)
#define OCS_ECC_INST_WRITE_P		(0x5 << HW_OCS_ECC_COMMAND_INS_BP)
#define OCS_ECC_INST_WRITE_A		(0x6 << HW_OCS_ECC_COMMAND_INS_BP)
#define OCS_ECC_INST_CALC_D_IDX_A	(0x8 << HW_OCS_ECC_COMMAND_INS_BP)
#define OCS_ECC_INST_CALC_A_POW_B_MODP	(0xB << HW_OCS_ECC_COMMAND_INS_BP)
#define OCS_ECC_INST_CALC_A_MUL_B_MODP	(0xC  << HW_OCS_ECC_COMMAND_INS_BP)
#define OCS_ECC_INST_CALC_A_ADD_B_MODP	(0xD << HW_OCS_ECC_COMMAND_INS_BP)

#define ECC_ENABLE_INTR			1

#define POLL_USEC			100
#define TIMEOUT_USEC			10000

#define KMB_ECC_VLI_MAX_DIGITS		ECC_CURVE_NIST_P384_DIGITS
#define KMB_ECC_VLI_MAX_BYTES		(KMB_ECC_VLI_MAX_DIGITS \
					 << ECC_DIGITS_TO_BYTES_SHIFT)

#define POW_CUBE			3

/**
 * struct ocs_ecc_dev - ECC device context
 * @list: List of device contexts
 * @dev: OCS ECC device
 * @base_reg: IO base address of OCS ECC
 * @engine: Crypto engine for the device
 * @irq_done: IRQ done completion.
 * @irq: IRQ number
 */
struct ocs_ecc_dev {
	struct list_head list;
	struct device *dev;
	void __iomem *base_reg;
	struct crypto_engine *engine;
	struct completion irq_done;
	int irq;
};

/**
 * struct ocs_ecc_ctx - Transformation context.
 * @engine_ctx:	 Crypto engine ctx.
 * @ecc_dev:	 The ECC driver associated with this context.
 * @curve:	 The elliptic curve used by this transformation.
 * @private_key: The private key.
 */
struct ocs_ecc_ctx {
	struct crypto_engine_ctx engine_ctx;
	struct ocs_ecc_dev *ecc_dev;
	const struct ecc_curve *curve;
	u64 private_key[KMB_ECC_VLI_MAX_DIGITS];
};

/* Driver data. */
struct ocs_ecc_drv {
	struct list_head dev_list;
	spinlock_t lock;	/* Protects dev_list. */
};

/* Global variable holding the list of OCS ECC devices (only one expected). */
static struct ocs_ecc_drv ocs_ecc = {
	.dev_list = LIST_HEAD_INIT(ocs_ecc.dev_list),
	.lock = __SPIN_LOCK_UNLOCKED(ocs_ecc.lock),
};

/* Get OCS ECC tfm context from kpp_request. */
static inline struct ocs_ecc_ctx *kmb_ocs_ecc_tctx(struct kpp_request *req)
{
	return kpp_tfm_ctx(crypto_kpp_reqtfm(req));
}

/* Converts number of digits to number of bytes. */
static inline unsigned int digits_to_bytes(unsigned int n)
{
	return n << ECC_DIGITS_TO_BYTES_SHIFT;
}

/*
 * Wait for ECC idle i.e when an operation (other than write operations)
 * is done.
 */
static inline int ocs_ecc_wait_idle(struct ocs_ecc_dev *dev)
{
	u32 value;

	return readl_poll_timeout((dev->base_reg + HW_OFFS_OCS_ECC_STATUS),
				  value,
				  !(value & HW_OCS_ECC_ISR_INT_STATUS_DONE),
				  POLL_USEC, TIMEOUT_USEC);
}

static void ocs_ecc_cmd_start(struct ocs_ecc_dev *ecc_dev, u32 op_size)
{
	iowrite32(op_size | HW_OCS_ECC_COMMAND_START_VAL,
		  ecc_dev->base_reg + HW_OFFS_OCS_ECC_COMMAND);
}

/* Direct write of u32 buffer to ECC engine with associated instruction. */
static void ocs_ecc_write_cmd_and_data(struct ocs_ecc_dev *dev,
				       u32 op_size,
				       u32 inst,
				       const void *data_in,
				       size_t data_size)
{
	iowrite32(op_size | inst, dev->base_reg + HW_OFFS_OCS_ECC_COMMAND);

	/* MMIO Write src uint32 to dst. */
	memcpy_toio(dev->base_reg + HW_OFFS_OCS_ECC_DATA_IN, data_in,
		    data_size);
}

/* Start OCS ECC operation and wait for its completion. */
static int ocs_ecc_trigger_op(struct ocs_ecc_dev *ecc_dev, u32 op_size,
			      u32 inst)
{
	reinit_completion(&ecc_dev->irq_done);

	iowrite32(ECC_ENABLE_INTR, ecc_dev->base_reg + HW_OFFS_OCS_ECC_IER);
	iowrite32(op_size | inst, ecc_dev->base_reg + HW_OFFS_OCS_ECC_COMMAND);

	return wait_for_completion_interruptible(&ecc_dev->irq_done);
}

/**
 * ocs_ecc_read_cx_out() - Read the CX data output buffer.
 * @dev:	The OCS ECC device to read from.
 * @cx_out:	The buffer where to store the CX value. Must be at least
 *		@byte_count byte long.
 * @byte_count:	The amount of data to read.
 */
static inline void ocs_ecc_read_cx_out(struct ocs_ecc_dev *dev, void *cx_out,
				       size_t byte_count)
{
	memcpy_fromio(cx_out, dev->base_reg + HW_OFFS_OCS_ECC_CX_DATA_OUT,
		      byte_count);
}

/**
 * ocs_ecc_read_cy_out() - Read the CX data output buffer.
 * @dev:	The OCS ECC device to read from.
 * @cy_out:	The buffer where to store the CY value. Must be at least
 *		@byte_count byte long.
 * @byte_count:	The amount of data to read.
 */
static inline void ocs_ecc_read_cy_out(struct ocs_ecc_dev *dev, void *cy_out,
				       size_t byte_count)
{
	memcpy_fromio(cy_out, dev->base_reg + HW_OFFS_OCS_ECC_CY_DATA_OUT,
		      byte_count);
}

static struct ocs_ecc_dev *kmb_ocs_ecc_find_dev(struct ocs_ecc_ctx *tctx)
{
	if (tctx->ecc_dev)
		return tctx->ecc_dev;

	spin_lock(&ocs_ecc.lock);

	/* Only a single OCS device available. */
	tctx->ecc_dev = list_first_entry(&ocs_ecc.dev_list, struct ocs_ecc_dev,
					 list);

	spin_unlock(&ocs_ecc.lock);

	return tctx->ecc_dev;
}

/* Do point multiplication using OCS ECC HW. */
static int kmb_ecc_point_mult(struct ocs_ecc_dev *ecc_dev,
			      struct ecc_point *result,
			      const struct ecc_point *point,
			      u64 *scalar,
			      const struct ecc_curve *curve)
{
	u8 sca[KMB_ECC_VLI_MAX_BYTES]; /* Use the maximum data size. */
	u32 op_size = (curve->g.ndigits > ECC_CURVE_NIST_P256_DIGITS) ?
		      OCS_ECC_OP_SIZE_384 : OCS_ECC_OP_SIZE_256;
	size_t nbytes = digits_to_bytes(curve->g.ndigits);
	int rc = 0;

	/* Generate random nbytes for Simple and Differential SCA protection. */
	rc = crypto_get_default_rng();
	if (rc)
		return rc;

	rc = crypto_rng_get_bytes(crypto_default_rng, sca, nbytes);
	crypto_put_default_rng();
	if (rc)
		return rc;

	/* Wait engine to be idle before starting new operation. */
	rc = ocs_ecc_wait_idle(ecc_dev);
	if (rc)
		return rc;

	/* Send ecc_start pulse as well as indicating operation size. */
	ocs_ecc_cmd_start(ecc_dev, op_size);

	/* Write ax param; Base point (Gx). */
	ocs_ecc_write_cmd_and_data(ecc_dev, op_size, OCS_ECC_INST_WRITE_AX,
				   point->x, nbytes);

	/* Write ay param; Base point (Gy). */
	ocs_ecc_write_cmd_and_data(ecc_dev, op_size, OCS_ECC_INST_WRITE_AY,
				   point->y, nbytes);

	/*
	 * Write the private key into DATA_IN reg.
	 *
	 * Since DATA_IN register is used to write different values during the
	 * computation private Key value is overwritten with
	 * side-channel-resistance value.
	 */
	ocs_ecc_write_cmd_and_data(ecc_dev, op_size, OCS_ECC_INST_WRITE_BX_D,
				   scalar, nbytes);

	/* Write operand by/l. */
	ocs_ecc_write_cmd_and_data(ecc_dev, op_size, OCS_ECC_INST_WRITE_BY_L,
				   sca, nbytes);
	memzero_explicit(sca, sizeof(sca));

	/* Write p = curve prime(GF modulus). */
	ocs_ecc_write_cmd_and_data(ecc_dev, op_size, OCS_ECC_INST_WRITE_P,
				   curve->p, nbytes);

	/* Write a = curve coefficient. */
	ocs_ecc_write_cmd_and_data(ecc_dev, op_size, OCS_ECC_INST_WRITE_A,
				   curve->a, nbytes);

	/* Make hardware perform the multiplication. */
	rc = ocs_ecc_trigger_op(ecc_dev, op_size, OCS_ECC_INST_CALC_D_IDX_A);
	if (rc)
		return rc;

	/* Read result. */
	ocs_ecc_read_cx_out(ecc_dev, result->x, nbytes);
	ocs_ecc_read_cy_out(ecc_dev, result->y, nbytes);

	return 0;
}

/**
 * kmb_ecc_do_scalar_op() - Perform Scalar operation using OCS ECC HW.
 * @ecc_dev:	The OCS ECC device to use.
 * @scalar_out:	Where to store the output scalar.
 * @scalar_a:	Input scalar operand 'a'.
 * @scalar_b:	Input scalar operand 'b'
 * @curve:	The curve on which the operation is performed.
 * @ndigits:	The size of the operands (in digits).
 * @inst:	The operation to perform (as an OCS ECC instruction).
 *
 * Return:	0 on success, negative error code otherwise.
 */
static int kmb_ecc_do_scalar_op(struct ocs_ecc_dev *ecc_dev, u64 *scalar_out,
				const u64 *scalar_a, const u64 *scalar_b,
				const struct ecc_curve *curve,
				unsigned int ndigits, const u32 inst)
{
	u32 op_size = (ndigits > ECC_CURVE_NIST_P256_DIGITS) ?
		      OCS_ECC_OP_SIZE_384 : OCS_ECC_OP_SIZE_256;
	size_t nbytes = digits_to_bytes(ndigits);
	int rc;

	/* Wait engine to be idle before starting new operation. */
	rc = ocs_ecc_wait_idle(ecc_dev);
	if (rc)
		return rc;

	/* Send ecc_start pulse as well as indicating operation size. */
	ocs_ecc_cmd_start(ecc_dev, op_size);

	/* Write ax param (Base point (Gx).*/
	ocs_ecc_write_cmd_and_data(ecc_dev, op_size, OCS_ECC_INST_WRITE_AX,
				   scalar_a, nbytes);

	/* Write ay param Base point (Gy).*/
	ocs_ecc_write_cmd_and_data(ecc_dev, op_size, OCS_ECC_INST_WRITE_AY,
				   scalar_b, nbytes);

	/* Write p = curve prime(GF modulus).*/
	ocs_ecc_write_cmd_and_data(ecc_dev, op_size, OCS_ECC_INST_WRITE_P,
				   curve->p, nbytes);

	/* Give instruction A.B or A+B to ECC engine. */
	rc = ocs_ecc_trigger_op(ecc_dev, op_size, inst);
	if (rc)
		return rc;

	ocs_ecc_read_cx_out(ecc_dev, scalar_out, nbytes);

	if (vli_is_zero(scalar_out, ndigits))
		return -EINVAL;

	return 0;
}

/* SP800-56A section 5.6.2.3.4 partial verification: ephemeral keys only */
static int kmb_ocs_ecc_is_pubkey_valid_partial(struct ocs_ecc_dev *ecc_dev,
					       const struct ecc_curve *curve,
					       struct ecc_point *pk)
{
	u64 xxx[KMB_ECC_VLI_MAX_DIGITS] = { 0 };
	u64 yy[KMB_ECC_VLI_MAX_DIGITS] = { 0 };
	u64 w[KMB_ECC_VLI_MAX_DIGITS] = { 0 };
	int rc;

	if (WARN_ON(pk->ndigits != curve->g.ndigits))
		return -EINVAL;

	/* Check 1: Verify key is not the zero point. */
	if (ecc_point_is_zero(pk))
		return -EINVAL;

	/* Check 2: Verify key is in the range [0, p-1]. */
	if (vli_cmp(curve->p, pk->x, pk->ndigits) != 1)
		return -EINVAL;

	if (vli_cmp(curve->p, pk->y, pk->ndigits) != 1)
		return -EINVAL;

	/* Check 3: Verify that y^2 == (x^3 + a·x + b) mod p */

	 /* y^2 */
	/* Compute y^2 -> store in yy */
	rc = kmb_ecc_do_scalar_op(ecc_dev, yy, pk->y, pk->y, curve, pk->ndigits,
				  OCS_ECC_INST_CALC_A_MUL_B_MODP);
	if (rc)
		goto exit;

	/* x^3 */
	/* Assigning w = 3, used for calculating x^3. */
	w[0] = POW_CUBE;
	/* Load the next stage.*/
	rc = kmb_ecc_do_scalar_op(ecc_dev, xxx, pk->x, w, curve, pk->ndigits,
				  OCS_ECC_INST_CALC_A_POW_B_MODP);
	if (rc)
		goto exit;

	/* Do a*x -> store in w. */
	rc = kmb_ecc_do_scalar_op(ecc_dev, w, curve->a, pk->x, curve,
				  pk->ndigits,
				  OCS_ECC_INST_CALC_A_MUL_B_MODP);
	if (rc)
		goto exit;

	/* Do ax + b == w + b; store in w. */
	rc = kmb_ecc_do_scalar_op(ecc_dev, w, w, curve->b, curve,
				  pk->ndigits,
				  OCS_ECC_INST_CALC_A_ADD_B_MODP);
	if (rc)
		goto exit;

	/* x^3 + ax + b == x^3 + w -> store in w. */
	rc = kmb_ecc_do_scalar_op(ecc_dev, w, xxx, w, curve, pk->ndigits,
				  OCS_ECC_INST_CALC_A_ADD_B_MODP);
	if (rc)
		goto exit;

	/* Compare y^2 == x^3 + a·x + b. */
	rc = vli_cmp(yy, w, pk->ndigits);
	if (rc)
		rc = -EINVAL;

exit:
	memzero_explicit(xxx, sizeof(xxx));
	memzero_explicit(yy, sizeof(yy));
	memzero_explicit(w, sizeof(w));

	return rc;
}

/* SP800-56A section 5.6.2.3.3 full verification */
static int kmb_ocs_ecc_is_pubkey_valid_full(struct ocs_ecc_dev *ecc_dev,
					    const struct ecc_curve *curve,
					    struct ecc_point *pk)
{
	struct ecc_point *nQ;
	int rc;

	/* Checks 1 through 3 */
	rc = kmb_ocs_ecc_is_pubkey_valid_partial(ecc_dev, curve, pk);
	if (rc)
		return rc;

	/* Check 4: Verify that nQ is the zero point. */
	nQ = ecc_alloc_point(pk->ndigits);
	if (!nQ)
		return -ENOMEM;

	rc = kmb_ecc_point_mult(ecc_dev, nQ, pk, curve->n, curve);
	if (rc)
		goto exit;

	if (!ecc_point_is_zero(nQ))
		rc = -EINVAL;

exit:
	ecc_free_point(nQ);

	return rc;
}

static int kmb_ecc_is_key_valid(const struct ecc_curve *curve,
				const u64 *private_key, size_t private_key_len)
{
	size_t ndigits = curve->g.ndigits;
	u64 one[KMB_ECC_VLI_MAX_DIGITS] = {1};
	u64 res[KMB_ECC_VLI_MAX_DIGITS];

	if (private_key_len != digits_to_bytes(ndigits))
		return -EINVAL;

	if (!private_key)
		return -EINVAL;

	/* Make sure the private key is in the range [2, n-3]. */
	if (vli_cmp(one, private_key, ndigits) != -1)
		return -EINVAL;

	vli_sub(res, curve->n, one, ndigits);
	vli_sub(res, res, one, ndigits);
	if (vli_cmp(res, private_key, ndigits) != 1)
		return -EINVAL;

	return 0;
}

/*
 * ECC private keys are generated using the method of extra random bits,
 * equivalent to that described in FIPS 186-4, Appendix B.4.1.
 *
 * d = (c mod(n–1)) + 1    where c is a string of random bits, 64 bits longer
 *                         than requested
 * 0 <= c mod(n-1) <= n-2  and implies that
 * 1 <= d <= n-1
 *
 * This method generates a private key uniformly distributed in the range
 * [1, n-1].
 */
static int kmb_ecc_gen_privkey(const struct ecc_curve *curve, u64 *privkey)
{
	size_t nbytes = digits_to_bytes(curve->g.ndigits);
	u64 priv[KMB_ECC_VLI_MAX_DIGITS];
	size_t nbits;
	int rc;

	nbits = vli_num_bits(curve->n, curve->g.ndigits);

	/* Check that N is included in Table 1 of FIPS 186-4, section 6.1.1 */
	if (nbits < 160 || curve->g.ndigits > ARRAY_SIZE(priv))
		return -EINVAL;

	/*
	 * FIPS 186-4 recommends that the private key should be obtained from a
	 * RBG with a security strength equal to or greater than the security
	 * strength associated with N.
	 *
	 * The maximum security strength identified by NIST SP800-57pt1r4 for
	 * ECC is 256 (N >= 512).
	 *
	 * This condition is met by the default RNG because it selects a favored
	 * DRBG with a security strength of 256.
	 */
	if (crypto_get_default_rng())
		return -EFAULT;

	rc = crypto_rng_get_bytes(crypto_default_rng, (u8 *)priv, nbytes);
	crypto_put_default_rng();
	if (rc)
		goto cleanup;

	rc = kmb_ecc_is_key_valid(curve, priv, nbytes);
	if (rc)
		goto cleanup;

	ecc_swap_digits(priv, privkey, curve->g.ndigits);

cleanup:
	memzero_explicit(&priv, sizeof(priv));

	return rc;
}

static int kmb_ocs_ecdh_set_secret(struct crypto_kpp *tfm, const void *buf,
				   unsigned int len)
{
	struct ocs_ecc_ctx *tctx = kpp_tfm_ctx(tfm);
	struct ecdh params;
	int rc = 0;

	rc = crypto_ecdh_decode_key(buf, len, &params);
	if (rc)
		goto cleanup;

	/* Ensure key size is not bigger then expected. */
	if (params.key_size > digits_to_bytes(tctx->curve->g.ndigits)) {
		rc = -EINVAL;
		goto cleanup;
	}

	/* Auto-generate private key is not provided. */
	if (!params.key || !params.key_size) {
		rc = kmb_ecc_gen_privkey(tctx->curve, tctx->private_key);
		goto cleanup;
	}

	rc = kmb_ecc_is_key_valid(tctx->curve, (const u64 *)params.key,
				  params.key_size);
	if (rc)
		goto cleanup;

	ecc_swap_digits((const u64 *)params.key, tctx->private_key,
			tctx->curve->g.ndigits);
cleanup:
	memzero_explicit(&params, sizeof(params));

	if (rc)
		tctx->curve = NULL;

	return rc;
}

/* Compute shared secret. */
static int kmb_ecc_do_shared_secret(struct ocs_ecc_ctx *tctx,
				    struct kpp_request *req)
{
	struct ocs_ecc_dev *ecc_dev = tctx->ecc_dev;
	const struct ecc_curve *curve = tctx->curve;
	u64 shared_secret[KMB_ECC_VLI_MAX_DIGITS];
	u64 pubk_buf[KMB_ECC_VLI_MAX_DIGITS * 2];
	size_t copied, nbytes, pubk_len;
	struct ecc_point *pk, *result;
	int rc;

	nbytes = digits_to_bytes(curve->g.ndigits);

	/* Public key is a point, thus it has two coordinates */
	pubk_len = 2 * nbytes;

	/* Copy public key from SG list to pubk_buf. */
	copied = sg_copy_to_buffer(req->src,
				   sg_nents_for_len(req->src, pubk_len),
				   pubk_buf, pubk_len);
	if (copied != pubk_len)
		return -EINVAL;

	/* Allocate and initialize public key point. */
	pk = ecc_alloc_point(curve->g.ndigits);
	if (!pk)
		return -ENOMEM;

	ecc_swap_digits(pubk_buf, pk->x, curve->g.ndigits);
	ecc_swap_digits(&pubk_buf[curve->g.ndigits], pk->y, curve->g.ndigits);

	/*
	 * Check the public key for following
	 * Check 1: Verify key is not the zero point.
	 * Check 2: Verify key is in the range [1, p-1].
	 * Check 3: Verify that y^2 == (x^3 + a·x + b) mod p
	 */
	rc = kmb_ocs_ecc_is_pubkey_valid_partial(ecc_dev, curve, pk);
	if (rc)
		goto exit_free_pk;

	/* Allocate point for storing computed shared secret. */
	result = ecc_alloc_point(pk->ndigits);
	if (!result) {
		rc = -ENOMEM;
		goto exit_free_pk;
	}

	/* Calculate the shared secret.*/
	rc = kmb_ecc_point_mult(ecc_dev, result, pk, tctx->private_key, curve);
	if (rc)
		goto exit_free_result;

	if (ecc_point_is_zero(result)) {
		rc = -EFAULT;
		goto exit_free_result;
	}

	/* Copy shared secret from point to buffer. */
	ecc_swap_digits(result->x, shared_secret, result->ndigits);

	/* Request might ask for less bytes than what we have. */
	nbytes = min_t(size_t, nbytes, req->dst_len);

	copied = sg_copy_from_buffer(req->dst,
				     sg_nents_for_len(req->dst, nbytes),
				     shared_secret, nbytes);

	if (copied != nbytes)
		rc = -EINVAL;

	memzero_explicit(shared_secret, sizeof(shared_secret));

exit_free_result:
	ecc_free_point(result);

exit_free_pk:
	ecc_free_point(pk);

	return rc;
}

/* Compute public key. */
static int kmb_ecc_do_public_key(struct ocs_ecc_ctx *tctx,
				 struct kpp_request *req)
{
	const struct ecc_curve *curve = tctx->curve;
	u64 pubk_buf[KMB_ECC_VLI_MAX_DIGITS * 2];
	struct ecc_point *pk;
	size_t pubk_len;
	size_t copied;
	int rc;

	/* Public key is a point, so it has double the digits. */
	pubk_len = 2 * digits_to_bytes(curve->g.ndigits);

	pk = ecc_alloc_point(curve->g.ndigits);
	if (!pk)
		return -ENOMEM;

	/* Public Key(pk) = priv * G. */
	rc = kmb_ecc_point_mult(tctx->ecc_dev, pk, &curve->g, tctx->private_key,
				curve);
	if (rc)
		goto exit;

	/* SP800-56A rev 3 5.6.2.1.3 key check */
	if (kmb_ocs_ecc_is_pubkey_valid_full(tctx->ecc_dev, curve, pk)) {
		rc = -EAGAIN;
		goto exit;
	}

	/* Copy public key from point to buffer. */
	ecc_swap_digits(pk->x, pubk_buf, pk->ndigits);
	ecc_swap_digits(pk->y, &pubk_buf[pk->ndigits], pk->ndigits);

	/* Copy public key to req->dst. */
	copied = sg_copy_from_buffer(req->dst,
				     sg_nents_for_len(req->dst, pubk_len),
				     pubk_buf, pubk_len);

	if (copied != pubk_len)
		rc = -EINVAL;

exit:
	ecc_free_point(pk);

	return rc;
}

static int kmb_ocs_ecc_do_one_request(struct crypto_engine *engine,
				      void *areq)
{
	struct kpp_request *req = container_of(areq, struct kpp_request, base);
	struct ocs_ecc_ctx *tctx = kmb_ocs_ecc_tctx(req);
	struct ocs_ecc_dev *ecc_dev = tctx->ecc_dev;
	int rc;

	if (req->src)
		rc = kmb_ecc_do_shared_secret(tctx, req);
	else
		rc = kmb_ecc_do_public_key(tctx, req);

	crypto_finalize_kpp_request(ecc_dev->engine, req, rc);

	return 0;
}

static int kmb_ocs_ecdh_generate_public_key(struct kpp_request *req)
{
	struct ocs_ecc_ctx *tctx = kmb_ocs_ecc_tctx(req);
	const struct ecc_curve *curve = tctx->curve;

	/* Ensure kmb_ocs_ecdh_set_secret() has been successfully called. */
	if (!tctx->curve)
		return -EINVAL;

	/* Ensure dst is present. */
	if (!req->dst)
		return -EINVAL;

	/* Check the request dst is big enough to hold the public key. */
	if (req->dst_len < (2 * digits_to_bytes(curve->g.ndigits)))
		return -EINVAL;

	/* 'src' is not supposed to be present when generate pubk is called. */
	if (req->src)
		return -EINVAL;

	return crypto_transfer_kpp_request_to_engine(tctx->ecc_dev->engine,
						     req);
}

static int kmb_ocs_ecdh_compute_shared_secret(struct kpp_request *req)
{
	struct ocs_ecc_ctx *tctx = kmb_ocs_ecc_tctx(req);
	const struct ecc_curve *curve = tctx->curve;

	/* Ensure kmb_ocs_ecdh_set_secret() has been successfully called. */
	if (!tctx->curve)
		return -EINVAL;

	/* Ensure dst is present. */
	if (!req->dst)
		return -EINVAL;

	/* Ensure src is present. */
	if (!req->src)
		return -EINVAL;

	/*
	 * req->src is expected to the (other-side) public key, so its length
	 * must be 2 * coordinate size (in bytes).
	 */
	if (req->src_len != 2 * digits_to_bytes(curve->g.ndigits))
		return -EINVAL;

	return crypto_transfer_kpp_request_to_engine(tctx->ecc_dev->engine,
						     req);
}

static int kmb_ecc_tctx_init(struct ocs_ecc_ctx *tctx, unsigned int curve_id)
{
	memset(tctx, 0, sizeof(*tctx));

	tctx->ecc_dev = kmb_ocs_ecc_find_dev(tctx);

	if (IS_ERR(tctx->ecc_dev)) {
		pr_err("Failed to find the device : %ld\n",
		       PTR_ERR(tctx->ecc_dev));
		return PTR_ERR(tctx->ecc_dev);
	}

	tctx->curve = ecc_get_curve(curve_id);
	if (!tctx->curve)
		return -EOPNOTSUPP;

	tctx->engine_ctx.op.prepare_request = NULL;
	tctx->engine_ctx.op.do_one_request = kmb_ocs_ecc_do_one_request;
	tctx->engine_ctx.op.unprepare_request = NULL;

	return 0;
}

static int kmb_ocs_ecdh_nist_p256_init_tfm(struct crypto_kpp *tfm)
{
	struct ocs_ecc_ctx *tctx = kpp_tfm_ctx(tfm);

	return kmb_ecc_tctx_init(tctx, ECC_CURVE_NIST_P256);
}

static int kmb_ocs_ecdh_nist_p384_init_tfm(struct crypto_kpp *tfm)
{
	struct ocs_ecc_ctx *tctx = kpp_tfm_ctx(tfm);

	return kmb_ecc_tctx_init(tctx, ECC_CURVE_NIST_P384);
}

static void kmb_ocs_ecdh_exit_tfm(struct crypto_kpp *tfm)
{
	struct ocs_ecc_ctx *tctx = kpp_tfm_ctx(tfm);

	memzero_explicit(tctx->private_key, sizeof(*tctx->private_key));
}

static unsigned int kmb_ocs_ecdh_max_size(struct crypto_kpp *tfm)
{
	struct ocs_ecc_ctx *tctx = kpp_tfm_ctx(tfm);

	/* Public key is made of two coordinates, so double the digits. */
	return digits_to_bytes(tctx->curve->g.ndigits) * 2;
}

static struct kpp_alg ocs_ecdh_p256 = {
	.set_secret = kmb_ocs_ecdh_set_secret,
	.generate_public_key = kmb_ocs_ecdh_generate_public_key,
	.compute_shared_secret = kmb_ocs_ecdh_compute_shared_secret,
	.init = kmb_ocs_ecdh_nist_p256_init_tfm,
	.exit = kmb_ocs_ecdh_exit_tfm,
	.max_size = kmb_ocs_ecdh_max_size,
	.base = {
		.cra_name = "ecdh-nist-p256",
		.cra_driver_name = "ecdh-nist-p256-keembay-ocs",
		.cra_priority = KMB_OCS_ECC_PRIORITY,
		.cra_module = THIS_MODULE,
		.cra_ctxsize = sizeof(struct ocs_ecc_ctx),
	},
};

static struct kpp_alg ocs_ecdh_p384 = {
	.set_secret = kmb_ocs_ecdh_set_secret,
	.generate_public_key = kmb_ocs_ecdh_generate_public_key,
	.compute_shared_secret = kmb_ocs_ecdh_compute_shared_secret,
	.init = kmb_ocs_ecdh_nist_p384_init_tfm,
	.exit = kmb_ocs_ecdh_exit_tfm,
	.max_size = kmb_ocs_ecdh_max_size,
	.base = {
		.cra_name = "ecdh-nist-p384",
		.cra_driver_name = "ecdh-nist-p384-keembay-ocs",
		.cra_priority = KMB_OCS_ECC_PRIORITY,
		.cra_module = THIS_MODULE,
		.cra_ctxsize = sizeof(struct ocs_ecc_ctx),
	},
};

static irqreturn_t ocs_ecc_irq_handler(int irq, void *dev_id)
{
	struct ocs_ecc_dev *ecc_dev = dev_id;
	u32 status;

	/*
	 * Read the status register and write it back to clear the
	 * DONE_INT_STATUS bit.
	 */
	status = ioread32(ecc_dev->base_reg + HW_OFFS_OCS_ECC_ISR);
	iowrite32(status, ecc_dev->base_reg + HW_OFFS_OCS_ECC_ISR);

	if (!(status & HW_OCS_ECC_ISR_INT_STATUS_DONE))
		return IRQ_NONE;

	complete(&ecc_dev->irq_done);

	return IRQ_HANDLED;
}

static int kmb_ocs_ecc_probe(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct ocs_ecc_dev *ecc_dev;
	int rc;

	ecc_dev = devm_kzalloc(dev, sizeof(*ecc_dev), GFP_KERNEL);
	if (!ecc_dev)
		return -ENOMEM;

	ecc_dev->dev = dev;

	platform_set_drvdata(pdev, ecc_dev);

	INIT_LIST_HEAD(&ecc_dev->list);
	init_completion(&ecc_dev->irq_done);

	/* Get base register address. */
	ecc_dev->base_reg = devm_platform_ioremap_resource(pdev, 0);
	if (IS_ERR(ecc_dev->base_reg)) {
		dev_err(dev, "Failed to get base address\n");
		rc = PTR_ERR(ecc_dev->base_reg);
		goto list_del;
	}

	/* Get and request IRQ */
	ecc_dev->irq = platform_get_irq(pdev, 0);
	if (ecc_dev->irq < 0) {
		rc = ecc_dev->irq;
		goto list_del;
	}

	rc = devm_request_threaded_irq(dev, ecc_dev->irq, ocs_ecc_irq_handler,
				       NULL, 0, "keembay-ocs-ecc", ecc_dev);
	if (rc < 0) {
		dev_err(dev, "Could not request IRQ\n");
		goto list_del;
	}

	/* Add device to the list of OCS ECC devices. */
	spin_lock(&ocs_ecc.lock);
	list_add_tail(&ecc_dev->list, &ocs_ecc.dev_list);
	spin_unlock(&ocs_ecc.lock);

	/* Initialize crypto engine. */
	ecc_dev->engine = crypto_engine_alloc_init(dev, 1);
	if (!ecc_dev->engine) {
		dev_err(dev, "Could not allocate crypto engine\n");
		rc = -ENOMEM;
		goto list_del;
	}

	rc = crypto_engine_start(ecc_dev->engine);
	if (rc) {
		dev_err(dev, "Could not start crypto engine\n");
		goto cleanup;
	}

	/* Register the KPP algo. */
	rc = crypto_register_kpp(&ocs_ecdh_p256);
	if (rc) {
		dev_err(dev,
			"Could not register OCS algorithms with Crypto API\n");
		goto cleanup;
	}

	rc = crypto_register_kpp(&ocs_ecdh_p384);
	if (rc) {
		dev_err(dev,
			"Could not register OCS algorithms with Crypto API\n");
		goto ocs_ecdh_p384_error;
	}

	return 0;

ocs_ecdh_p384_error:
	crypto_unregister_kpp(&ocs_ecdh_p256);

cleanup:
	crypto_engine_exit(ecc_dev->engine);

list_del:
	spin_lock(&ocs_ecc.lock);
	list_del(&ecc_dev->list);
	spin_unlock(&ocs_ecc.lock);

	return rc;
}

static int kmb_ocs_ecc_remove(struct platform_device *pdev)
{
	struct ocs_ecc_dev *ecc_dev;

	ecc_dev = platform_get_drvdata(pdev);

	crypto_unregister_kpp(&ocs_ecdh_p384);
	crypto_unregister_kpp(&ocs_ecdh_p256);

	spin_lock(&ocs_ecc.lock);
	list_del(&ecc_dev->list);
	spin_unlock(&ocs_ecc.lock);

	crypto_engine_exit(ecc_dev->engine);

	return 0;
}

/* Device tree driver match. */
static const struct of_device_id kmb_ocs_ecc_of_match[] = {
	{
		.compatible = "intel,keembay-ocs-ecc",
	},
	{}
};

/* The OCS driver is a platform device. */
static struct platform_driver kmb_ocs_ecc_driver = {
	.probe = kmb_ocs_ecc_probe,
	.remove = kmb_ocs_ecc_remove,
	.driver = {
			.name = DRV_NAME,
			.of_match_table = kmb_ocs_ecc_of_match,
		},
};
module_platform_driver(kmb_ocs_ecc_driver);

MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Intel Keem Bay OCS ECC Driver");
MODULE_ALIAS_CRYPTO("ecdh-nist-p256");
MODULE_ALIAS_CRYPTO("ecdh-nist-p384");
MODULE_ALIAS_CRYPTO("ecdh-nist-p256-keembay-ocs");
MODULE_ALIAS_CRYPTO("ecdh-nist-p384-keembay-ocs");