summaryrefslogtreecommitdiffstats
path: root/drivers/dma/mediatek/mtk-hsdma.c
blob: f133ae8dece16b47827b1872cdd7c4eaa4f0e1c3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
// SPDX-License-Identifier: GPL-2.0
// Copyright (c) 2017-2018 MediaTek Inc.

/*
 * Driver for MediaTek High-Speed DMA Controller
 *
 * Author: Sean Wang <sean.wang@mediatek.com>
 *
 */

#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/iopoll.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_dma.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/refcount.h>
#include <linux/slab.h>

#include "../virt-dma.h"

#define MTK_HSDMA_USEC_POLL		20
#define MTK_HSDMA_TIMEOUT_POLL		200000
#define MTK_HSDMA_DMA_BUSWIDTHS		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)

/* The default number of virtual channel */
#define MTK_HSDMA_NR_VCHANS		3

/* Only one physical channel supported */
#define MTK_HSDMA_NR_MAX_PCHANS		1

/* Macro for physical descriptor (PD) manipulation */
/* The number of PD which must be 2 of power */
#define MTK_DMA_SIZE			64
#define MTK_HSDMA_NEXT_DESP_IDX(x, y)	(((x) + 1) & ((y) - 1))
#define MTK_HSDMA_LAST_DESP_IDX(x, y)	(((x) - 1) & ((y) - 1))
#define MTK_HSDMA_MAX_LEN		0x3f80
#define MTK_HSDMA_ALIGN_SIZE		4
#define MTK_HSDMA_PLEN_MASK		0x3fff
#define MTK_HSDMA_DESC_PLEN(x)		(((x) & MTK_HSDMA_PLEN_MASK) << 16)
#define MTK_HSDMA_DESC_PLEN_GET(x)	(((x) >> 16) & MTK_HSDMA_PLEN_MASK)

/* Registers for underlying ring manipulation */
#define MTK_HSDMA_TX_BASE		0x0
#define MTK_HSDMA_TX_CNT		0x4
#define MTK_HSDMA_TX_CPU		0x8
#define MTK_HSDMA_TX_DMA		0xc
#define MTK_HSDMA_RX_BASE		0x100
#define MTK_HSDMA_RX_CNT		0x104
#define MTK_HSDMA_RX_CPU		0x108
#define MTK_HSDMA_RX_DMA		0x10c

/* Registers for global setup */
#define MTK_HSDMA_GLO			0x204
#define MTK_HSDMA_GLO_MULTI_DMA		BIT(10)
#define MTK_HSDMA_TX_WB_DDONE		BIT(6)
#define MTK_HSDMA_BURST_64BYTES		(0x2 << 4)
#define MTK_HSDMA_GLO_RX_BUSY		BIT(3)
#define MTK_HSDMA_GLO_RX_DMA		BIT(2)
#define MTK_HSDMA_GLO_TX_BUSY		BIT(1)
#define MTK_HSDMA_GLO_TX_DMA		BIT(0)
#define MTK_HSDMA_GLO_DMA		(MTK_HSDMA_GLO_TX_DMA |	\
					 MTK_HSDMA_GLO_RX_DMA)
#define MTK_HSDMA_GLO_BUSY		(MTK_HSDMA_GLO_RX_BUSY | \
					 MTK_HSDMA_GLO_TX_BUSY)
#define MTK_HSDMA_GLO_DEFAULT		(MTK_HSDMA_GLO_TX_DMA | \
					 MTK_HSDMA_GLO_RX_DMA | \
					 MTK_HSDMA_TX_WB_DDONE | \
					 MTK_HSDMA_BURST_64BYTES | \
					 MTK_HSDMA_GLO_MULTI_DMA)

/* Registers for reset */
#define MTK_HSDMA_RESET			0x208
#define MTK_HSDMA_RST_TX		BIT(0)
#define MTK_HSDMA_RST_RX		BIT(16)

/* Registers for interrupt control */
#define MTK_HSDMA_DLYINT		0x20c
#define MTK_HSDMA_RXDLY_INT_EN		BIT(15)

/* Interrupt fires when the pending number's more than the specified */
#define MTK_HSDMA_RXMAX_PINT(x)		(((x) & 0x7f) << 8)

/* Interrupt fires when the pending time's more than the specified in 20 us */
#define MTK_HSDMA_RXMAX_PTIME(x)	((x) & 0x7f)
#define MTK_HSDMA_DLYINT_DEFAULT	(MTK_HSDMA_RXDLY_INT_EN | \
					 MTK_HSDMA_RXMAX_PINT(20) | \
					 MTK_HSDMA_RXMAX_PTIME(20))
#define MTK_HSDMA_INT_STATUS		0x220
#define MTK_HSDMA_INT_ENABLE		0x228
#define MTK_HSDMA_INT_RXDONE		BIT(16)

enum mtk_hsdma_vdesc_flag {
	MTK_HSDMA_VDESC_FINISHED	= 0x01,
};

#define IS_MTK_HSDMA_VDESC_FINISHED(x) ((x) == MTK_HSDMA_VDESC_FINISHED)

/**
 * struct mtk_hsdma_pdesc - This is the struct holding info describing physical
 *			    descriptor (PD) and its placement must be kept at
 *			    4-bytes alignment in little endian order.
 * @desc1:		    | The control pad used to indicate hardware how to
 * @desc2:		    | deal with the descriptor such as source and
 * @desc3:		    | destination address and data length. The maximum
 * @desc4:		    | data length each pdesc can handle is 0x3f80 bytes
 */
struct mtk_hsdma_pdesc {
	__le32 desc1;
	__le32 desc2;
	__le32 desc3;
	__le32 desc4;
} __packed __aligned(4);

/**
 * struct mtk_hsdma_vdesc - This is the struct holding info describing virtual
 *			    descriptor (VD)
 * @vd:			    An instance for struct virt_dma_desc
 * @len:		    The total data size device wants to move
 * @residue:		    The remaining data size device will move
 * @dest:		    The destination address device wants to move to
 * @src:		    The source address device wants to move from
 */
struct mtk_hsdma_vdesc {
	struct virt_dma_desc vd;
	size_t len;
	size_t residue;
	dma_addr_t dest;
	dma_addr_t src;
};

/**
 * struct mtk_hsdma_cb - This is the struct holding extra info required for RX
 *			 ring to know what relevant VD the the PD is being
 *			 mapped to.
 * @vd:			 Pointer to the relevant VD.
 * @flag:		 Flag indicating what action should be taken when VD
 *			 is completed.
 */
struct mtk_hsdma_cb {
	struct virt_dma_desc *vd;
	enum mtk_hsdma_vdesc_flag flag;
};

/**
 * struct mtk_hsdma_ring - This struct holds info describing underlying ring
 *			   space
 * @txd:		   The descriptor TX ring which describes DMA source
 *			   information
 * @rxd:		   The descriptor RX ring which describes DMA
 *			   destination information
 * @cb:			   The extra information pointed at by RX ring
 * @tphys:		   The physical addr of TX ring
 * @rphys:		   The physical addr of RX ring
 * @cur_tptr:		   Pointer to the next free descriptor used by the host
 * @cur_rptr:		   Pointer to the last done descriptor by the device
 */
struct mtk_hsdma_ring {
	struct mtk_hsdma_pdesc *txd;
	struct mtk_hsdma_pdesc *rxd;
	struct mtk_hsdma_cb *cb;
	dma_addr_t tphys;
	dma_addr_t rphys;
	u16 cur_tptr;
	u16 cur_rptr;
};

/**
 * struct mtk_hsdma_pchan - This is the struct holding info describing physical
 *			   channel (PC)
 * @ring:		   An instance for the underlying ring
 * @sz_ring:		   Total size allocated for the ring
 * @nr_free:		   Total number of free rooms in the ring. It would
 *			   be accessed and updated frequently between IRQ
 *			   context and user context to reflect whether ring
 *			   can accept requests from VD.
 */
struct mtk_hsdma_pchan {
	struct mtk_hsdma_ring ring;
	size_t sz_ring;
	atomic_t nr_free;
};

/**
 * struct mtk_hsdma_vchan - This is the struct holding info describing virtual
 *			   channel (VC)
 * @vc:			   An instance for struct virt_dma_chan
 * @issue_completion:	   The wait for all issued descriptors completited
 * @issue_synchronize:	   Bool indicating channel synchronization starts
 * @desc_hw_processing:	   List those descriptors the hardware is processing,
 *			   which is protected by vc.lock
 */
struct mtk_hsdma_vchan {
	struct virt_dma_chan vc;
	struct completion issue_completion;
	bool issue_synchronize;
	struct list_head desc_hw_processing;
};

/**
 * struct mtk_hsdma_soc - This is the struct holding differences among SoCs
 * @ddone:		  Bit mask for DDONE
 * @ls0:		  Bit mask for LS0
 */
struct mtk_hsdma_soc {
	__le32 ddone;
	__le32 ls0;
};

/**
 * struct mtk_hsdma_device - This is the struct holding info describing HSDMA
 *			     device
 * @ddev:		     An instance for struct dma_device
 * @base:		     The mapped register I/O base
 * @clk:		     The clock that device internal is using
 * @irq:		     The IRQ that device are using
 * @dma_requests:	     The number of VCs the device supports to
 * @vc:			     The pointer to all available VCs
 * @pc:			     The pointer to the underlying PC
 * @pc_refcnt:		     Track how many VCs are using the PC
 * @lock:		     Lock protect agaisting multiple VCs access PC
 * @soc:		     The pointer to area holding differences among
 *			     vaious platform
 */
struct mtk_hsdma_device {
	struct dma_device ddev;
	void __iomem *base;
	struct clk *clk;
	u32 irq;

	u32 dma_requests;
	struct mtk_hsdma_vchan *vc;
	struct mtk_hsdma_pchan *pc;
	refcount_t pc_refcnt;

	/* Lock used to protect against multiple VCs access PC */
	spinlock_t lock;

	const struct mtk_hsdma_soc *soc;
};

static struct mtk_hsdma_device *to_hsdma_dev(struct dma_chan *chan)
{
	return container_of(chan->device, struct mtk_hsdma_device, ddev);
}

static inline struct mtk_hsdma_vchan *to_hsdma_vchan(struct dma_chan *chan)
{
	return container_of(chan, struct mtk_hsdma_vchan, vc.chan);
}

static struct mtk_hsdma_vdesc *to_hsdma_vdesc(struct virt_dma_desc *vd)
{
	return container_of(vd, struct mtk_hsdma_vdesc, vd);
}

static struct device *hsdma2dev(struct mtk_hsdma_device *hsdma)
{
	return hsdma->ddev.dev;
}

static u32 mtk_dma_read(struct mtk_hsdma_device *hsdma, u32 reg)
{
	return readl(hsdma->base + reg);
}

static void mtk_dma_write(struct mtk_hsdma_device *hsdma, u32 reg, u32 val)
{
	writel(val, hsdma->base + reg);
}

static void mtk_dma_rmw(struct mtk_hsdma_device *hsdma, u32 reg,
			u32 mask, u32 set)
{
	u32 val;

	val = mtk_dma_read(hsdma, reg);
	val &= ~mask;
	val |= set;
	mtk_dma_write(hsdma, reg, val);
}

static void mtk_dma_set(struct mtk_hsdma_device *hsdma, u32 reg, u32 val)
{
	mtk_dma_rmw(hsdma, reg, 0, val);
}

static void mtk_dma_clr(struct mtk_hsdma_device *hsdma, u32 reg, u32 val)
{
	mtk_dma_rmw(hsdma, reg, val, 0);
}

static void mtk_hsdma_vdesc_free(struct virt_dma_desc *vd)
{
	kfree(container_of(vd, struct mtk_hsdma_vdesc, vd));
}

static int mtk_hsdma_busy_wait(struct mtk_hsdma_device *hsdma)
{
	u32 status = 0;

	return readl_poll_timeout(hsdma->base + MTK_HSDMA_GLO, status,
				  !(status & MTK_HSDMA_GLO_BUSY),
				  MTK_HSDMA_USEC_POLL,
				  MTK_HSDMA_TIMEOUT_POLL);
}

static int mtk_hsdma_alloc_pchan(struct mtk_hsdma_device *hsdma,
				 struct mtk_hsdma_pchan *pc)
{
	struct mtk_hsdma_ring *ring = &pc->ring;
	int err;

	memset(pc, 0, sizeof(*pc));

	/*
	 * Allocate ring space where [0 ... MTK_DMA_SIZE - 1] is for TX ring
	 * and [MTK_DMA_SIZE ... 2 * MTK_DMA_SIZE - 1] is for RX ring.
	 */
	pc->sz_ring = 2 * MTK_DMA_SIZE * sizeof(*ring->txd);
	ring->txd = dma_alloc_coherent(hsdma2dev(hsdma), pc->sz_ring,
				       &ring->tphys, GFP_NOWAIT);
	if (!ring->txd)
		return -ENOMEM;

	ring->rxd = &ring->txd[MTK_DMA_SIZE];
	ring->rphys = ring->tphys + MTK_DMA_SIZE * sizeof(*ring->txd);
	ring->cur_tptr = 0;
	ring->cur_rptr = MTK_DMA_SIZE - 1;

	ring->cb = kcalloc(MTK_DMA_SIZE, sizeof(*ring->cb), GFP_NOWAIT);
	if (!ring->cb) {
		err = -ENOMEM;
		goto err_free_dma;
	}

	atomic_set(&pc->nr_free, MTK_DMA_SIZE - 1);

	/* Disable HSDMA and wait for the completion */
	mtk_dma_clr(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DMA);
	err = mtk_hsdma_busy_wait(hsdma);
	if (err)
		goto err_free_cb;

	/* Reset */
	mtk_dma_set(hsdma, MTK_HSDMA_RESET,
		    MTK_HSDMA_RST_TX | MTK_HSDMA_RST_RX);
	mtk_dma_clr(hsdma, MTK_HSDMA_RESET,
		    MTK_HSDMA_RST_TX | MTK_HSDMA_RST_RX);

	/* Setup HSDMA initial pointer in the ring */
	mtk_dma_write(hsdma, MTK_HSDMA_TX_BASE, ring->tphys);
	mtk_dma_write(hsdma, MTK_HSDMA_TX_CNT, MTK_DMA_SIZE);
	mtk_dma_write(hsdma, MTK_HSDMA_TX_CPU, ring->cur_tptr);
	mtk_dma_write(hsdma, MTK_HSDMA_TX_DMA, 0);
	mtk_dma_write(hsdma, MTK_HSDMA_RX_BASE, ring->rphys);
	mtk_dma_write(hsdma, MTK_HSDMA_RX_CNT, MTK_DMA_SIZE);
	mtk_dma_write(hsdma, MTK_HSDMA_RX_CPU, ring->cur_rptr);
	mtk_dma_write(hsdma, MTK_HSDMA_RX_DMA, 0);

	/* Enable HSDMA */
	mtk_dma_set(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DMA);

	/* Setup delayed interrupt */
	mtk_dma_write(hsdma, MTK_HSDMA_DLYINT, MTK_HSDMA_DLYINT_DEFAULT);

	/* Enable interrupt */
	mtk_dma_set(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE);

	return 0;

err_free_cb:
	kfree(ring->cb);

err_free_dma:
	dma_free_coherent(hsdma2dev(hsdma),
			  pc->sz_ring, ring->txd, ring->tphys);
	return err;
}

static void mtk_hsdma_free_pchan(struct mtk_hsdma_device *hsdma,
				 struct mtk_hsdma_pchan *pc)
{
	struct mtk_hsdma_ring *ring = &pc->ring;

	/* Disable HSDMA and then wait for the completion */
	mtk_dma_clr(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DMA);
	mtk_hsdma_busy_wait(hsdma);

	/* Reset pointer in the ring */
	mtk_dma_clr(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE);
	mtk_dma_write(hsdma, MTK_HSDMA_TX_BASE, 0);
	mtk_dma_write(hsdma, MTK_HSDMA_TX_CNT, 0);
	mtk_dma_write(hsdma, MTK_HSDMA_TX_CPU, 0);
	mtk_dma_write(hsdma, MTK_HSDMA_RX_BASE, 0);
	mtk_dma_write(hsdma, MTK_HSDMA_RX_CNT, 0);
	mtk_dma_write(hsdma, MTK_HSDMA_RX_CPU, MTK_DMA_SIZE - 1);

	kfree(ring->cb);

	dma_free_coherent(hsdma2dev(hsdma),
			  pc->sz_ring, ring->txd, ring->tphys);
}

static int mtk_hsdma_issue_pending_vdesc(struct mtk_hsdma_device *hsdma,
					 struct mtk_hsdma_pchan *pc,
					 struct mtk_hsdma_vdesc *hvd)
{
	struct mtk_hsdma_ring *ring = &pc->ring;
	struct mtk_hsdma_pdesc *txd, *rxd;
	u16 reserved, prev, tlen, num_sgs;
	unsigned long flags;

	/* Protect against PC is accessed by multiple VCs simultaneously */
	spin_lock_irqsave(&hsdma->lock, flags);

	/*
	 * Reserve rooms, where pc->nr_free is used to track how many free
	 * rooms in the ring being updated in user and IRQ context.
	 */
	num_sgs = DIV_ROUND_UP(hvd->len, MTK_HSDMA_MAX_LEN);
	reserved = min_t(u16, num_sgs, atomic_read(&pc->nr_free));

	if (!reserved) {
		spin_unlock_irqrestore(&hsdma->lock, flags);
		return -ENOSPC;
	}

	atomic_sub(reserved, &pc->nr_free);

	while (reserved--) {
		/* Limit size by PD capability for valid data moving */
		tlen = (hvd->len > MTK_HSDMA_MAX_LEN) ?
		       MTK_HSDMA_MAX_LEN : hvd->len;

		/*
		 * Setup PDs using the remaining VD info mapped on those
		 * reserved rooms. And since RXD is shared memory between the
		 * host and the device allocated by dma_alloc_coherent call,
		 * the helper macro WRITE_ONCE can ensure the data written to
		 * RAM would really happens.
		 */
		txd = &ring->txd[ring->cur_tptr];
		WRITE_ONCE(txd->desc1, hvd->src);
		WRITE_ONCE(txd->desc2,
			   hsdma->soc->ls0 | MTK_HSDMA_DESC_PLEN(tlen));

		rxd = &ring->rxd[ring->cur_tptr];
		WRITE_ONCE(rxd->desc1, hvd->dest);
		WRITE_ONCE(rxd->desc2, MTK_HSDMA_DESC_PLEN(tlen));

		/* Associate VD, the PD belonged to */
		ring->cb[ring->cur_tptr].vd = &hvd->vd;

		/* Move forward the pointer of TX ring */
		ring->cur_tptr = MTK_HSDMA_NEXT_DESP_IDX(ring->cur_tptr,
							 MTK_DMA_SIZE);

		/* Update VD with remaining data */
		hvd->src  += tlen;
		hvd->dest += tlen;
		hvd->len  -= tlen;
	}

	/*
	 * Tagging flag for the last PD for VD will be responsible for
	 * completing VD.
	 */
	if (!hvd->len) {
		prev = MTK_HSDMA_LAST_DESP_IDX(ring->cur_tptr, MTK_DMA_SIZE);
		ring->cb[prev].flag = MTK_HSDMA_VDESC_FINISHED;
	}

	/* Ensure all changes indeed done before we're going on */
	wmb();

	/*
	 * Updating into hardware the pointer of TX ring lets HSDMA to take
	 * action for those pending PDs.
	 */
	mtk_dma_write(hsdma, MTK_HSDMA_TX_CPU, ring->cur_tptr);

	spin_unlock_irqrestore(&hsdma->lock, flags);

	return 0;
}

static void mtk_hsdma_issue_vchan_pending(struct mtk_hsdma_device *hsdma,
					  struct mtk_hsdma_vchan *hvc)
{
	struct virt_dma_desc *vd, *vd2;
	int err;

	lockdep_assert_held(&hvc->vc.lock);

	list_for_each_entry_safe(vd, vd2, &hvc->vc.desc_issued, node) {
		struct mtk_hsdma_vdesc *hvd;

		hvd = to_hsdma_vdesc(vd);

		/* Map VD into PC and all VCs shares a single PC */
		err = mtk_hsdma_issue_pending_vdesc(hsdma, hsdma->pc, hvd);

		/*
		 * Move VD from desc_issued to desc_hw_processing when entire
		 * VD is fit into available PDs. Otherwise, the uncompleted
		 * VDs would stay in list desc_issued and then restart the
		 * processing as soon as possible once underlying ring space
		 * got freed.
		 */
		if (err == -ENOSPC || hvd->len > 0)
			break;

		/*
		 * The extra list desc_hw_processing is used because
		 * hardware can't provide sufficient information allowing us
		 * to know what VDs are still working on the underlying ring.
		 * Through the additional list, it can help us to implement
		 * terminate_all, residue calculation and such thing needed
		 * to know detail descriptor status on the hardware.
		 */
		list_move_tail(&vd->node, &hvc->desc_hw_processing);
	}
}

static void mtk_hsdma_free_rooms_in_ring(struct mtk_hsdma_device *hsdma)
{
	struct mtk_hsdma_vchan *hvc;
	struct mtk_hsdma_pdesc *rxd;
	struct mtk_hsdma_vdesc *hvd;
	struct mtk_hsdma_pchan *pc;
	struct mtk_hsdma_cb *cb;
	int i = MTK_DMA_SIZE;
	__le32 desc2;
	u32 status;
	u16 next;

	/* Read IRQ status */
	status = mtk_dma_read(hsdma, MTK_HSDMA_INT_STATUS);
	if (unlikely(!(status & MTK_HSDMA_INT_RXDONE)))
		goto rx_done;

	pc = hsdma->pc;

	/*
	 * Using a fail-safe loop with iterations of up to MTK_DMA_SIZE to
	 * reclaim these finished descriptors: The most number of PDs the ISR
	 * can handle at one time shouldn't be more than MTK_DMA_SIZE so we
	 * take it as limited count instead of just using a dangerous infinite
	 * poll.
	 */
	while (i--) {
		next = MTK_HSDMA_NEXT_DESP_IDX(pc->ring.cur_rptr,
					       MTK_DMA_SIZE);
		rxd = &pc->ring.rxd[next];

		/*
		 * If MTK_HSDMA_DESC_DDONE is no specified, that means data
		 * moving for the PD is still under going.
		 */
		desc2 = READ_ONCE(rxd->desc2);
		if (!(desc2 & hsdma->soc->ddone))
			break;

		cb = &pc->ring.cb[next];
		if (unlikely(!cb->vd)) {
			dev_err(hsdma2dev(hsdma), "cb->vd cannot be null\n");
			break;
		}

		/* Update residue of VD the associated PD belonged to */
		hvd = to_hsdma_vdesc(cb->vd);
		hvd->residue -= MTK_HSDMA_DESC_PLEN_GET(rxd->desc2);

		/* Complete VD until the relevant last PD is finished */
		if (IS_MTK_HSDMA_VDESC_FINISHED(cb->flag)) {
			hvc = to_hsdma_vchan(cb->vd->tx.chan);

			spin_lock(&hvc->vc.lock);

			/* Remove VD from list desc_hw_processing */
			list_del(&cb->vd->node);

			/* Add VD into list desc_completed */
			vchan_cookie_complete(cb->vd);

			if (hvc->issue_synchronize &&
			    list_empty(&hvc->desc_hw_processing)) {
				complete(&hvc->issue_completion);
				hvc->issue_synchronize = false;
			}
			spin_unlock(&hvc->vc.lock);

			cb->flag = 0;
		}

		cb->vd = 0;

		/*
		 * Recycle the RXD with the helper WRITE_ONCE that can ensure
		 * data written into RAM would really happens.
		 */
		WRITE_ONCE(rxd->desc1, 0);
		WRITE_ONCE(rxd->desc2, 0);
		pc->ring.cur_rptr = next;

		/* Release rooms */
		atomic_inc(&pc->nr_free);
	}

	/* Ensure all changes indeed done before we're going on */
	wmb();

	/* Update CPU pointer for those completed PDs */
	mtk_dma_write(hsdma, MTK_HSDMA_RX_CPU, pc->ring.cur_rptr);

	/*
	 * Acking the pending IRQ allows hardware no longer to keep the used
	 * IRQ line in certain trigger state when software has completed all
	 * the finished physical descriptors.
	 */
	if (atomic_read(&pc->nr_free) >= MTK_DMA_SIZE - 1)
		mtk_dma_write(hsdma, MTK_HSDMA_INT_STATUS, status);

	/* ASAP handles pending VDs in all VCs after freeing some rooms */
	for (i = 0; i < hsdma->dma_requests; i++) {
		hvc = &hsdma->vc[i];
		spin_lock(&hvc->vc.lock);
		mtk_hsdma_issue_vchan_pending(hsdma, hvc);
		spin_unlock(&hvc->vc.lock);
	}

rx_done:
	/* All completed PDs are cleaned up, so enable interrupt again */
	mtk_dma_set(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE);
}

static irqreturn_t mtk_hsdma_irq(int irq, void *devid)
{
	struct mtk_hsdma_device *hsdma = devid;

	/*
	 * Disable interrupt until all completed PDs are cleaned up in
	 * mtk_hsdma_free_rooms call.
	 */
	mtk_dma_clr(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE);

	mtk_hsdma_free_rooms_in_ring(hsdma);

	return IRQ_HANDLED;
}

static struct virt_dma_desc *mtk_hsdma_find_active_desc(struct dma_chan *c,
							dma_cookie_t cookie)
{
	struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c);
	struct virt_dma_desc *vd;

	list_for_each_entry(vd, &hvc->desc_hw_processing, node)
		if (vd->tx.cookie == cookie)
			return vd;

	list_for_each_entry(vd, &hvc->vc.desc_issued, node)
		if (vd->tx.cookie == cookie)
			return vd;

	return NULL;
}

static enum dma_status mtk_hsdma_tx_status(struct dma_chan *c,
					   dma_cookie_t cookie,
					   struct dma_tx_state *txstate)
{
	struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c);
	struct mtk_hsdma_vdesc *hvd;
	struct virt_dma_desc *vd;
	enum dma_status ret;
	unsigned long flags;
	size_t bytes = 0;

	ret = dma_cookie_status(c, cookie, txstate);
	if (ret == DMA_COMPLETE || !txstate)
		return ret;

	spin_lock_irqsave(&hvc->vc.lock, flags);
	vd = mtk_hsdma_find_active_desc(c, cookie);
	spin_unlock_irqrestore(&hvc->vc.lock, flags);

	if (vd) {
		hvd = to_hsdma_vdesc(vd);
		bytes = hvd->residue;
	}

	dma_set_residue(txstate, bytes);

	return ret;
}

static void mtk_hsdma_issue_pending(struct dma_chan *c)
{
	struct mtk_hsdma_device *hsdma = to_hsdma_dev(c);
	struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c);
	unsigned long flags;

	spin_lock_irqsave(&hvc->vc.lock, flags);

	if (vchan_issue_pending(&hvc->vc))
		mtk_hsdma_issue_vchan_pending(hsdma, hvc);

	spin_unlock_irqrestore(&hvc->vc.lock, flags);
}

static struct dma_async_tx_descriptor *
mtk_hsdma_prep_dma_memcpy(struct dma_chan *c, dma_addr_t dest,
			  dma_addr_t src, size_t len, unsigned long flags)
{
	struct mtk_hsdma_vdesc *hvd;

	hvd = kzalloc(sizeof(*hvd), GFP_NOWAIT);
	if (!hvd)
		return NULL;

	hvd->len = len;
	hvd->residue = len;
	hvd->src = src;
	hvd->dest = dest;

	return vchan_tx_prep(to_virt_chan(c), &hvd->vd, flags);
}

static int mtk_hsdma_free_inactive_desc(struct dma_chan *c)
{
	struct virt_dma_chan *vc = to_virt_chan(c);
	unsigned long flags;
	LIST_HEAD(head);

	spin_lock_irqsave(&vc->lock, flags);
	list_splice_tail_init(&vc->desc_allocated, &head);
	list_splice_tail_init(&vc->desc_submitted, &head);
	list_splice_tail_init(&vc->desc_issued, &head);
	spin_unlock_irqrestore(&vc->lock, flags);

	/* At the point, we don't expect users put descriptor into VC again */
	vchan_dma_desc_free_list(vc, &head);

	return 0;
}

static void mtk_hsdma_free_active_desc(struct dma_chan *c)
{
	struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c);
	bool sync_needed = false;

	/*
	 * Once issue_synchronize is being set, which means once the hardware
	 * consumes all descriptors for the channel in the ring, the
	 * synchronization must be be notified immediately it is completed.
	 */
	spin_lock(&hvc->vc.lock);
	if (!list_empty(&hvc->desc_hw_processing)) {
		hvc->issue_synchronize = true;
		sync_needed = true;
	}
	spin_unlock(&hvc->vc.lock);

	if (sync_needed)
		wait_for_completion(&hvc->issue_completion);
	/*
	 * At the point, we expect that all remaining descriptors in the ring
	 * for the channel should be all processing done.
	 */
	WARN_ONCE(!list_empty(&hvc->desc_hw_processing),
		  "Desc pending still in list desc_hw_processing\n");

	/* Free all descriptors in list desc_completed */
	vchan_synchronize(&hvc->vc);

	WARN_ONCE(!list_empty(&hvc->vc.desc_completed),
		  "Desc pending still in list desc_completed\n");
}

static int mtk_hsdma_terminate_all(struct dma_chan *c)
{
	/*
	 * Free pending descriptors not processed yet by hardware that have
	 * previously been submitted to the channel.
	 */
	mtk_hsdma_free_inactive_desc(c);

	/*
	 * However, the DMA engine doesn't provide any way to stop these
	 * descriptors being processed currently by hardware. The only way is
	 * to just waiting until these descriptors are all processed completely
	 * through mtk_hsdma_free_active_desc call.
	 */
	mtk_hsdma_free_active_desc(c);

	return 0;
}

static int mtk_hsdma_alloc_chan_resources(struct dma_chan *c)
{
	struct mtk_hsdma_device *hsdma = to_hsdma_dev(c);
	int err;

	/*
	 * Since HSDMA has only one PC, the resource for PC is being allocated
	 * when the first VC is being created and the other VCs would run on
	 * the same PC.
	 */
	if (!refcount_read(&hsdma->pc_refcnt)) {
		err = mtk_hsdma_alloc_pchan(hsdma, hsdma->pc);
		if (err)
			return err;
		/*
		 * refcount_inc would complain increment on 0; use-after-free.
		 * Thus, we need to explicitly set it as 1 initially.
		 */
		refcount_set(&hsdma->pc_refcnt, 1);
	} else {
		refcount_inc(&hsdma->pc_refcnt);
	}

	return 0;
}

static void mtk_hsdma_free_chan_resources(struct dma_chan *c)
{
	struct mtk_hsdma_device *hsdma = to_hsdma_dev(c);

	/* Free all descriptors in all lists on the VC */
	mtk_hsdma_terminate_all(c);

	/* The resource for PC is not freed until all the VCs are destroyed */
	if (!refcount_dec_and_test(&hsdma->pc_refcnt))
		return;

	mtk_hsdma_free_pchan(hsdma, hsdma->pc);
}

static int mtk_hsdma_hw_init(struct mtk_hsdma_device *hsdma)
{
	int err;

	pm_runtime_enable(hsdma2dev(hsdma));
	pm_runtime_get_sync(hsdma2dev(hsdma));

	err = clk_prepare_enable(hsdma->clk);
	if (err)
		return err;

	mtk_dma_write(hsdma, MTK_HSDMA_INT_ENABLE, 0);
	mtk_dma_write(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DEFAULT);

	return 0;
}

static int mtk_hsdma_hw_deinit(struct mtk_hsdma_device *hsdma)
{
	mtk_dma_write(hsdma, MTK_HSDMA_GLO, 0);

	clk_disable_unprepare(hsdma->clk);

	pm_runtime_put_sync(hsdma2dev(hsdma));
	pm_runtime_disable(hsdma2dev(hsdma));

	return 0;
}

static const struct mtk_hsdma_soc mt7623_soc = {
	.ddone = BIT(31),
	.ls0 = BIT(30),
};

static const struct mtk_hsdma_soc mt7622_soc = {
	.ddone = BIT(15),
	.ls0 = BIT(14),
};

static const struct of_device_id mtk_hsdma_match[] = {
	{ .compatible = "mediatek,mt7623-hsdma", .data = &mt7623_soc},
	{ .compatible = "mediatek,mt7622-hsdma", .data = &mt7622_soc},
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, mtk_hsdma_match);

static int mtk_hsdma_probe(struct platform_device *pdev)
{
	struct mtk_hsdma_device *hsdma;
	struct mtk_hsdma_vchan *vc;
	struct dma_device *dd;
	struct resource *res;
	int i, err;

	hsdma = devm_kzalloc(&pdev->dev, sizeof(*hsdma), GFP_KERNEL);
	if (!hsdma)
		return -ENOMEM;

	dd = &hsdma->ddev;

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	hsdma->base = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(hsdma->base))
		return PTR_ERR(hsdma->base);

	hsdma->soc = of_device_get_match_data(&pdev->dev);
	if (!hsdma->soc) {
		dev_err(&pdev->dev, "No device match found\n");
		return -ENODEV;
	}

	hsdma->clk = devm_clk_get(&pdev->dev, "hsdma");
	if (IS_ERR(hsdma->clk)) {
		dev_err(&pdev->dev, "No clock for %s\n",
			dev_name(&pdev->dev));
		return PTR_ERR(hsdma->clk);
	}

	res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
	if (!res) {
		dev_err(&pdev->dev, "No irq resource for %s\n",
			dev_name(&pdev->dev));
		return -EINVAL;
	}
	hsdma->irq = res->start;

	refcount_set(&hsdma->pc_refcnt, 0);
	spin_lock_init(&hsdma->lock);

	dma_cap_set(DMA_MEMCPY, dd->cap_mask);

	dd->copy_align = MTK_HSDMA_ALIGN_SIZE;
	dd->device_alloc_chan_resources = mtk_hsdma_alloc_chan_resources;
	dd->device_free_chan_resources = mtk_hsdma_free_chan_resources;
	dd->device_tx_status = mtk_hsdma_tx_status;
	dd->device_issue_pending = mtk_hsdma_issue_pending;
	dd->device_prep_dma_memcpy = mtk_hsdma_prep_dma_memcpy;
	dd->device_terminate_all = mtk_hsdma_terminate_all;
	dd->src_addr_widths = MTK_HSDMA_DMA_BUSWIDTHS;
	dd->dst_addr_widths = MTK_HSDMA_DMA_BUSWIDTHS;
	dd->directions = BIT(DMA_MEM_TO_MEM);
	dd->residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
	dd->dev = &pdev->dev;
	INIT_LIST_HEAD(&dd->channels);

	hsdma->dma_requests = MTK_HSDMA_NR_VCHANS;
	if (pdev->dev.of_node && of_property_read_u32(pdev->dev.of_node,
						      "dma-requests",
						      &hsdma->dma_requests)) {
		dev_info(&pdev->dev,
			 "Using %u as missing dma-requests property\n",
			 MTK_HSDMA_NR_VCHANS);
	}

	hsdma->pc = devm_kcalloc(&pdev->dev, MTK_HSDMA_NR_MAX_PCHANS,
				 sizeof(*hsdma->pc), GFP_KERNEL);
	if (!hsdma->pc)
		return -ENOMEM;

	hsdma->vc = devm_kcalloc(&pdev->dev, hsdma->dma_requests,
				 sizeof(*hsdma->vc), GFP_KERNEL);
	if (!hsdma->vc)
		return -ENOMEM;

	for (i = 0; i < hsdma->dma_requests; i++) {
		vc = &hsdma->vc[i];
		vc->vc.desc_free = mtk_hsdma_vdesc_free;
		vchan_init(&vc->vc, dd);
		init_completion(&vc->issue_completion);
		INIT_LIST_HEAD(&vc->desc_hw_processing);
	}

	err = dma_async_device_register(dd);
	if (err)
		return err;

	err = of_dma_controller_register(pdev->dev.of_node,
					 of_dma_xlate_by_chan_id, hsdma);
	if (err) {
		dev_err(&pdev->dev,
			"MediaTek HSDMA OF registration failed %d\n", err);
		goto err_unregister;
	}

	mtk_hsdma_hw_init(hsdma);

	err = devm_request_irq(&pdev->dev, hsdma->irq,
			       mtk_hsdma_irq, 0,
			       dev_name(&pdev->dev), hsdma);
	if (err) {
		dev_err(&pdev->dev,
			"request_irq failed with err %d\n", err);
		goto err_free;
	}

	platform_set_drvdata(pdev, hsdma);

	dev_info(&pdev->dev, "MediaTek HSDMA driver registered\n");

	return 0;

err_free:
	of_dma_controller_free(pdev->dev.of_node);
err_unregister:
	dma_async_device_unregister(dd);

	return err;
}

static int mtk_hsdma_remove(struct platform_device *pdev)
{
	struct mtk_hsdma_device *hsdma = platform_get_drvdata(pdev);
	struct mtk_hsdma_vchan *vc;
	int i;

	/* Kill VC task */
	for (i = 0; i < hsdma->dma_requests; i++) {
		vc = &hsdma->vc[i];

		list_del(&vc->vc.chan.device_node);
		tasklet_kill(&vc->vc.task);
	}

	/* Disable DMA interrupt */
	mtk_dma_write(hsdma, MTK_HSDMA_INT_ENABLE, 0);

	/* Waits for any pending IRQ handlers to complete */
	synchronize_irq(hsdma->irq);

	/* Disable hardware */
	mtk_hsdma_hw_deinit(hsdma);

	dma_async_device_unregister(&hsdma->ddev);
	of_dma_controller_free(pdev->dev.of_node);

	return 0;
}

static struct platform_driver mtk_hsdma_driver = {
	.probe		= mtk_hsdma_probe,
	.remove		= mtk_hsdma_remove,
	.driver = {
		.name		= KBUILD_MODNAME,
		.of_match_table	= mtk_hsdma_match,
	},
};
module_platform_driver(mtk_hsdma_driver);

MODULE_DESCRIPTION("MediaTek High-Speed DMA Controller Driver");
MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
MODULE_LICENSE("GPL v2");