1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* STM32 DMA3 controller driver
*
* Copyright (C) STMicroelectronics 2024
* Author(s): Amelie Delaunay <amelie.delaunay@foss.st.com>
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/dmapool.h>
#include <linux/init.h>
#include <linux/iopoll.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/of_dma.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/reset.h>
#include <linux/slab.h>
#include "../virt-dma.h"
#define STM32_DMA3_SECCFGR 0x00
#define STM32_DMA3_PRIVCFGR 0x04
#define STM32_DMA3_RCFGLOCKR 0x08
#define STM32_DMA3_MISR 0x0c
#define STM32_DMA3_SMISR 0x10
#define STM32_DMA3_CLBAR(x) (0x50 + 0x80 * (x))
#define STM32_DMA3_CCIDCFGR(x) (0x54 + 0x80 * (x))
#define STM32_DMA3_CSEMCR(x) (0x58 + 0x80 * (x))
#define STM32_DMA3_CFCR(x) (0x5c + 0x80 * (x))
#define STM32_DMA3_CSR(x) (0x60 + 0x80 * (x))
#define STM32_DMA3_CCR(x) (0x64 + 0x80 * (x))
#define STM32_DMA3_CTR1(x) (0x90 + 0x80 * (x))
#define STM32_DMA3_CTR2(x) (0x94 + 0x80 * (x))
#define STM32_DMA3_CBR1(x) (0x98 + 0x80 * (x))
#define STM32_DMA3_CSAR(x) (0x9c + 0x80 * (x))
#define STM32_DMA3_CDAR(x) (0xa0 + 0x80 * (x))
#define STM32_DMA3_CLLR(x) (0xcc + 0x80 * (x))
#define STM32_DMA3_HWCFGR13 0xfc0 /* G_PER_CTRL(X) x=8..15 */
#define STM32_DMA3_HWCFGR12 0xfc4 /* G_PER_CTRL(X) x=0..7 */
#define STM32_DMA3_HWCFGR4 0xfe4 /* G_FIFO_SIZE(X) x=8..15 */
#define STM32_DMA3_HWCFGR3 0xfe8 /* G_FIFO_SIZE(X) x=0..7 */
#define STM32_DMA3_HWCFGR2 0xfec /* G_MAX_REQ_ID */
#define STM32_DMA3_HWCFGR1 0xff0 /* G_MASTER_PORTS, G_NUM_CHANNELS, G_Mx_DATA_WIDTH */
#define STM32_DMA3_VERR 0xff4
/* SECCFGR DMA secure configuration register */
#define SECCFGR_SEC(x) BIT(x)
/* MISR DMA non-secure/secure masked interrupt status register */
#define MISR_MIS(x) BIT(x)
/* CxLBAR DMA channel x linked_list base address register */
#define CLBAR_LBA GENMASK(31, 16)
/* CxCIDCFGR DMA channel x CID register */
#define CCIDCFGR_CFEN BIT(0)
#define CCIDCFGR_SEM_EN BIT(1)
#define CCIDCFGR_SCID GENMASK(5, 4)
#define CCIDCFGR_SEM_WLIST_CID0 BIT(16)
#define CCIDCFGR_SEM_WLIST_CID1 BIT(17)
#define CCIDCFGR_SEM_WLIST_CID2 BIT(18)
enum ccidcfgr_cid {
CCIDCFGR_CID0,
CCIDCFGR_CID1,
CCIDCFGR_CID2,
};
/* CxSEMCR DMA channel x semaphore control register */
#define CSEMCR_SEM_MUTEX BIT(0)
#define CSEMCR_SEM_CCID GENMASK(5, 4)
/* CxFCR DMA channel x flag clear register */
#define CFCR_TCF BIT(8)
#define CFCR_HTF BIT(9)
#define CFCR_DTEF BIT(10)
#define CFCR_ULEF BIT(11)
#define CFCR_USEF BIT(12)
#define CFCR_SUSPF BIT(13)
/* CxSR DMA channel x status register */
#define CSR_IDLEF BIT(0)
#define CSR_TCF BIT(8)
#define CSR_HTF BIT(9)
#define CSR_DTEF BIT(10)
#define CSR_ULEF BIT(11)
#define CSR_USEF BIT(12)
#define CSR_SUSPF BIT(13)
#define CSR_ALL_F GENMASK(13, 8)
#define CSR_FIFOL GENMASK(24, 16)
/* CxCR DMA channel x control register */
#define CCR_EN BIT(0)
#define CCR_RESET BIT(1)
#define CCR_SUSP BIT(2)
#define CCR_TCIE BIT(8)
#define CCR_HTIE BIT(9)
#define CCR_DTEIE BIT(10)
#define CCR_ULEIE BIT(11)
#define CCR_USEIE BIT(12)
#define CCR_SUSPIE BIT(13)
#define CCR_ALLIE GENMASK(13, 8)
#define CCR_LSM BIT(16)
#define CCR_LAP BIT(17)
#define CCR_PRIO GENMASK(23, 22)
enum ccr_prio {
CCR_PRIO_LOW,
CCR_PRIO_MID,
CCR_PRIO_HIGH,
CCR_PRIO_VERY_HIGH,
};
/* CxTR1 DMA channel x transfer register 1 */
#define CTR1_SINC BIT(3)
#define CTR1_SBL_1 GENMASK(9, 4)
#define CTR1_DINC BIT(19)
#define CTR1_DBL_1 GENMASK(25, 20)
#define CTR1_SDW_LOG2 GENMASK(1, 0)
#define CTR1_PAM GENMASK(12, 11)
#define CTR1_SAP BIT(14)
#define CTR1_DDW_LOG2 GENMASK(17, 16)
#define CTR1_DAP BIT(30)
enum ctr1_dw {
CTR1_DW_BYTE,
CTR1_DW_HWORD,
CTR1_DW_WORD,
CTR1_DW_DWORD, /* Depends on HWCFGR1.G_M0_DATA_WIDTH_ENC and .G_M1_DATA_WIDTH_ENC */
};
enum ctr1_pam {
CTR1_PAM_0S_LT, /* if DDW > SDW, padded with 0s else left-truncated */
CTR1_PAM_SE_RT, /* if DDW > SDW, sign extended else right-truncated */
CTR1_PAM_PACK_UNPACK, /* FIFO queued */
};
/* CxTR2 DMA channel x transfer register 2 */
#define CTR2_REQSEL GENMASK(7, 0)
#define CTR2_SWREQ BIT(9)
#define CTR2_DREQ BIT(10)
#define CTR2_BREQ BIT(11)
#define CTR2_PFREQ BIT(12)
#define CTR2_TCEM GENMASK(31, 30)
enum ctr2_tcem {
CTR2_TCEM_BLOCK,
CTR2_TCEM_REPEAT_BLOCK,
CTR2_TCEM_LLI,
CTR2_TCEM_CHANNEL,
};
/* CxBR1 DMA channel x block register 1 */
#define CBR1_BNDT GENMASK(15, 0)
/* CxLLR DMA channel x linked-list address register */
#define CLLR_LA GENMASK(15, 2)
#define CLLR_ULL BIT(16)
#define CLLR_UDA BIT(27)
#define CLLR_USA BIT(28)
#define CLLR_UB1 BIT(29)
#define CLLR_UT2 BIT(30)
#define CLLR_UT1 BIT(31)
/* HWCFGR13 DMA hardware configuration register 13 x=8..15 */
/* HWCFGR12 DMA hardware configuration register 12 x=0..7 */
#define G_PER_CTRL(x) (ULL(0x1) << (4 * (x)))
/* HWCFGR4 DMA hardware configuration register 4 x=8..15 */
/* HWCFGR3 DMA hardware configuration register 3 x=0..7 */
#define G_FIFO_SIZE(x) (ULL(0x7) << (4 * (x)))
#define get_chan_hwcfg(x, mask, reg) (((reg) & (mask)) >> (4 * (x)))
/* HWCFGR2 DMA hardware configuration register 2 */
#define G_MAX_REQ_ID GENMASK(7, 0)
/* HWCFGR1 DMA hardware configuration register 1 */
#define G_MASTER_PORTS GENMASK(2, 0)
#define G_NUM_CHANNELS GENMASK(12, 8)
#define G_M0_DATA_WIDTH_ENC GENMASK(25, 24)
#define G_M1_DATA_WIDTH_ENC GENMASK(29, 28)
enum stm32_dma3_master_ports {
AXI64, /* 1x AXI: 64-bit port 0 */
AHB32, /* 1x AHB: 32-bit port 0 */
AHB32_AHB32, /* 2x AHB: 32-bit port 0 and 32-bit port 1 */
AXI64_AHB32, /* 1x AXI 64-bit port 0 and 1x AHB 32-bit port 1 */
AXI64_AXI64, /* 2x AXI: 64-bit port 0 and 64-bit port 1 */
AXI128_AHB32, /* 1x AXI 128-bit port 0 and 1x AHB 32-bit port 1 */
};
enum stm32_dma3_port_data_width {
DW_32, /* 32-bit, for AHB */
DW_64, /* 64-bit, for AXI */
DW_128, /* 128-bit, for AXI */
DW_INVALID,
};
/* VERR DMA version register */
#define VERR_MINREV GENMASK(3, 0)
#define VERR_MAJREV GENMASK(7, 4)
/* Device tree */
/* struct stm32_dma3_dt_conf */
/* .ch_conf */
#define STM32_DMA3_DT_PRIO GENMASK(1, 0) /* CCR_PRIO */
#define STM32_DMA3_DT_FIFO GENMASK(7, 4)
/* .tr_conf */
#define STM32_DMA3_DT_SINC BIT(0) /* CTR1_SINC */
#define STM32_DMA3_DT_SAP BIT(1) /* CTR1_SAP */
#define STM32_DMA3_DT_DINC BIT(4) /* CTR1_DINC */
#define STM32_DMA3_DT_DAP BIT(5) /* CTR1_DAP */
#define STM32_DMA3_DT_BREQ BIT(8) /* CTR2_BREQ */
#define STM32_DMA3_DT_PFREQ BIT(9) /* CTR2_PFREQ */
#define STM32_DMA3_DT_TCEM GENMASK(13, 12) /* CTR2_TCEM */
/* struct stm32_dma3_chan .config_set bitfield */
#define STM32_DMA3_CFG_SET_DT BIT(0)
#define STM32_DMA3_CFG_SET_DMA BIT(1)
#define STM32_DMA3_CFG_SET_BOTH (STM32_DMA3_CFG_SET_DT | STM32_DMA3_CFG_SET_DMA)
#define STM32_DMA3_MAX_BLOCK_SIZE ALIGN_DOWN(CBR1_BNDT, 64)
#define port_is_ahb(maxdw) ({ typeof(maxdw) (_maxdw) = (maxdw); \
((_maxdw) != DW_INVALID) && ((_maxdw) == DW_32); })
#define port_is_axi(maxdw) ({ typeof(maxdw) (_maxdw) = (maxdw); \
((_maxdw) != DW_INVALID) && ((_maxdw) != DW_32); })
#define get_chan_max_dw(maxdw, maxburst)((port_is_ahb(maxdw) || \
(maxburst) < DMA_SLAVE_BUSWIDTH_8_BYTES) ? \
DMA_SLAVE_BUSWIDTH_4_BYTES : DMA_SLAVE_BUSWIDTH_8_BYTES)
/* Static linked-list data structure (depends on update bits UT1/UT2/UB1/USA/UDA/ULL) */
struct stm32_dma3_hwdesc {
u32 ctr1;
u32 ctr2;
u32 cbr1;
u32 csar;
u32 cdar;
u32 cllr;
} __packed __aligned(32);
/*
* CLLR_LA / sizeof(struct stm32_dma3_hwdesc) represents the number of hdwdesc that can be addressed
* by the pointer to the next linked-list data structure. The __aligned forces the 32-byte
* alignment. So use hardcoded 32. Multiplied by the max block size of each item, it represents
* the sg size limitation.
*/
#define STM32_DMA3_MAX_SEG_SIZE ((CLLR_LA / 32) * STM32_DMA3_MAX_BLOCK_SIZE)
/*
* Linked-list items
*/
struct stm32_dma3_lli {
struct stm32_dma3_hwdesc *hwdesc;
dma_addr_t hwdesc_addr;
};
struct stm32_dma3_swdesc {
struct virt_dma_desc vdesc;
u32 ccr;
bool cyclic;
u32 lli_size;
struct stm32_dma3_lli lli[] __counted_by(lli_size);
};
struct stm32_dma3_dt_conf {
u32 ch_id;
u32 req_line;
u32 ch_conf;
u32 tr_conf;
};
struct stm32_dma3_chan {
struct virt_dma_chan vchan;
u32 id;
int irq;
u32 fifo_size;
u32 max_burst;
bool semaphore_mode;
struct stm32_dma3_dt_conf dt_config;
struct dma_slave_config dma_config;
u8 config_set;
struct dma_pool *lli_pool;
struct stm32_dma3_swdesc *swdesc;
enum ctr2_tcem tcem;
u32 dma_status;
};
struct stm32_dma3_ddata {
struct dma_device dma_dev;
void __iomem *base;
struct clk *clk;
struct stm32_dma3_chan *chans;
u32 dma_channels;
u32 dma_requests;
enum stm32_dma3_port_data_width ports_max_dw[2];
};
static inline struct stm32_dma3_ddata *to_stm32_dma3_ddata(struct stm32_dma3_chan *chan)
{
return container_of(chan->vchan.chan.device, struct stm32_dma3_ddata, dma_dev);
}
static inline struct stm32_dma3_chan *to_stm32_dma3_chan(struct dma_chan *c)
{
return container_of(c, struct stm32_dma3_chan, vchan.chan);
}
static inline struct stm32_dma3_swdesc *to_stm32_dma3_swdesc(struct virt_dma_desc *vdesc)
{
return container_of(vdesc, struct stm32_dma3_swdesc, vdesc);
}
static struct device *chan2dev(struct stm32_dma3_chan *chan)
{
return &chan->vchan.chan.dev->device;
}
static void stm32_dma3_chan_dump_reg(struct stm32_dma3_chan *chan)
{
struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan);
struct device *dev = chan2dev(chan);
u32 id = chan->id, offset;
offset = STM32_DMA3_SECCFGR;
dev_dbg(dev, "SECCFGR(0x%03x): %08x\n", offset, readl_relaxed(ddata->base + offset));
offset = STM32_DMA3_PRIVCFGR;
dev_dbg(dev, "PRIVCFGR(0x%03x): %08x\n", offset, readl_relaxed(ddata->base + offset));
offset = STM32_DMA3_CCIDCFGR(id);
dev_dbg(dev, "C%dCIDCFGR(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset));
offset = STM32_DMA3_CSEMCR(id);
dev_dbg(dev, "C%dSEMCR(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset));
offset = STM32_DMA3_CSR(id);
dev_dbg(dev, "C%dSR(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset));
offset = STM32_DMA3_CCR(id);
dev_dbg(dev, "C%dCR(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset));
offset = STM32_DMA3_CTR1(id);
dev_dbg(dev, "C%dTR1(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset));
offset = STM32_DMA3_CTR2(id);
dev_dbg(dev, "C%dTR2(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset));
offset = STM32_DMA3_CBR1(id);
dev_dbg(dev, "C%dBR1(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset));
offset = STM32_DMA3_CSAR(id);
dev_dbg(dev, "C%dSAR(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset));
offset = STM32_DMA3_CDAR(id);
dev_dbg(dev, "C%dDAR(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset));
offset = STM32_DMA3_CLLR(id);
dev_dbg(dev, "C%dLLR(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset));
offset = STM32_DMA3_CLBAR(id);
dev_dbg(dev, "C%dLBAR(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset));
}
static void stm32_dma3_chan_dump_hwdesc(struct stm32_dma3_chan *chan,
struct stm32_dma3_swdesc *swdesc)
{
struct stm32_dma3_hwdesc *hwdesc;
int i;
for (i = 0; i < swdesc->lli_size; i++) {
hwdesc = swdesc->lli[i].hwdesc;
if (i)
dev_dbg(chan2dev(chan), "V\n");
dev_dbg(chan2dev(chan), "[%d]@%pad\n", i, &swdesc->lli[i].hwdesc_addr);
dev_dbg(chan2dev(chan), "| C%dTR1: %08x\n", chan->id, hwdesc->ctr1);
dev_dbg(chan2dev(chan), "| C%dTR2: %08x\n", chan->id, hwdesc->ctr2);
dev_dbg(chan2dev(chan), "| C%dBR1: %08x\n", chan->id, hwdesc->cbr1);
dev_dbg(chan2dev(chan), "| C%dSAR: %08x\n", chan->id, hwdesc->csar);
dev_dbg(chan2dev(chan), "| C%dDAR: %08x\n", chan->id, hwdesc->cdar);
dev_dbg(chan2dev(chan), "| C%dLLR: %08x\n", chan->id, hwdesc->cllr);
}
if (swdesc->cyclic) {
dev_dbg(chan2dev(chan), "|\n");
dev_dbg(chan2dev(chan), "-->[0]@%pad\n", &swdesc->lli[0].hwdesc_addr);
} else {
dev_dbg(chan2dev(chan), "X\n");
}
}
static struct stm32_dma3_swdesc *stm32_dma3_chan_desc_alloc(struct stm32_dma3_chan *chan, u32 count)
{
struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan);
struct stm32_dma3_swdesc *swdesc;
int i;
/*
* If the memory to be allocated for the number of hwdesc (6 u32 members but 32-bytes
* aligned) is greater than the maximum address of CLLR_LA, then the last items can't be
* addressed, so abort the allocation.
*/
if ((count * 32) > CLLR_LA) {
dev_err(chan2dev(chan), "Transfer is too big (> %luB)\n", STM32_DMA3_MAX_SEG_SIZE);
return NULL;
}
swdesc = kzalloc(struct_size(swdesc, lli, count), GFP_NOWAIT);
if (!swdesc)
return NULL;
swdesc->lli_size = count;
for (i = 0; i < count; i++) {
swdesc->lli[i].hwdesc = dma_pool_zalloc(chan->lli_pool, GFP_NOWAIT,
&swdesc->lli[i].hwdesc_addr);
if (!swdesc->lli[i].hwdesc)
goto err_pool_free;
}
swdesc->ccr = 0;
/* Set LL base address */
writel_relaxed(swdesc->lli[0].hwdesc_addr & CLBAR_LBA,
ddata->base + STM32_DMA3_CLBAR(chan->id));
/* Set LL allocated port */
swdesc->ccr &= ~CCR_LAP;
return swdesc;
err_pool_free:
dev_err(chan2dev(chan), "Failed to alloc descriptors\n");
while (--i >= 0)
dma_pool_free(chan->lli_pool, swdesc->lli[i].hwdesc, swdesc->lli[i].hwdesc_addr);
kfree(swdesc);
return NULL;
}
static void stm32_dma3_chan_desc_free(struct stm32_dma3_chan *chan,
struct stm32_dma3_swdesc *swdesc)
{
int i;
for (i = 0; i < swdesc->lli_size; i++)
dma_pool_free(chan->lli_pool, swdesc->lli[i].hwdesc, swdesc->lli[i].hwdesc_addr);
kfree(swdesc);
}
static void stm32_dma3_chan_vdesc_free(struct virt_dma_desc *vdesc)
{
struct stm32_dma3_swdesc *swdesc = to_stm32_dma3_swdesc(vdesc);
struct stm32_dma3_chan *chan = to_stm32_dma3_chan(vdesc->tx.chan);
stm32_dma3_chan_desc_free(chan, swdesc);
}
static void stm32_dma3_check_user_setting(struct stm32_dma3_chan *chan)
{
struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan);
struct device *dev = chan2dev(chan);
u32 ctr1 = readl_relaxed(ddata->base + STM32_DMA3_CTR1(chan->id));
u32 cbr1 = readl_relaxed(ddata->base + STM32_DMA3_CBR1(chan->id));
u32 csar = readl_relaxed(ddata->base + STM32_DMA3_CSAR(chan->id));
u32 cdar = readl_relaxed(ddata->base + STM32_DMA3_CDAR(chan->id));
u32 cllr = readl_relaxed(ddata->base + STM32_DMA3_CLLR(chan->id));
u32 bndt = FIELD_GET(CBR1_BNDT, cbr1);
u32 sdw = 1 << FIELD_GET(CTR1_SDW_LOG2, ctr1);
u32 ddw = 1 << FIELD_GET(CTR1_DDW_LOG2, ctr1);
u32 sap = FIELD_GET(CTR1_SAP, ctr1);
u32 dap = FIELD_GET(CTR1_DAP, ctr1);
if (!bndt && !FIELD_GET(CLLR_UB1, cllr))
dev_err(dev, "null source block size and no update of this value\n");
if (bndt % sdw)
dev_err(dev, "source block size not multiple of src data width\n");
if (FIELD_GET(CTR1_PAM, ctr1) == CTR1_PAM_PACK_UNPACK && bndt % ddw)
dev_err(dev, "(un)packing mode w/ src block size not multiple of dst data width\n");
if (csar % sdw)
dev_err(dev, "unaligned source address not multiple of src data width\n");
if (cdar % ddw)
dev_err(dev, "unaligned destination address not multiple of dst data width\n");
if (sdw == DMA_SLAVE_BUSWIDTH_8_BYTES && port_is_ahb(ddata->ports_max_dw[sap]))
dev_err(dev, "double-word source data width not supported on port %u\n", sap);
if (ddw == DMA_SLAVE_BUSWIDTH_8_BYTES && port_is_ahb(ddata->ports_max_dw[dap]))
dev_err(dev, "double-word destination data width not supported on port %u\n", dap);
}
static void stm32_dma3_chan_prep_hwdesc(struct stm32_dma3_chan *chan,
struct stm32_dma3_swdesc *swdesc,
u32 curr, dma_addr_t src, dma_addr_t dst, u32 len,
u32 ctr1, u32 ctr2, bool is_last, bool is_cyclic)
{
struct stm32_dma3_hwdesc *hwdesc;
dma_addr_t next_lli;
u32 next = curr + 1;
hwdesc = swdesc->lli[curr].hwdesc;
hwdesc->ctr1 = ctr1;
hwdesc->ctr2 = ctr2;
hwdesc->cbr1 = FIELD_PREP(CBR1_BNDT, len);
hwdesc->csar = src;
hwdesc->cdar = dst;
if (is_last) {
if (is_cyclic)
next_lli = swdesc->lli[0].hwdesc_addr;
else
next_lli = 0;
} else {
next_lli = swdesc->lli[next].hwdesc_addr;
}
hwdesc->cllr = 0;
if (next_lli) {
hwdesc->cllr |= CLLR_UT1 | CLLR_UT2 | CLLR_UB1;
hwdesc->cllr |= CLLR_USA | CLLR_UDA | CLLR_ULL;
hwdesc->cllr |= (next_lli & CLLR_LA);
}
/*
* Make sure to flush the CPU's write buffers so that the descriptors are ready to be read
* by DMA3. By explicitly using a write memory barrier here, instead of doing it with writel
* to enable the channel, we avoid an unnecessary barrier in the case where the descriptors
* are reused (DMA_CTRL_REUSE).
*/
if (is_last)
dma_wmb();
}
static enum dma_slave_buswidth stm32_dma3_get_max_dw(u32 chan_max_burst,
enum stm32_dma3_port_data_width port_max_dw,
u32 len, dma_addr_t addr)
{
enum dma_slave_buswidth max_dw = get_chan_max_dw(port_max_dw, chan_max_burst);
/* len and addr must be a multiple of dw */
return 1 << __ffs(len | addr | max_dw);
}
static u32 stm32_dma3_get_max_burst(u32 len, enum dma_slave_buswidth dw, u32 chan_max_burst)
{
u32 max_burst = chan_max_burst ? chan_max_burst / dw : 1;
/* len is a multiple of dw, so if len is < chan_max_burst, shorten burst */
if (len < chan_max_burst)
max_burst = len / dw;
/*
* HW doesn't modify the burst if burst size <= half of the fifo size.
* If len is not a multiple of burst size, last burst is shortened by HW.
*/
return max_burst;
}
static int stm32_dma3_chan_prep_hw(struct stm32_dma3_chan *chan, enum dma_transfer_direction dir,
u32 *ccr, u32 *ctr1, u32 *ctr2,
dma_addr_t src_addr, dma_addr_t dst_addr, u32 len)
{
struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan);
struct dma_device dma_device = ddata->dma_dev;
u32 sdw, ddw, sbl_max, dbl_max, tcem, init_dw, init_bl_max;
u32 _ctr1 = 0, _ctr2 = 0;
u32 ch_conf = chan->dt_config.ch_conf;
u32 tr_conf = chan->dt_config.tr_conf;
u32 sap = FIELD_GET(STM32_DMA3_DT_SAP, tr_conf), sap_max_dw;
u32 dap = FIELD_GET(STM32_DMA3_DT_DAP, tr_conf), dap_max_dw;
dev_dbg(chan2dev(chan), "%s from %pad to %pad\n",
dmaengine_get_direction_text(dir), &src_addr, &dst_addr);
sdw = chan->dma_config.src_addr_width ? : get_chan_max_dw(sap, chan->max_burst);
ddw = chan->dma_config.dst_addr_width ? : get_chan_max_dw(dap, chan->max_burst);
sbl_max = chan->dma_config.src_maxburst ? : 1;
dbl_max = chan->dma_config.dst_maxburst ? : 1;
/* Following conditions would raise User Setting Error interrupt */
if (!(dma_device.src_addr_widths & BIT(sdw)) || !(dma_device.dst_addr_widths & BIT(ddw))) {
dev_err(chan2dev(chan), "Bus width (src=%u, dst=%u) not supported\n", sdw, ddw);
return -EINVAL;
}
if (ddata->ports_max_dw[1] == DW_INVALID && (sap || dap)) {
dev_err(chan2dev(chan), "Only one master port, port 1 is not supported\n");
return -EINVAL;
}
sap_max_dw = ddata->ports_max_dw[sap];
dap_max_dw = ddata->ports_max_dw[dap];
if ((port_is_ahb(sap_max_dw) && sdw == DMA_SLAVE_BUSWIDTH_8_BYTES) ||
(port_is_ahb(dap_max_dw) && ddw == DMA_SLAVE_BUSWIDTH_8_BYTES)) {
dev_err(chan2dev(chan),
"8 bytes buswidth (src=%u, dst=%u) not supported on port (sap=%u, dap=%u\n",
sdw, ddw, sap, dap);
return -EINVAL;
}
if (FIELD_GET(STM32_DMA3_DT_SINC, tr_conf))
_ctr1 |= CTR1_SINC;
if (sap)
_ctr1 |= CTR1_SAP;
if (FIELD_GET(STM32_DMA3_DT_DINC, tr_conf))
_ctr1 |= CTR1_DINC;
if (dap)
_ctr1 |= CTR1_DAP;
_ctr2 |= FIELD_PREP(CTR2_REQSEL, chan->dt_config.req_line) & ~CTR2_SWREQ;
if (FIELD_GET(STM32_DMA3_DT_BREQ, tr_conf))
_ctr2 |= CTR2_BREQ;
if (dir == DMA_DEV_TO_MEM && FIELD_GET(STM32_DMA3_DT_PFREQ, tr_conf))
_ctr2 |= CTR2_PFREQ;
tcem = FIELD_GET(STM32_DMA3_DT_TCEM, tr_conf);
_ctr2 |= FIELD_PREP(CTR2_TCEM, tcem);
/* Store TCEM to know on which event TC flag occurred */
chan->tcem = tcem;
/* Store direction for residue computation */
chan->dma_config.direction = dir;
switch (dir) {
case DMA_MEM_TO_DEV:
/* Set destination (device) data width and burst */
ddw = min_t(u32, ddw, stm32_dma3_get_max_dw(chan->max_burst, dap_max_dw,
len, dst_addr));
dbl_max = min_t(u32, dbl_max, stm32_dma3_get_max_burst(len, ddw, chan->max_burst));
/* Set source (memory) data width and burst */
sdw = stm32_dma3_get_max_dw(chan->max_burst, sap_max_dw, len, src_addr);
sbl_max = stm32_dma3_get_max_burst(len, sdw, chan->max_burst);
_ctr1 |= FIELD_PREP(CTR1_SDW_LOG2, ilog2(sdw));
_ctr1 |= FIELD_PREP(CTR1_SBL_1, sbl_max - 1);
_ctr1 |= FIELD_PREP(CTR1_DDW_LOG2, ilog2(ddw));
_ctr1 |= FIELD_PREP(CTR1_DBL_1, dbl_max - 1);
if (ddw != sdw) {
_ctr1 |= FIELD_PREP(CTR1_PAM, CTR1_PAM_PACK_UNPACK);
/* Should never reach this case as ddw is clamped down */
if (len & (ddw - 1)) {
dev_err(chan2dev(chan),
"Packing mode is enabled and len is not multiple of ddw");
return -EINVAL;
}
}
/* dst = dev */
_ctr2 |= CTR2_DREQ;
break;
case DMA_DEV_TO_MEM:
/* Set source (device) data width and burst */
sdw = min_t(u32, sdw, stm32_dma3_get_max_dw(chan->max_burst, sap_max_dw,
len, src_addr));
sbl_max = min_t(u32, sbl_max, stm32_dma3_get_max_burst(len, sdw, chan->max_burst));
/* Set destination (memory) data width and burst */
ddw = stm32_dma3_get_max_dw(chan->max_burst, dap_max_dw, len, dst_addr);
dbl_max = stm32_dma3_get_max_burst(len, ddw, chan->max_burst);
_ctr1 |= FIELD_PREP(CTR1_SDW_LOG2, ilog2(sdw));
_ctr1 |= FIELD_PREP(CTR1_SBL_1, sbl_max - 1);
_ctr1 |= FIELD_PREP(CTR1_DDW_LOG2, ilog2(ddw));
_ctr1 |= FIELD_PREP(CTR1_DBL_1, dbl_max - 1);
if (ddw != sdw) {
_ctr1 |= FIELD_PREP(CTR1_PAM, CTR1_PAM_PACK_UNPACK);
/* Should never reach this case as ddw is clamped down */
if (len & (ddw - 1)) {
dev_err(chan2dev(chan),
"Packing mode is enabled and len is not multiple of ddw\n");
return -EINVAL;
}
}
/* dst = mem */
_ctr2 &= ~CTR2_DREQ;
break;
case DMA_MEM_TO_MEM:
/* Set source (memory) data width and burst */
init_dw = sdw;
init_bl_max = sbl_max;
sdw = stm32_dma3_get_max_dw(chan->max_burst, sap_max_dw, len, src_addr);
sbl_max = stm32_dma3_get_max_burst(len, sdw, chan->max_burst);
if (chan->config_set & STM32_DMA3_CFG_SET_DMA) {
sdw = min_t(u32, init_dw, sdw);
sbl_max = min_t(u32, init_bl_max,
stm32_dma3_get_max_burst(len, sdw, chan->max_burst));
}
/* Set destination (memory) data width and burst */
init_dw = ddw;
init_bl_max = dbl_max;
ddw = stm32_dma3_get_max_dw(chan->max_burst, dap_max_dw, len, dst_addr);
dbl_max = stm32_dma3_get_max_burst(len, ddw, chan->max_burst);
if (chan->config_set & STM32_DMA3_CFG_SET_DMA) {
ddw = min_t(u32, init_dw, ddw);
dbl_max = min_t(u32, init_bl_max,
stm32_dma3_get_max_burst(len, ddw, chan->max_burst));
}
_ctr1 |= FIELD_PREP(CTR1_SDW_LOG2, ilog2(sdw));
_ctr1 |= FIELD_PREP(CTR1_SBL_1, sbl_max - 1);
_ctr1 |= FIELD_PREP(CTR1_DDW_LOG2, ilog2(ddw));
_ctr1 |= FIELD_PREP(CTR1_DBL_1, dbl_max - 1);
if (ddw != sdw) {
_ctr1 |= FIELD_PREP(CTR1_PAM, CTR1_PAM_PACK_UNPACK);
/* Should never reach this case as ddw is clamped down */
if (len & (ddw - 1)) {
dev_err(chan2dev(chan),
"Packing mode is enabled and len is not multiple of ddw");
return -EINVAL;
}
}
/* CTR2_REQSEL/DREQ/BREQ/PFREQ are ignored with CTR2_SWREQ=1 */
_ctr2 |= CTR2_SWREQ;
break;
default:
dev_err(chan2dev(chan), "Direction %s not supported\n",
dmaengine_get_direction_text(dir));
return -EINVAL;
}
*ccr |= FIELD_PREP(CCR_PRIO, FIELD_GET(STM32_DMA3_DT_PRIO, ch_conf));
*ctr1 = _ctr1;
*ctr2 = _ctr2;
dev_dbg(chan2dev(chan), "%s: sdw=%u bytes sbl=%u beats ddw=%u bytes dbl=%u beats\n",
__func__, sdw, sbl_max, ddw, dbl_max);
return 0;
}
static void stm32_dma3_chan_start(struct stm32_dma3_chan *chan)
{
struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan);
struct virt_dma_desc *vdesc;
struct stm32_dma3_hwdesc *hwdesc;
u32 id = chan->id;
u32 csr, ccr;
vdesc = vchan_next_desc(&chan->vchan);
if (!vdesc) {
chan->swdesc = NULL;
return;
}
list_del(&vdesc->node);
chan->swdesc = to_stm32_dma3_swdesc(vdesc);
hwdesc = chan->swdesc->lli[0].hwdesc;
stm32_dma3_chan_dump_hwdesc(chan, chan->swdesc);
writel_relaxed(chan->swdesc->ccr, ddata->base + STM32_DMA3_CCR(id));
writel_relaxed(hwdesc->ctr1, ddata->base + STM32_DMA3_CTR1(id));
writel_relaxed(hwdesc->ctr2, ddata->base + STM32_DMA3_CTR2(id));
writel_relaxed(hwdesc->cbr1, ddata->base + STM32_DMA3_CBR1(id));
writel_relaxed(hwdesc->csar, ddata->base + STM32_DMA3_CSAR(id));
writel_relaxed(hwdesc->cdar, ddata->base + STM32_DMA3_CDAR(id));
writel_relaxed(hwdesc->cllr, ddata->base + STM32_DMA3_CLLR(id));
/* Clear any pending interrupts */
csr = readl_relaxed(ddata->base + STM32_DMA3_CSR(id));
if (csr & CSR_ALL_F)
writel_relaxed(csr, ddata->base + STM32_DMA3_CFCR(id));
stm32_dma3_chan_dump_reg(chan);
ccr = readl_relaxed(ddata->base + STM32_DMA3_CCR(id));
writel_relaxed(ccr | CCR_EN, ddata->base + STM32_DMA3_CCR(id));
chan->dma_status = DMA_IN_PROGRESS;
dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan);
}
static int stm32_dma3_chan_suspend(struct stm32_dma3_chan *chan, bool susp)
{
struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan);
u32 csr, ccr = readl_relaxed(ddata->base + STM32_DMA3_CCR(chan->id)) & ~CCR_EN;
int ret = 0;
if (susp)
ccr |= CCR_SUSP;
else
ccr &= ~CCR_SUSP;
writel_relaxed(ccr, ddata->base + STM32_DMA3_CCR(chan->id));
if (susp) {
ret = readl_relaxed_poll_timeout_atomic(ddata->base + STM32_DMA3_CSR(chan->id), csr,
csr & CSR_SUSPF, 1, 10);
if (!ret)
writel_relaxed(CFCR_SUSPF, ddata->base + STM32_DMA3_CFCR(chan->id));
stm32_dma3_chan_dump_reg(chan);
}
return ret;
}
static void stm32_dma3_chan_reset(struct stm32_dma3_chan *chan)
{
struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan);
u32 ccr = readl_relaxed(ddata->base + STM32_DMA3_CCR(chan->id)) & ~CCR_EN;
writel_relaxed(ccr |= CCR_RESET, ddata->base + STM32_DMA3_CCR(chan->id));
}
static int stm32_dma3_chan_get_curr_hwdesc(struct stm32_dma3_swdesc *swdesc, u32 cllr, u32 *residue)
{
u32 i, lli_offset, next_lli_offset = cllr & CLLR_LA;
/* If cllr is null, it means it is either the last or single item */
if (!cllr)
return swdesc->lli_size - 1;
/* In cyclic mode, go fast and first check we are not on the last item */
if (swdesc->cyclic && next_lli_offset == (swdesc->lli[0].hwdesc_addr & CLLR_LA))
return swdesc->lli_size - 1;
/* As transfer is in progress, look backward from the last item */
for (i = swdesc->lli_size - 1; i > 0; i--) {
*residue += FIELD_GET(CBR1_BNDT, swdesc->lli[i].hwdesc->cbr1);
lli_offset = swdesc->lli[i].hwdesc_addr & CLLR_LA;
if (lli_offset == next_lli_offset)
return i - 1;
}
return -EINVAL;
}
static void stm32_dma3_chan_set_residue(struct stm32_dma3_chan *chan,
struct stm32_dma3_swdesc *swdesc,
struct dma_tx_state *txstate)
{
struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan);
struct device *dev = chan2dev(chan);
struct stm32_dma3_hwdesc *hwdesc;
u32 residue, curr_lli, csr, cdar, cbr1, cllr, bndt, fifol;
bool pack_unpack;
int ret;
csr = readl_relaxed(ddata->base + STM32_DMA3_CSR(chan->id));
if (!(csr & CSR_IDLEF) && chan->dma_status != DMA_PAUSED) {
/* Suspend current transfer to read registers for a snapshot */
writel_relaxed(swdesc->ccr | CCR_SUSP, ddata->base + STM32_DMA3_CCR(chan->id));
ret = readl_relaxed_poll_timeout_atomic(ddata->base + STM32_DMA3_CSR(chan->id), csr,
csr & (CSR_SUSPF | CSR_IDLEF), 1, 10);
if (ret || ((csr & CSR_TCF) && (csr & CSR_IDLEF))) {
writel_relaxed(CFCR_SUSPF, ddata->base + STM32_DMA3_CFCR(chan->id));
writel_relaxed(swdesc->ccr, ddata->base + STM32_DMA3_CCR(chan->id));
if (ret)
dev_err(dev, "Channel suspension timeout, csr=%08x\n", csr);
}
}
/* If channel is still active (CSR_IDLEF is not set), can't get a reliable residue */
if (!(csr & CSR_IDLEF))
dev_warn(dev, "Can't get residue: channel still active, csr=%08x\n", csr);
/*
* If channel is not suspended, but Idle and Transfer Complete are set,
* linked-list is over, no residue
*/
if (!(csr & CSR_SUSPF) && (csr & CSR_TCF) && (csr & CSR_IDLEF))
return;
/* Read registers to have a snapshot */
cllr = readl_relaxed(ddata->base + STM32_DMA3_CLLR(chan->id));
cbr1 = readl_relaxed(ddata->base + STM32_DMA3_CBR1(chan->id));
cdar = readl_relaxed(ddata->base + STM32_DMA3_CDAR(chan->id));
/* Resume current transfer */
if (csr & CSR_SUSPF) {
writel_relaxed(CFCR_SUSPF, ddata->base + STM32_DMA3_CFCR(chan->id));
writel_relaxed(swdesc->ccr, ddata->base + STM32_DMA3_CCR(chan->id));
}
/* Add current BNDT */
bndt = FIELD_GET(CBR1_BNDT, cbr1);
residue = bndt;
/* Get current hwdesc and cumulate residue of pending hwdesc BNDT */
ret = stm32_dma3_chan_get_curr_hwdesc(swdesc, cllr, &residue);
if (ret < 0) {
dev_err(chan2dev(chan), "Can't get residue: current hwdesc not found\n");
return;
}
curr_lli = ret;
/* Read current FIFO level - in units of programmed destination data width */
hwdesc = swdesc->lli[curr_lli].hwdesc;
fifol = FIELD_GET(CSR_FIFOL, csr) * (1 << FIELD_GET(CTR1_DDW_LOG2, hwdesc->ctr1));
/* If the FIFO contains as many bytes as its size, it can't contain more */
if (fifol == (1 << (chan->fifo_size + 1)))
goto skip_fifol_update;
/*
* In case of PACKING (Destination burst length > Source burst length) or UNPACKING
* (Source burst length > Destination burst length), bytes could be pending in the FIFO
* (to be packed up to Destination burst length or unpacked into Destination burst length
* chunks).
* BNDT is not reliable, as it reflects the number of bytes read from the source but not the
* number of bytes written to the destination.
* FIFOL is also not sufficient, because it reflects the number of available write beats in
* units of Destination data width but not the bytes not yet packed or unpacked.
* In case of Destination increment DINC, it is possible to compute the number of bytes in
* the FIFO:
* fifol_in_bytes = bytes_read - bytes_written.
*/
pack_unpack = !!(FIELD_GET(CTR1_PAM, hwdesc->ctr1) == CTR1_PAM_PACK_UNPACK);
if (pack_unpack && (hwdesc->ctr1 & CTR1_DINC)) {
int bytes_read = FIELD_GET(CBR1_BNDT, hwdesc->cbr1) - bndt;
int bytes_written = cdar - hwdesc->cdar;
if (bytes_read > 0)
fifol = bytes_read - bytes_written;
}
skip_fifol_update:
if (fifol) {
dev_dbg(chan2dev(chan), "%u byte(s) in the FIFO\n", fifol);
dma_set_in_flight_bytes(txstate, fifol);
/*
* Residue is already accurate for DMA_MEM_TO_DEV as BNDT reflects data read from
* the source memory buffer, so just need to add fifol to residue in case of
* DMA_DEV_TO_MEM transfer because these bytes are not yet written in destination
* memory buffer.
*/
if (chan->dma_config.direction == DMA_DEV_TO_MEM)
residue += fifol;
}
dma_set_residue(txstate, residue);
}
static int stm32_dma3_chan_stop(struct stm32_dma3_chan *chan)
{
struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan);
u32 ccr;
int ret = 0;
chan->dma_status = DMA_COMPLETE;
/* Disable interrupts */
ccr = readl_relaxed(ddata->base + STM32_DMA3_CCR(chan->id));
writel_relaxed(ccr & ~(CCR_ALLIE | CCR_EN), ddata->base + STM32_DMA3_CCR(chan->id));
if (!(ccr & CCR_SUSP) && (ccr & CCR_EN)) {
/* Suspend the channel */
ret = stm32_dma3_chan_suspend(chan, true);
if (ret)
dev_warn(chan2dev(chan), "%s: timeout, data might be lost\n", __func__);
}
/*
* Reset the channel: this causes the reset of the FIFO and the reset of the channel
* internal state, the reset of CCR_EN and CCR_SUSP bits.
*/
stm32_dma3_chan_reset(chan);
return ret;
}
static void stm32_dma3_chan_complete(struct stm32_dma3_chan *chan)
{
if (!chan->swdesc)
return;
vchan_cookie_complete(&chan->swdesc->vdesc);
chan->swdesc = NULL;
stm32_dma3_chan_start(chan);
}
static irqreturn_t stm32_dma3_chan_irq(int irq, void *devid)
{
struct stm32_dma3_chan *chan = devid;
struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan);
u32 misr, csr, ccr;
spin_lock(&chan->vchan.lock);
misr = readl_relaxed(ddata->base + STM32_DMA3_MISR);
if (!(misr & MISR_MIS(chan->id))) {
spin_unlock(&chan->vchan.lock);
return IRQ_NONE;
}
csr = readl_relaxed(ddata->base + STM32_DMA3_CSR(chan->id));
ccr = readl_relaxed(ddata->base + STM32_DMA3_CCR(chan->id)) & CCR_ALLIE;
if (csr & CSR_TCF && ccr & CCR_TCIE) {
if (chan->swdesc->cyclic)
vchan_cyclic_callback(&chan->swdesc->vdesc);
else
stm32_dma3_chan_complete(chan);
}
if (csr & CSR_USEF && ccr & CCR_USEIE) {
dev_err(chan2dev(chan), "User setting error\n");
chan->dma_status = DMA_ERROR;
/* CCR.EN automatically cleared by HW */
stm32_dma3_check_user_setting(chan);
stm32_dma3_chan_reset(chan);
}
if (csr & CSR_ULEF && ccr & CCR_ULEIE) {
dev_err(chan2dev(chan), "Update link transfer error\n");
chan->dma_status = DMA_ERROR;
/* CCR.EN automatically cleared by HW */
stm32_dma3_chan_reset(chan);
}
if (csr & CSR_DTEF && ccr & CCR_DTEIE) {
dev_err(chan2dev(chan), "Data transfer error\n");
chan->dma_status = DMA_ERROR;
/* CCR.EN automatically cleared by HW */
stm32_dma3_chan_reset(chan);
}
/*
* Half Transfer Interrupt may be disabled but Half Transfer Flag can be set,
* ensure HTF flag to be cleared, with other flags.
*/
csr &= (ccr | CCR_HTIE);
if (csr)
writel_relaxed(csr, ddata->base + STM32_DMA3_CFCR(chan->id));
spin_unlock(&chan->vchan.lock);
return IRQ_HANDLED;
}
static int stm32_dma3_alloc_chan_resources(struct dma_chan *c)
{
struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c);
struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan);
u32 id = chan->id, csemcr, ccid;
int ret;
ret = pm_runtime_resume_and_get(ddata->dma_dev.dev);
if (ret < 0)
return ret;
/* Ensure the channel is free */
if (chan->semaphore_mode &&
readl_relaxed(ddata->base + STM32_DMA3_CSEMCR(chan->id)) & CSEMCR_SEM_MUTEX) {
ret = -EBUSY;
goto err_put_sync;
}
chan->lli_pool = dmam_pool_create(dev_name(&c->dev->device), c->device->dev,
sizeof(struct stm32_dma3_hwdesc),
__alignof__(struct stm32_dma3_hwdesc), SZ_64K);
if (!chan->lli_pool) {
dev_err(chan2dev(chan), "Failed to create LLI pool\n");
ret = -ENOMEM;
goto err_put_sync;
}
/* Take the channel semaphore */
if (chan->semaphore_mode) {
writel_relaxed(CSEMCR_SEM_MUTEX, ddata->base + STM32_DMA3_CSEMCR(id));
csemcr = readl_relaxed(ddata->base + STM32_DMA3_CSEMCR(id));
ccid = FIELD_GET(CSEMCR_SEM_CCID, csemcr);
/* Check that the channel is well taken */
if (ccid != CCIDCFGR_CID1) {
dev_err(chan2dev(chan), "Not under CID1 control (in-use by CID%d)\n", ccid);
ret = -EPERM;
goto err_pool_destroy;
}
dev_dbg(chan2dev(chan), "Under CID1 control (semcr=0x%08x)\n", csemcr);
}
return 0;
err_pool_destroy:
dmam_pool_destroy(chan->lli_pool);
chan->lli_pool = NULL;
err_put_sync:
pm_runtime_put_sync(ddata->dma_dev.dev);
return ret;
}
static void stm32_dma3_free_chan_resources(struct dma_chan *c)
{
struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c);
struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan);
unsigned long flags;
/* Ensure channel is in idle state */
spin_lock_irqsave(&chan->vchan.lock, flags);
stm32_dma3_chan_stop(chan);
chan->swdesc = NULL;
spin_unlock_irqrestore(&chan->vchan.lock, flags);
vchan_free_chan_resources(to_virt_chan(c));
dmam_pool_destroy(chan->lli_pool);
chan->lli_pool = NULL;
/* Release the channel semaphore */
if (chan->semaphore_mode)
writel_relaxed(0, ddata->base + STM32_DMA3_CSEMCR(chan->id));
pm_runtime_put_sync(ddata->dma_dev.dev);
/* Reset configuration */
memset(&chan->dt_config, 0, sizeof(chan->dt_config));
memset(&chan->dma_config, 0, sizeof(chan->dma_config));
chan->config_set = 0;
}
static void stm32_dma3_init_chan_config_for_memcpy(struct stm32_dma3_chan *chan,
dma_addr_t dst, dma_addr_t src)
{
struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan);
u32 dw = get_chan_max_dw(ddata->ports_max_dw[0], chan->max_burst); /* port 0 by default */
u32 burst = chan->max_burst / dw;
/* Initialize dt_config if channel not pre-configured through DT */
if (!(chan->config_set & STM32_DMA3_CFG_SET_DT)) {
chan->dt_config.ch_conf = FIELD_PREP(STM32_DMA3_DT_PRIO, CCR_PRIO_VERY_HIGH);
chan->dt_config.ch_conf |= FIELD_PREP(STM32_DMA3_DT_FIFO, chan->fifo_size);
chan->dt_config.tr_conf = STM32_DMA3_DT_SINC | STM32_DMA3_DT_DINC;
chan->dt_config.tr_conf |= FIELD_PREP(STM32_DMA3_DT_TCEM, CTR2_TCEM_CHANNEL);
}
/* Initialize dma_config if dmaengine_slave_config() not used */
if (!(chan->config_set & STM32_DMA3_CFG_SET_DMA)) {
chan->dma_config.src_addr_width = dw;
chan->dma_config.dst_addr_width = dw;
chan->dma_config.src_maxburst = burst;
chan->dma_config.dst_maxburst = burst;
chan->dma_config.src_addr = src;
chan->dma_config.dst_addr = dst;
}
}
static struct dma_async_tx_descriptor *stm32_dma3_prep_dma_memcpy(struct dma_chan *c,
dma_addr_t dst, dma_addr_t src,
size_t len, unsigned long flags)
{
struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c);
struct stm32_dma3_swdesc *swdesc;
size_t next_size, offset;
u32 count, i, ctr1, ctr2;
count = DIV_ROUND_UP(len, STM32_DMA3_MAX_BLOCK_SIZE);
swdesc = stm32_dma3_chan_desc_alloc(chan, count);
if (!swdesc)
return NULL;
if (chan->config_set != STM32_DMA3_CFG_SET_BOTH)
stm32_dma3_init_chan_config_for_memcpy(chan, dst, src);
for (i = 0, offset = 0; offset < len; i++, offset += next_size) {
size_t remaining;
int ret;
remaining = len - offset;
next_size = min_t(size_t, remaining, STM32_DMA3_MAX_BLOCK_SIZE);
ret = stm32_dma3_chan_prep_hw(chan, DMA_MEM_TO_MEM, &swdesc->ccr, &ctr1, &ctr2,
src + offset, dst + offset, next_size);
if (ret)
goto err_desc_free;
stm32_dma3_chan_prep_hwdesc(chan, swdesc, i, src + offset, dst + offset, next_size,
ctr1, ctr2, next_size == remaining, false);
}
/* Enable Errors interrupts */
swdesc->ccr |= CCR_USEIE | CCR_ULEIE | CCR_DTEIE;
/* Enable Transfer state interrupts */
swdesc->ccr |= CCR_TCIE;
swdesc->cyclic = false;
return vchan_tx_prep(&chan->vchan, &swdesc->vdesc, flags);
err_desc_free:
stm32_dma3_chan_desc_free(chan, swdesc);
return NULL;
}
static struct dma_async_tx_descriptor *stm32_dma3_prep_slave_sg(struct dma_chan *c,
struct scatterlist *sgl,
unsigned int sg_len,
enum dma_transfer_direction dir,
unsigned long flags, void *context)
{
struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c);
struct stm32_dma3_swdesc *swdesc;
struct scatterlist *sg;
size_t len;
dma_addr_t sg_addr, dev_addr, src, dst;
u32 i, j, count, ctr1, ctr2;
int ret;
count = sg_len;
for_each_sg(sgl, sg, sg_len, i) {
len = sg_dma_len(sg);
if (len > STM32_DMA3_MAX_BLOCK_SIZE)
count += DIV_ROUND_UP(len, STM32_DMA3_MAX_BLOCK_SIZE) - 1;
}
swdesc = stm32_dma3_chan_desc_alloc(chan, count);
if (!swdesc)
return NULL;
/* sg_len and i correspond to the initial sgl; count and j correspond to the hwdesc LL */
j = 0;
for_each_sg(sgl, sg, sg_len, i) {
sg_addr = sg_dma_address(sg);
dev_addr = (dir == DMA_MEM_TO_DEV) ? chan->dma_config.dst_addr :
chan->dma_config.src_addr;
len = sg_dma_len(sg);
do {
size_t chunk = min_t(size_t, len, STM32_DMA3_MAX_BLOCK_SIZE);
if (dir == DMA_MEM_TO_DEV) {
src = sg_addr;
dst = dev_addr;
ret = stm32_dma3_chan_prep_hw(chan, dir, &swdesc->ccr, &ctr1, &ctr2,
src, dst, chunk);
if (FIELD_GET(CTR1_DINC, ctr1))
dev_addr += chunk;
} else { /* (dir == DMA_DEV_TO_MEM || dir == DMA_MEM_TO_MEM) */
src = dev_addr;
dst = sg_addr;
ret = stm32_dma3_chan_prep_hw(chan, dir, &swdesc->ccr, &ctr1, &ctr2,
src, dst, chunk);
if (FIELD_GET(CTR1_SINC, ctr1))
dev_addr += chunk;
}
if (ret)
goto err_desc_free;
stm32_dma3_chan_prep_hwdesc(chan, swdesc, j, src, dst, chunk,
ctr1, ctr2, j == (count - 1), false);
sg_addr += chunk;
len -= chunk;
j++;
} while (len);
}
/* Enable Error interrupts */
swdesc->ccr |= CCR_USEIE | CCR_ULEIE | CCR_DTEIE;
/* Enable Transfer state interrupts */
swdesc->ccr |= CCR_TCIE;
swdesc->cyclic = false;
return vchan_tx_prep(&chan->vchan, &swdesc->vdesc, flags);
err_desc_free:
stm32_dma3_chan_desc_free(chan, swdesc);
return NULL;
}
static struct dma_async_tx_descriptor *stm32_dma3_prep_dma_cyclic(struct dma_chan *c,
dma_addr_t buf_addr,
size_t buf_len, size_t period_len,
enum dma_transfer_direction dir,
unsigned long flags)
{
struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c);
struct stm32_dma3_swdesc *swdesc;
dma_addr_t src, dst;
u32 count, i, ctr1, ctr2;
int ret;
if (!buf_len || !period_len || period_len > STM32_DMA3_MAX_BLOCK_SIZE) {
dev_err(chan2dev(chan), "Invalid buffer/period length\n");
return NULL;
}
if (buf_len % period_len) {
dev_err(chan2dev(chan), "Buffer length not multiple of period length\n");
return NULL;
}
count = buf_len / period_len;
swdesc = stm32_dma3_chan_desc_alloc(chan, count);
if (!swdesc)
return NULL;
if (dir == DMA_MEM_TO_DEV) {
src = buf_addr;
dst = chan->dma_config.dst_addr;
ret = stm32_dma3_chan_prep_hw(chan, DMA_MEM_TO_DEV, &swdesc->ccr, &ctr1, &ctr2,
src, dst, period_len);
} else if (dir == DMA_DEV_TO_MEM) {
src = chan->dma_config.src_addr;
dst = buf_addr;
ret = stm32_dma3_chan_prep_hw(chan, DMA_DEV_TO_MEM, &swdesc->ccr, &ctr1, &ctr2,
src, dst, period_len);
} else {
dev_err(chan2dev(chan), "Invalid direction\n");
ret = -EINVAL;
}
if (ret)
goto err_desc_free;
for (i = 0; i < count; i++) {
if (dir == DMA_MEM_TO_DEV) {
src = buf_addr + i * period_len;
dst = chan->dma_config.dst_addr;
} else { /* (dir == DMA_DEV_TO_MEM) */
src = chan->dma_config.src_addr;
dst = buf_addr + i * period_len;
}
stm32_dma3_chan_prep_hwdesc(chan, swdesc, i, src, dst, period_len,
ctr1, ctr2, i == (count - 1), true);
}
/* Enable Error interrupts */
swdesc->ccr |= CCR_USEIE | CCR_ULEIE | CCR_DTEIE;
/* Enable Transfer state interrupts */
swdesc->ccr |= CCR_TCIE;
swdesc->cyclic = true;
return vchan_tx_prep(&chan->vchan, &swdesc->vdesc, flags);
err_desc_free:
stm32_dma3_chan_desc_free(chan, swdesc);
return NULL;
}
static void stm32_dma3_caps(struct dma_chan *c, struct dma_slave_caps *caps)
{
struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c);
if (!chan->fifo_size) {
caps->max_burst = 0;
caps->src_addr_widths &= ~BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
caps->dst_addr_widths &= ~BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
} else {
/* Burst transfer should not exceed half of the fifo size */
caps->max_burst = chan->max_burst;
if (caps->max_burst < DMA_SLAVE_BUSWIDTH_8_BYTES) {
caps->src_addr_widths &= ~BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
caps->dst_addr_widths &= ~BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
}
}
}
static int stm32_dma3_config(struct dma_chan *c, struct dma_slave_config *config)
{
struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c);
memcpy(&chan->dma_config, config, sizeof(*config));
chan->config_set |= STM32_DMA3_CFG_SET_DMA;
return 0;
}
static int stm32_dma3_pause(struct dma_chan *c)
{
struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c);
int ret;
ret = stm32_dma3_chan_suspend(chan, true);
if (ret)
return ret;
chan->dma_status = DMA_PAUSED;
dev_dbg(chan2dev(chan), "vchan %pK: paused\n", &chan->vchan);
return 0;
}
static int stm32_dma3_resume(struct dma_chan *c)
{
struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c);
stm32_dma3_chan_suspend(chan, false);
chan->dma_status = DMA_IN_PROGRESS;
dev_dbg(chan2dev(chan), "vchan %pK: resumed\n", &chan->vchan);
return 0;
}
static int stm32_dma3_terminate_all(struct dma_chan *c)
{
struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c);
unsigned long flags;
LIST_HEAD(head);
spin_lock_irqsave(&chan->vchan.lock, flags);
if (chan->swdesc) {
vchan_terminate_vdesc(&chan->swdesc->vdesc);
chan->swdesc = NULL;
}
stm32_dma3_chan_stop(chan);
vchan_get_all_descriptors(&chan->vchan, &head);
spin_unlock_irqrestore(&chan->vchan.lock, flags);
vchan_dma_desc_free_list(&chan->vchan, &head);
dev_dbg(chan2dev(chan), "vchan %pK: terminated\n", &chan->vchan);
return 0;
}
static void stm32_dma3_synchronize(struct dma_chan *c)
{
struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c);
vchan_synchronize(&chan->vchan);
}
static enum dma_status stm32_dma3_tx_status(struct dma_chan *c, dma_cookie_t cookie,
struct dma_tx_state *txstate)
{
struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c);
struct stm32_dma3_swdesc *swdesc = NULL;
enum dma_status status;
unsigned long flags;
struct virt_dma_desc *vd;
status = dma_cookie_status(c, cookie, txstate);
if (status == DMA_COMPLETE)
return status;
if (!txstate)
return chan->dma_status;
spin_lock_irqsave(&chan->vchan.lock, flags);
vd = vchan_find_desc(&chan->vchan, cookie);
if (vd)
swdesc = to_stm32_dma3_swdesc(vd);
else if (chan->swdesc && chan->swdesc->vdesc.tx.cookie == cookie)
swdesc = chan->swdesc;
/* Get residue/in_flight_bytes only if a transfer is currently running (swdesc != NULL) */
if (swdesc)
stm32_dma3_chan_set_residue(chan, swdesc, txstate);
spin_unlock_irqrestore(&chan->vchan.lock, flags);
return chan->dma_status;
}
static void stm32_dma3_issue_pending(struct dma_chan *c)
{
struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c);
unsigned long flags;
spin_lock_irqsave(&chan->vchan.lock, flags);
if (vchan_issue_pending(&chan->vchan) && !chan->swdesc) {
dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan);
stm32_dma3_chan_start(chan);
}
spin_unlock_irqrestore(&chan->vchan.lock, flags);
}
static bool stm32_dma3_filter_fn(struct dma_chan *c, void *fn_param)
{
struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c);
struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan);
struct stm32_dma3_dt_conf *conf = fn_param;
u32 mask, semcr;
int ret;
dev_dbg(c->device->dev, "%s(%s): req_line=%d ch_conf=%08x tr_conf=%08x\n",
__func__, dma_chan_name(c), conf->req_line, conf->ch_conf, conf->tr_conf);
if (!of_property_read_u32(c->device->dev->of_node, "dma-channel-mask", &mask))
if (!(mask & BIT(chan->id)))
return false;
ret = pm_runtime_resume_and_get(ddata->dma_dev.dev);
if (ret < 0)
return false;
semcr = readl_relaxed(ddata->base + STM32_DMA3_CSEMCR(chan->id));
pm_runtime_put_sync(ddata->dma_dev.dev);
/* Check if chan is free */
if (semcr & CSEMCR_SEM_MUTEX)
return false;
/* Check if chan fifo fits well */
if (FIELD_GET(STM32_DMA3_DT_FIFO, conf->ch_conf) != chan->fifo_size)
return false;
return true;
}
static struct dma_chan *stm32_dma3_of_xlate(struct of_phandle_args *dma_spec, struct of_dma *ofdma)
{
struct stm32_dma3_ddata *ddata = ofdma->of_dma_data;
dma_cap_mask_t mask = ddata->dma_dev.cap_mask;
struct stm32_dma3_dt_conf conf;
struct stm32_dma3_chan *chan;
struct dma_chan *c;
if (dma_spec->args_count < 3) {
dev_err(ddata->dma_dev.dev, "Invalid args count\n");
return NULL;
}
conf.req_line = dma_spec->args[0];
conf.ch_conf = dma_spec->args[1];
conf.tr_conf = dma_spec->args[2];
if (conf.req_line >= ddata->dma_requests) {
dev_err(ddata->dma_dev.dev, "Invalid request line\n");
return NULL;
}
/* Request dma channel among the generic dma controller list */
c = dma_request_channel(mask, stm32_dma3_filter_fn, &conf);
if (!c) {
dev_err(ddata->dma_dev.dev, "No suitable channel found\n");
return NULL;
}
chan = to_stm32_dma3_chan(c);
chan->dt_config = conf;
chan->config_set |= STM32_DMA3_CFG_SET_DT;
return c;
}
static u32 stm32_dma3_check_rif(struct stm32_dma3_ddata *ddata)
{
u32 chan_reserved, mask = 0, i, ccidcfgr, invalid_cid = 0;
/* Reserve Secure channels */
chan_reserved = readl_relaxed(ddata->base + STM32_DMA3_SECCFGR);
/*
* CID filtering must be configured to ensure that the DMA3 channel will inherit the CID of
* the processor which is configuring and using the given channel.
* In case CID filtering is not configured, dma-channel-mask property can be used to
* specify available DMA channels to the kernel.
*/
of_property_read_u32(ddata->dma_dev.dev->of_node, "dma-channel-mask", &mask);
/* Reserve !CID-filtered not in dma-channel-mask, static CID != CID1, CID1 not allowed */
for (i = 0; i < ddata->dma_channels; i++) {
ccidcfgr = readl_relaxed(ddata->base + STM32_DMA3_CCIDCFGR(i));
if (!(ccidcfgr & CCIDCFGR_CFEN)) { /* !CID-filtered */
invalid_cid |= BIT(i);
if (!(mask & BIT(i))) /* Not in dma-channel-mask */
chan_reserved |= BIT(i);
} else { /* CID-filtered */
if (!(ccidcfgr & CCIDCFGR_SEM_EN)) { /* Static CID mode */
if (FIELD_GET(CCIDCFGR_SCID, ccidcfgr) != CCIDCFGR_CID1)
chan_reserved |= BIT(i);
} else { /* Semaphore mode */
if (!FIELD_GET(CCIDCFGR_SEM_WLIST_CID1, ccidcfgr))
chan_reserved |= BIT(i);
ddata->chans[i].semaphore_mode = true;
}
}
dev_dbg(ddata->dma_dev.dev, "chan%d: %s mode, %s\n", i,
!(ccidcfgr & CCIDCFGR_CFEN) ? "!CID-filtered" :
ddata->chans[i].semaphore_mode ? "Semaphore" : "Static CID",
(chan_reserved & BIT(i)) ? "denied" :
mask & BIT(i) ? "force allowed" : "allowed");
}
if (invalid_cid)
dev_warn(ddata->dma_dev.dev, "chan%*pbl have invalid CID configuration\n",
ddata->dma_channels, &invalid_cid);
return chan_reserved;
}
static const struct of_device_id stm32_dma3_of_match[] = {
{ .compatible = "st,stm32mp25-dma3", },
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, stm32_dma3_of_match);
static int stm32_dma3_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct stm32_dma3_ddata *ddata;
struct reset_control *reset;
struct stm32_dma3_chan *chan;
struct dma_device *dma_dev;
u32 master_ports, chan_reserved, i, verr;
u64 hwcfgr;
int ret;
ddata = devm_kzalloc(&pdev->dev, sizeof(*ddata), GFP_KERNEL);
if (!ddata)
return -ENOMEM;
platform_set_drvdata(pdev, ddata);
dma_dev = &ddata->dma_dev;
ddata->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(ddata->base))
return PTR_ERR(ddata->base);
ddata->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(ddata->clk))
return dev_err_probe(&pdev->dev, PTR_ERR(ddata->clk), "Failed to get clk\n");
reset = devm_reset_control_get_optional(&pdev->dev, NULL);
if (IS_ERR(reset))
return dev_err_probe(&pdev->dev, PTR_ERR(reset), "Failed to get reset\n");
ret = clk_prepare_enable(ddata->clk);
if (ret)
return dev_err_probe(&pdev->dev, ret, "Failed to enable clk\n");
reset_control_reset(reset);
INIT_LIST_HEAD(&dma_dev->channels);
dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask);
dma_cap_set(DMA_CYCLIC, dma_dev->cap_mask);
dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
dma_dev->dev = &pdev->dev;
/*
* This controller supports up to 8-byte buswidth depending on the port used and the
* channel, and can only access address at even boundaries, multiple of the buswidth.
*/
dma_dev->copy_align = DMAENGINE_ALIGN_8_BYTES;
dma_dev->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
dma_dev->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
dma_dev->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV) | BIT(DMA_MEM_TO_MEM);
dma_dev->descriptor_reuse = true;
dma_dev->max_sg_burst = STM32_DMA3_MAX_SEG_SIZE;
dma_dev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
dma_dev->device_alloc_chan_resources = stm32_dma3_alloc_chan_resources;
dma_dev->device_free_chan_resources = stm32_dma3_free_chan_resources;
dma_dev->device_prep_dma_memcpy = stm32_dma3_prep_dma_memcpy;
dma_dev->device_prep_slave_sg = stm32_dma3_prep_slave_sg;
dma_dev->device_prep_dma_cyclic = stm32_dma3_prep_dma_cyclic;
dma_dev->device_caps = stm32_dma3_caps;
dma_dev->device_config = stm32_dma3_config;
dma_dev->device_pause = stm32_dma3_pause;
dma_dev->device_resume = stm32_dma3_resume;
dma_dev->device_terminate_all = stm32_dma3_terminate_all;
dma_dev->device_synchronize = stm32_dma3_synchronize;
dma_dev->device_tx_status = stm32_dma3_tx_status;
dma_dev->device_issue_pending = stm32_dma3_issue_pending;
/* if dma_channels is not modified, get it from hwcfgr1 */
if (of_property_read_u32(np, "dma-channels", &ddata->dma_channels)) {
hwcfgr = readl_relaxed(ddata->base + STM32_DMA3_HWCFGR1);
ddata->dma_channels = FIELD_GET(G_NUM_CHANNELS, hwcfgr);
}
/* if dma_requests is not modified, get it from hwcfgr2 */
if (of_property_read_u32(np, "dma-requests", &ddata->dma_requests)) {
hwcfgr = readl_relaxed(ddata->base + STM32_DMA3_HWCFGR2);
ddata->dma_requests = FIELD_GET(G_MAX_REQ_ID, hwcfgr) + 1;
}
/* G_MASTER_PORTS, G_M0_DATA_WIDTH_ENC, G_M1_DATA_WIDTH_ENC in HWCFGR1 */
hwcfgr = readl_relaxed(ddata->base + STM32_DMA3_HWCFGR1);
master_ports = FIELD_GET(G_MASTER_PORTS, hwcfgr);
ddata->ports_max_dw[0] = FIELD_GET(G_M0_DATA_WIDTH_ENC, hwcfgr);
if (master_ports == AXI64 || master_ports == AHB32) /* Single master port */
ddata->ports_max_dw[1] = DW_INVALID;
else /* Dual master ports */
ddata->ports_max_dw[1] = FIELD_GET(G_M1_DATA_WIDTH_ENC, hwcfgr);
ddata->chans = devm_kcalloc(&pdev->dev, ddata->dma_channels, sizeof(*ddata->chans),
GFP_KERNEL);
if (!ddata->chans) {
ret = -ENOMEM;
goto err_clk_disable;
}
chan_reserved = stm32_dma3_check_rif(ddata);
if (chan_reserved == GENMASK(ddata->dma_channels - 1, 0)) {
ret = -ENODEV;
dev_err_probe(&pdev->dev, ret, "No channel available, abort registration\n");
goto err_clk_disable;
}
/* G_FIFO_SIZE x=0..7 in HWCFGR3 and G_FIFO_SIZE x=8..15 in HWCFGR4 */
hwcfgr = readl_relaxed(ddata->base + STM32_DMA3_HWCFGR3);
hwcfgr |= ((u64)readl_relaxed(ddata->base + STM32_DMA3_HWCFGR4)) << 32;
for (i = 0; i < ddata->dma_channels; i++) {
if (chan_reserved & BIT(i))
continue;
chan = &ddata->chans[i];
chan->id = i;
chan->fifo_size = get_chan_hwcfg(i, G_FIFO_SIZE(i), hwcfgr);
/* If chan->fifo_size > 0 then half of the fifo size, else no burst when no FIFO */
chan->max_burst = (chan->fifo_size) ? (1 << (chan->fifo_size + 1)) / 2 : 0;
}
ret = dmaenginem_async_device_register(dma_dev);
if (ret)
goto err_clk_disable;
for (i = 0; i < ddata->dma_channels; i++) {
char name[12];
if (chan_reserved & BIT(i))
continue;
chan = &ddata->chans[i];
snprintf(name, sizeof(name), "dma%dchan%d", ddata->dma_dev.dev_id, chan->id);
chan->vchan.desc_free = stm32_dma3_chan_vdesc_free;
vchan_init(&chan->vchan, dma_dev);
ret = dma_async_device_channel_register(&ddata->dma_dev, &chan->vchan.chan, name);
if (ret) {
dev_err_probe(&pdev->dev, ret, "Failed to register channel %s\n", name);
goto err_clk_disable;
}
ret = platform_get_irq(pdev, i);
if (ret < 0)
goto err_clk_disable;
chan->irq = ret;
ret = devm_request_irq(&pdev->dev, chan->irq, stm32_dma3_chan_irq, 0,
dev_name(chan2dev(chan)), chan);
if (ret) {
dev_err_probe(&pdev->dev, ret, "Failed to request channel %s IRQ\n",
dev_name(chan2dev(chan)));
goto err_clk_disable;
}
}
ret = of_dma_controller_register(np, stm32_dma3_of_xlate, ddata);
if (ret) {
dev_err_probe(&pdev->dev, ret, "Failed to register controller\n");
goto err_clk_disable;
}
verr = readl_relaxed(ddata->base + STM32_DMA3_VERR);
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
pm_runtime_get_noresume(&pdev->dev);
pm_runtime_put(&pdev->dev);
dev_info(&pdev->dev, "STM32 DMA3 registered rev:%lu.%lu\n",
FIELD_GET(VERR_MAJREV, verr), FIELD_GET(VERR_MINREV, verr));
return 0;
err_clk_disable:
clk_disable_unprepare(ddata->clk);
return ret;
}
static void stm32_dma3_remove(struct platform_device *pdev)
{
pm_runtime_disable(&pdev->dev);
}
static int stm32_dma3_runtime_suspend(struct device *dev)
{
struct stm32_dma3_ddata *ddata = dev_get_drvdata(dev);
clk_disable_unprepare(ddata->clk);
return 0;
}
static int stm32_dma3_runtime_resume(struct device *dev)
{
struct stm32_dma3_ddata *ddata = dev_get_drvdata(dev);
int ret;
ret = clk_prepare_enable(ddata->clk);
if (ret)
dev_err(dev, "Failed to enable clk: %d\n", ret);
return ret;
}
static const struct dev_pm_ops stm32_dma3_pm_ops = {
SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume)
RUNTIME_PM_OPS(stm32_dma3_runtime_suspend, stm32_dma3_runtime_resume, NULL)
};
static struct platform_driver stm32_dma3_driver = {
.probe = stm32_dma3_probe,
.remove_new = stm32_dma3_remove,
.driver = {
.name = "stm32-dma3",
.of_match_table = stm32_dma3_of_match,
.pm = pm_ptr(&stm32_dma3_pm_ops),
},
};
static int __init stm32_dma3_init(void)
{
return platform_driver_register(&stm32_dma3_driver);
}
subsys_initcall(stm32_dma3_init);
MODULE_DESCRIPTION("STM32 DMA3 controller driver");
MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@foss.st.com>");
MODULE_LICENSE("GPL");
|