1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
|
// SPDX-License-Identifier: GPL-2.0
/*
* Driver for Intel client SoC with integrated memory controller using IBECC
*
* Copyright (C) 2020 Intel Corporation
*
* The In-Band ECC (IBECC) IP provides ECC protection to all or specific
* regions of the physical memory space. It's used for memory controllers
* that don't support the out-of-band ECC which often needs an additional
* storage device to each channel for storing ECC data.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/irq_work.h>
#include <linux/llist.h>
#include <linux/genalloc.h>
#include <linux/edac.h>
#include <linux/bits.h>
#include <linux/io.h>
#include <asm/mach_traps.h>
#include <asm/nmi.h>
#include <asm/mce.h>
#include "edac_mc.h"
#include "edac_module.h"
#define IGEN6_REVISION "v2.5.1"
#define EDAC_MOD_STR "igen6_edac"
#define IGEN6_NMI_NAME "igen6_ibecc"
/* Debug macros */
#define igen6_printk(level, fmt, arg...) \
edac_printk(level, "igen6", fmt, ##arg)
#define igen6_mc_printk(mci, level, fmt, arg...) \
edac_mc_chipset_printk(mci, level, "igen6", fmt, ##arg)
#define GET_BITFIELD(v, lo, hi) (((v) & GENMASK_ULL(hi, lo)) >> (lo))
#define NUM_IMC 2 /* Max memory controllers */
#define NUM_CHANNELS 2 /* Max channels */
#define NUM_DIMMS 2 /* Max DIMMs per channel */
#define _4GB BIT_ULL(32)
/* Size of physical memory */
#define TOM_OFFSET 0xa0
/* Top of low usable DRAM */
#define TOLUD_OFFSET 0xbc
/* Capability register C */
#define CAPID_C_OFFSET 0xec
#define CAPID_C_IBECC BIT(15)
/* Capability register E */
#define CAPID_E_OFFSET 0xf0
#define CAPID_E_IBECC BIT(12)
#define CAPID_E_IBECC_BIT18 BIT(18)
/* Error Status */
#define ERRSTS_OFFSET 0xc8
#define ERRSTS_CE BIT_ULL(6)
#define ERRSTS_UE BIT_ULL(7)
/* Error Command */
#define ERRCMD_OFFSET 0xca
#define ERRCMD_CE BIT_ULL(6)
#define ERRCMD_UE BIT_ULL(7)
/* IBECC MMIO base address */
#define IBECC_BASE (res_cfg->ibecc_base)
#define IBECC_ACTIVATE_OFFSET IBECC_BASE
#define IBECC_ACTIVATE_EN BIT(0)
/* IBECC error log */
#define ECC_ERROR_LOG_OFFSET (IBECC_BASE + res_cfg->ibecc_error_log_offset)
#define ECC_ERROR_LOG_CE BIT_ULL(62)
#define ECC_ERROR_LOG_UE BIT_ULL(63)
#define ECC_ERROR_LOG_ADDR_SHIFT 5
#define ECC_ERROR_LOG_ADDR(v) GET_BITFIELD(v, 5, 38)
#define ECC_ERROR_LOG_ADDR45(v) GET_BITFIELD(v, 5, 45)
#define ECC_ERROR_LOG_SYND(v) GET_BITFIELD(v, 46, 61)
/* Host MMIO base address */
#define MCHBAR_OFFSET 0x48
#define MCHBAR_EN BIT_ULL(0)
#define MCHBAR_BASE(v) (GET_BITFIELD(v, 16, 38) << 16)
#define MCHBAR_SIZE 0x10000
/* Parameters for the channel decode stage */
#define IMC_BASE (res_cfg->imc_base)
#define MAD_INTER_CHANNEL_OFFSET IMC_BASE
#define MAD_INTER_CHANNEL_DDR_TYPE(v) GET_BITFIELD(v, 0, 2)
#define MAD_INTER_CHANNEL_ECHM(v) GET_BITFIELD(v, 3, 3)
#define MAD_INTER_CHANNEL_CH_L_MAP(v) GET_BITFIELD(v, 4, 4)
#define MAD_INTER_CHANNEL_CH_S_SIZE(v) ((u64)GET_BITFIELD(v, 12, 19) << 29)
/* Parameters for DRAM decode stage */
#define MAD_INTRA_CH0_OFFSET (IMC_BASE + 4)
#define MAD_INTRA_CH_DIMM_L_MAP(v) GET_BITFIELD(v, 0, 0)
/* DIMM characteristics */
#define MAD_DIMM_CH0_OFFSET (IMC_BASE + 0xc)
#define MAD_DIMM_CH_DIMM_L_SIZE(v) ((u64)GET_BITFIELD(v, 0, 6) << 29)
#define MAD_DIMM_CH_DLW(v) GET_BITFIELD(v, 7, 8)
#define MAD_DIMM_CH_DIMM_S_SIZE(v) ((u64)GET_BITFIELD(v, 16, 22) << 29)
#define MAD_DIMM_CH_DSW(v) GET_BITFIELD(v, 24, 25)
/* Hash for memory controller selection */
#define MAD_MC_HASH_OFFSET (IMC_BASE + 0x1b8)
#define MAC_MC_HASH_LSB(v) GET_BITFIELD(v, 1, 3)
/* Hash for channel selection */
#define CHANNEL_HASH_OFFSET (IMC_BASE + 0x24)
/* Hash for enhanced channel selection */
#define CHANNEL_EHASH_OFFSET (IMC_BASE + 0x28)
#define CHANNEL_HASH_MASK(v) (GET_BITFIELD(v, 6, 19) << 6)
#define CHANNEL_HASH_LSB_MASK_BIT(v) GET_BITFIELD(v, 24, 26)
#define CHANNEL_HASH_MODE(v) GET_BITFIELD(v, 28, 28)
/* Parameters for memory slice decode stage */
#define MEM_SLICE_HASH_MASK(v) (GET_BITFIELD(v, 6, 19) << 6)
#define MEM_SLICE_HASH_LSB_MASK_BIT(v) GET_BITFIELD(v, 24, 26)
static struct res_config {
bool machine_check;
int num_imc;
u32 imc_base;
u32 cmf_base;
u32 cmf_size;
u32 ms_hash_offset;
u32 ibecc_base;
u32 ibecc_error_log_offset;
bool (*ibecc_available)(struct pci_dev *pdev);
/* Extract error address logged in IBECC */
u64 (*err_addr)(u64 ecclog);
/* Convert error address logged in IBECC to system physical address */
u64 (*err_addr_to_sys_addr)(u64 eaddr, int mc);
/* Convert error address logged in IBECC to integrated memory controller address */
u64 (*err_addr_to_imc_addr)(u64 eaddr, int mc);
} *res_cfg;
struct igen6_imc {
int mc;
struct mem_ctl_info *mci;
struct pci_dev *pdev;
struct device dev;
void __iomem *window;
u64 size;
u64 ch_s_size;
int ch_l_map;
u64 dimm_s_size[NUM_CHANNELS];
u64 dimm_l_size[NUM_CHANNELS];
int dimm_l_map[NUM_CHANNELS];
};
static struct igen6_pvt {
struct igen6_imc imc[NUM_IMC];
u64 ms_hash;
u64 ms_s_size;
int ms_l_map;
} *igen6_pvt;
/* The top of low usable DRAM */
static u32 igen6_tolud;
/* The size of physical memory */
static u64 igen6_tom;
struct decoded_addr {
int mc;
u64 imc_addr;
u64 sys_addr;
int channel_idx;
u64 channel_addr;
int sub_channel_idx;
u64 sub_channel_addr;
};
struct ecclog_node {
struct llist_node llnode;
int mc;
u64 ecclog;
};
/*
* In the NMI handler, the driver uses the lock-less memory allocator
* to allocate memory to store the IBECC error logs and links the logs
* to the lock-less list. Delay printk() and the work of error reporting
* to EDAC core in a worker.
*/
#define ECCLOG_POOL_SIZE PAGE_SIZE
static LLIST_HEAD(ecclog_llist);
static struct gen_pool *ecclog_pool;
static char ecclog_buf[ECCLOG_POOL_SIZE];
static struct irq_work ecclog_irq_work;
static struct work_struct ecclog_work;
/* Compute die IDs for Elkhart Lake with IBECC */
#define DID_EHL_SKU5 0x4514
#define DID_EHL_SKU6 0x4528
#define DID_EHL_SKU7 0x452a
#define DID_EHL_SKU8 0x4516
#define DID_EHL_SKU9 0x452c
#define DID_EHL_SKU10 0x452e
#define DID_EHL_SKU11 0x4532
#define DID_EHL_SKU12 0x4518
#define DID_EHL_SKU13 0x451a
#define DID_EHL_SKU14 0x4534
#define DID_EHL_SKU15 0x4536
/* Compute die IDs for ICL-NNPI with IBECC */
#define DID_ICL_SKU8 0x4581
#define DID_ICL_SKU10 0x4585
#define DID_ICL_SKU11 0x4589
#define DID_ICL_SKU12 0x458d
/* Compute die IDs for Tiger Lake with IBECC */
#define DID_TGL_SKU 0x9a14
/* Compute die IDs for Alder Lake with IBECC */
#define DID_ADL_SKU1 0x4601
#define DID_ADL_SKU2 0x4602
#define DID_ADL_SKU3 0x4621
#define DID_ADL_SKU4 0x4641
/* Compute die IDs for Alder Lake-N with IBECC */
#define DID_ADL_N_SKU1 0x4614
#define DID_ADL_N_SKU2 0x4617
#define DID_ADL_N_SKU3 0x461b
#define DID_ADL_N_SKU4 0x461c
#define DID_ADL_N_SKU5 0x4673
#define DID_ADL_N_SKU6 0x4674
#define DID_ADL_N_SKU7 0x4675
#define DID_ADL_N_SKU8 0x4677
#define DID_ADL_N_SKU9 0x4678
#define DID_ADL_N_SKU10 0x4679
#define DID_ADL_N_SKU11 0x467c
#define DID_ADL_N_SKU12 0x4632
/* Compute die IDs for Raptor Lake-P with IBECC */
#define DID_RPL_P_SKU1 0xa706
#define DID_RPL_P_SKU2 0xa707
#define DID_RPL_P_SKU3 0xa708
#define DID_RPL_P_SKU4 0xa716
#define DID_RPL_P_SKU5 0xa718
/* Compute die IDs for Meteor Lake-PS with IBECC */
#define DID_MTL_PS_SKU1 0x7d21
#define DID_MTL_PS_SKU2 0x7d22
#define DID_MTL_PS_SKU3 0x7d23
#define DID_MTL_PS_SKU4 0x7d24
/* Compute die IDs for Meteor Lake-P with IBECC */
#define DID_MTL_P_SKU1 0x7d01
#define DID_MTL_P_SKU2 0x7d02
#define DID_MTL_P_SKU3 0x7d14
/* Compute die IDs for Arrow Lake-UH with IBECC */
#define DID_ARL_UH_SKU1 0x7d06
#define DID_ARL_UH_SKU2 0x7d20
#define DID_ARL_UH_SKU3 0x7d30
static int get_mchbar(struct pci_dev *pdev, u64 *mchbar)
{
union {
u64 v;
struct {
u32 v_lo;
u32 v_hi;
};
} u;
if (pci_read_config_dword(pdev, MCHBAR_OFFSET, &u.v_lo)) {
igen6_printk(KERN_ERR, "Failed to read lower MCHBAR\n");
return -ENODEV;
}
if (pci_read_config_dword(pdev, MCHBAR_OFFSET + 4, &u.v_hi)) {
igen6_printk(KERN_ERR, "Failed to read upper MCHBAR\n");
return -ENODEV;
}
if (!(u.v & MCHBAR_EN)) {
igen6_printk(KERN_ERR, "MCHBAR is disabled\n");
return -ENODEV;
}
*mchbar = MCHBAR_BASE(u.v);
return 0;
}
static bool ehl_ibecc_available(struct pci_dev *pdev)
{
u32 v;
if (pci_read_config_dword(pdev, CAPID_C_OFFSET, &v))
return false;
return !!(CAPID_C_IBECC & v);
}
static u64 ehl_err_addr_to_sys_addr(u64 eaddr, int mc)
{
return eaddr;
}
static u64 ehl_err_addr_to_imc_addr(u64 eaddr, int mc)
{
if (eaddr < igen6_tolud)
return eaddr;
if (igen6_tom <= _4GB)
return eaddr + igen6_tolud - _4GB;
if (eaddr >= igen6_tom)
return eaddr + igen6_tolud - igen6_tom;
return eaddr;
}
static bool icl_ibecc_available(struct pci_dev *pdev)
{
u32 v;
if (pci_read_config_dword(pdev, CAPID_C_OFFSET, &v))
return false;
return !(CAPID_C_IBECC & v) &&
(boot_cpu_data.x86_stepping >= 1);
}
static bool tgl_ibecc_available(struct pci_dev *pdev)
{
u32 v;
if (pci_read_config_dword(pdev, CAPID_E_OFFSET, &v))
return false;
return !(CAPID_E_IBECC & v);
}
static bool mtl_p_ibecc_available(struct pci_dev *pdev)
{
u32 v;
if (pci_read_config_dword(pdev, CAPID_E_OFFSET, &v))
return false;
return !(CAPID_E_IBECC_BIT18 & v);
}
static bool mtl_ps_ibecc_available(struct pci_dev *pdev)
{
#define MCHBAR_MEMSS_IBECCDIS 0x13c00
void __iomem *window;
u64 mchbar;
u32 val;
if (get_mchbar(pdev, &mchbar))
return false;
window = ioremap(mchbar, MCHBAR_SIZE * 2);
if (!window) {
igen6_printk(KERN_ERR, "Failed to ioremap 0x%llx\n", mchbar);
return false;
}
val = readl(window + MCHBAR_MEMSS_IBECCDIS);
iounmap(window);
/* Bit6: 1 - IBECC is disabled, 0 - IBECC isn't disabled */
return !GET_BITFIELD(val, 6, 6);
}
static u64 mem_addr_to_sys_addr(u64 maddr)
{
if (maddr < igen6_tolud)
return maddr;
if (igen6_tom <= _4GB)
return maddr - igen6_tolud + _4GB;
if (maddr < _4GB)
return maddr - igen6_tolud + igen6_tom;
return maddr;
}
static u64 mem_slice_hash(u64 addr, u64 mask, u64 hash_init, int intlv_bit)
{
u64 hash_addr = addr & mask, hash = hash_init;
u64 intlv = (addr >> intlv_bit) & 1;
int i;
for (i = 6; i < 20; i++)
hash ^= (hash_addr >> i) & 1;
return hash ^ intlv;
}
static u64 tgl_err_addr_to_mem_addr(u64 eaddr, int mc)
{
u64 maddr, hash, mask, ms_s_size;
int intlv_bit;
u32 ms_hash;
ms_s_size = igen6_pvt->ms_s_size;
if (eaddr >= ms_s_size)
return eaddr + ms_s_size;
ms_hash = igen6_pvt->ms_hash;
mask = MEM_SLICE_HASH_MASK(ms_hash);
intlv_bit = MEM_SLICE_HASH_LSB_MASK_BIT(ms_hash) + 6;
maddr = GET_BITFIELD(eaddr, intlv_bit, 63) << (intlv_bit + 1) |
GET_BITFIELD(eaddr, 0, intlv_bit - 1);
hash = mem_slice_hash(maddr, mask, mc, intlv_bit);
return maddr | (hash << intlv_bit);
}
static u64 tgl_err_addr_to_sys_addr(u64 eaddr, int mc)
{
u64 maddr = tgl_err_addr_to_mem_addr(eaddr, mc);
return mem_addr_to_sys_addr(maddr);
}
static u64 tgl_err_addr_to_imc_addr(u64 eaddr, int mc)
{
return eaddr;
}
static u64 adl_err_addr_to_sys_addr(u64 eaddr, int mc)
{
return mem_addr_to_sys_addr(eaddr);
}
static u64 adl_err_addr_to_imc_addr(u64 eaddr, int mc)
{
u64 imc_addr, ms_s_size = igen6_pvt->ms_s_size;
struct igen6_imc *imc = &igen6_pvt->imc[mc];
int intlv_bit;
u32 mc_hash;
if (eaddr >= 2 * ms_s_size)
return eaddr - ms_s_size;
mc_hash = readl(imc->window + MAD_MC_HASH_OFFSET);
intlv_bit = MAC_MC_HASH_LSB(mc_hash) + 6;
imc_addr = GET_BITFIELD(eaddr, intlv_bit + 1, 63) << intlv_bit |
GET_BITFIELD(eaddr, 0, intlv_bit - 1);
return imc_addr;
}
static u64 rpl_p_err_addr(u64 ecclog)
{
return ECC_ERROR_LOG_ADDR45(ecclog);
}
static struct res_config ehl_cfg = {
.num_imc = 1,
.imc_base = 0x5000,
.ibecc_base = 0xdc00,
.ibecc_available = ehl_ibecc_available,
.ibecc_error_log_offset = 0x170,
.err_addr_to_sys_addr = ehl_err_addr_to_sys_addr,
.err_addr_to_imc_addr = ehl_err_addr_to_imc_addr,
};
static struct res_config icl_cfg = {
.num_imc = 1,
.imc_base = 0x5000,
.ibecc_base = 0xd800,
.ibecc_error_log_offset = 0x170,
.ibecc_available = icl_ibecc_available,
.err_addr_to_sys_addr = ehl_err_addr_to_sys_addr,
.err_addr_to_imc_addr = ehl_err_addr_to_imc_addr,
};
static struct res_config tgl_cfg = {
.machine_check = true,
.num_imc = 2,
.imc_base = 0x5000,
.cmf_base = 0x11000,
.cmf_size = 0x800,
.ms_hash_offset = 0xac,
.ibecc_base = 0xd400,
.ibecc_error_log_offset = 0x170,
.ibecc_available = tgl_ibecc_available,
.err_addr_to_sys_addr = tgl_err_addr_to_sys_addr,
.err_addr_to_imc_addr = tgl_err_addr_to_imc_addr,
};
static struct res_config adl_cfg = {
.machine_check = true,
.num_imc = 2,
.imc_base = 0xd800,
.ibecc_base = 0xd400,
.ibecc_error_log_offset = 0x68,
.ibecc_available = tgl_ibecc_available,
.err_addr_to_sys_addr = adl_err_addr_to_sys_addr,
.err_addr_to_imc_addr = adl_err_addr_to_imc_addr,
};
static struct res_config adl_n_cfg = {
.machine_check = true,
.num_imc = 1,
.imc_base = 0xd800,
.ibecc_base = 0xd400,
.ibecc_error_log_offset = 0x68,
.ibecc_available = tgl_ibecc_available,
.err_addr_to_sys_addr = adl_err_addr_to_sys_addr,
.err_addr_to_imc_addr = adl_err_addr_to_imc_addr,
};
static struct res_config rpl_p_cfg = {
.machine_check = true,
.num_imc = 2,
.imc_base = 0xd800,
.ibecc_base = 0xd400,
.ibecc_error_log_offset = 0x68,
.ibecc_available = tgl_ibecc_available,
.err_addr = rpl_p_err_addr,
.err_addr_to_sys_addr = adl_err_addr_to_sys_addr,
.err_addr_to_imc_addr = adl_err_addr_to_imc_addr,
};
static struct res_config mtl_ps_cfg = {
.machine_check = true,
.num_imc = 2,
.imc_base = 0xd800,
.ibecc_base = 0xd400,
.ibecc_error_log_offset = 0x170,
.ibecc_available = mtl_ps_ibecc_available,
.err_addr_to_sys_addr = adl_err_addr_to_sys_addr,
.err_addr_to_imc_addr = adl_err_addr_to_imc_addr,
};
static struct res_config mtl_p_cfg = {
.machine_check = true,
.num_imc = 2,
.imc_base = 0xd800,
.ibecc_base = 0xd400,
.ibecc_error_log_offset = 0x170,
.ibecc_available = mtl_p_ibecc_available,
.err_addr_to_sys_addr = adl_err_addr_to_sys_addr,
.err_addr_to_imc_addr = adl_err_addr_to_imc_addr,
};
static const struct pci_device_id igen6_pci_tbl[] = {
{ PCI_VDEVICE(INTEL, DID_EHL_SKU5), (kernel_ulong_t)&ehl_cfg },
{ PCI_VDEVICE(INTEL, DID_EHL_SKU6), (kernel_ulong_t)&ehl_cfg },
{ PCI_VDEVICE(INTEL, DID_EHL_SKU7), (kernel_ulong_t)&ehl_cfg },
{ PCI_VDEVICE(INTEL, DID_EHL_SKU8), (kernel_ulong_t)&ehl_cfg },
{ PCI_VDEVICE(INTEL, DID_EHL_SKU9), (kernel_ulong_t)&ehl_cfg },
{ PCI_VDEVICE(INTEL, DID_EHL_SKU10), (kernel_ulong_t)&ehl_cfg },
{ PCI_VDEVICE(INTEL, DID_EHL_SKU11), (kernel_ulong_t)&ehl_cfg },
{ PCI_VDEVICE(INTEL, DID_EHL_SKU12), (kernel_ulong_t)&ehl_cfg },
{ PCI_VDEVICE(INTEL, DID_EHL_SKU13), (kernel_ulong_t)&ehl_cfg },
{ PCI_VDEVICE(INTEL, DID_EHL_SKU14), (kernel_ulong_t)&ehl_cfg },
{ PCI_VDEVICE(INTEL, DID_EHL_SKU15), (kernel_ulong_t)&ehl_cfg },
{ PCI_VDEVICE(INTEL, DID_ICL_SKU8), (kernel_ulong_t)&icl_cfg },
{ PCI_VDEVICE(INTEL, DID_ICL_SKU10), (kernel_ulong_t)&icl_cfg },
{ PCI_VDEVICE(INTEL, DID_ICL_SKU11), (kernel_ulong_t)&icl_cfg },
{ PCI_VDEVICE(INTEL, DID_ICL_SKU12), (kernel_ulong_t)&icl_cfg },
{ PCI_VDEVICE(INTEL, DID_TGL_SKU), (kernel_ulong_t)&tgl_cfg },
{ PCI_VDEVICE(INTEL, DID_ADL_SKU1), (kernel_ulong_t)&adl_cfg },
{ PCI_VDEVICE(INTEL, DID_ADL_SKU2), (kernel_ulong_t)&adl_cfg },
{ PCI_VDEVICE(INTEL, DID_ADL_SKU3), (kernel_ulong_t)&adl_cfg },
{ PCI_VDEVICE(INTEL, DID_ADL_SKU4), (kernel_ulong_t)&adl_cfg },
{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU1), (kernel_ulong_t)&adl_n_cfg },
{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU2), (kernel_ulong_t)&adl_n_cfg },
{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU3), (kernel_ulong_t)&adl_n_cfg },
{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU4), (kernel_ulong_t)&adl_n_cfg },
{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU5), (kernel_ulong_t)&adl_n_cfg },
{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU6), (kernel_ulong_t)&adl_n_cfg },
{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU7), (kernel_ulong_t)&adl_n_cfg },
{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU8), (kernel_ulong_t)&adl_n_cfg },
{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU9), (kernel_ulong_t)&adl_n_cfg },
{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU10), (kernel_ulong_t)&adl_n_cfg },
{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU11), (kernel_ulong_t)&adl_n_cfg },
{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU12), (kernel_ulong_t)&adl_n_cfg },
{ PCI_VDEVICE(INTEL, DID_RPL_P_SKU1), (kernel_ulong_t)&rpl_p_cfg },
{ PCI_VDEVICE(INTEL, DID_RPL_P_SKU2), (kernel_ulong_t)&rpl_p_cfg },
{ PCI_VDEVICE(INTEL, DID_RPL_P_SKU3), (kernel_ulong_t)&rpl_p_cfg },
{ PCI_VDEVICE(INTEL, DID_RPL_P_SKU4), (kernel_ulong_t)&rpl_p_cfg },
{ PCI_VDEVICE(INTEL, DID_RPL_P_SKU5), (kernel_ulong_t)&rpl_p_cfg },
{ PCI_VDEVICE(INTEL, DID_MTL_PS_SKU1), (kernel_ulong_t)&mtl_ps_cfg },
{ PCI_VDEVICE(INTEL, DID_MTL_PS_SKU2), (kernel_ulong_t)&mtl_ps_cfg },
{ PCI_VDEVICE(INTEL, DID_MTL_PS_SKU3), (kernel_ulong_t)&mtl_ps_cfg },
{ PCI_VDEVICE(INTEL, DID_MTL_PS_SKU4), (kernel_ulong_t)&mtl_ps_cfg },
{ PCI_VDEVICE(INTEL, DID_MTL_P_SKU1), (kernel_ulong_t)&mtl_p_cfg },
{ PCI_VDEVICE(INTEL, DID_MTL_P_SKU2), (kernel_ulong_t)&mtl_p_cfg },
{ PCI_VDEVICE(INTEL, DID_MTL_P_SKU3), (kernel_ulong_t)&mtl_p_cfg },
{ PCI_VDEVICE(INTEL, DID_ARL_UH_SKU1), (kernel_ulong_t)&mtl_p_cfg },
{ PCI_VDEVICE(INTEL, DID_ARL_UH_SKU2), (kernel_ulong_t)&mtl_p_cfg },
{ PCI_VDEVICE(INTEL, DID_ARL_UH_SKU3), (kernel_ulong_t)&mtl_p_cfg },
{ },
};
MODULE_DEVICE_TABLE(pci, igen6_pci_tbl);
static enum dev_type get_width(int dimm_l, u32 mad_dimm)
{
u32 w = dimm_l ? MAD_DIMM_CH_DLW(mad_dimm) :
MAD_DIMM_CH_DSW(mad_dimm);
switch (w) {
case 0:
return DEV_X8;
case 1:
return DEV_X16;
case 2:
return DEV_X32;
default:
return DEV_UNKNOWN;
}
}
static enum mem_type get_memory_type(u32 mad_inter)
{
u32 t = MAD_INTER_CHANNEL_DDR_TYPE(mad_inter);
switch (t) {
case 0:
return MEM_DDR4;
case 1:
return MEM_DDR3;
case 2:
return MEM_LPDDR3;
case 3:
return MEM_LPDDR4;
case 4:
return MEM_WIO2;
default:
return MEM_UNKNOWN;
}
}
static int decode_chan_idx(u64 addr, u64 mask, int intlv_bit)
{
u64 hash_addr = addr & mask, hash = 0;
u64 intlv = (addr >> intlv_bit) & 1;
int i;
for (i = 6; i < 20; i++)
hash ^= (hash_addr >> i) & 1;
return (int)hash ^ intlv;
}
static u64 decode_channel_addr(u64 addr, int intlv_bit)
{
u64 channel_addr;
/* Remove the interleave bit and shift upper part down to fill gap */
channel_addr = GET_BITFIELD(addr, intlv_bit + 1, 63) << intlv_bit;
channel_addr |= GET_BITFIELD(addr, 0, intlv_bit - 1);
return channel_addr;
}
static void decode_addr(u64 addr, u32 hash, u64 s_size, int l_map,
int *idx, u64 *sub_addr)
{
int intlv_bit = CHANNEL_HASH_LSB_MASK_BIT(hash) + 6;
if (addr > 2 * s_size) {
*sub_addr = addr - s_size;
*idx = l_map;
return;
}
if (CHANNEL_HASH_MODE(hash)) {
*sub_addr = decode_channel_addr(addr, intlv_bit);
*idx = decode_chan_idx(addr, CHANNEL_HASH_MASK(hash), intlv_bit);
} else {
*sub_addr = decode_channel_addr(addr, 6);
*idx = GET_BITFIELD(addr, 6, 6);
}
}
static int igen6_decode(struct decoded_addr *res)
{
struct igen6_imc *imc = &igen6_pvt->imc[res->mc];
u64 addr = res->imc_addr, sub_addr, s_size;
int idx, l_map;
u32 hash;
if (addr >= igen6_tom) {
edac_dbg(0, "Address 0x%llx out of range\n", addr);
return -EINVAL;
}
/* Decode channel */
hash = readl(imc->window + CHANNEL_HASH_OFFSET);
s_size = imc->ch_s_size;
l_map = imc->ch_l_map;
decode_addr(addr, hash, s_size, l_map, &idx, &sub_addr);
res->channel_idx = idx;
res->channel_addr = sub_addr;
/* Decode sub-channel/DIMM */
hash = readl(imc->window + CHANNEL_EHASH_OFFSET);
s_size = imc->dimm_s_size[idx];
l_map = imc->dimm_l_map[idx];
decode_addr(res->channel_addr, hash, s_size, l_map, &idx, &sub_addr);
res->sub_channel_idx = idx;
res->sub_channel_addr = sub_addr;
return 0;
}
static void igen6_output_error(struct decoded_addr *res,
struct mem_ctl_info *mci, u64 ecclog)
{
enum hw_event_mc_err_type type = ecclog & ECC_ERROR_LOG_UE ?
HW_EVENT_ERR_UNCORRECTED :
HW_EVENT_ERR_CORRECTED;
edac_mc_handle_error(type, mci, 1,
res->sys_addr >> PAGE_SHIFT,
res->sys_addr & ~PAGE_MASK,
ECC_ERROR_LOG_SYND(ecclog),
res->channel_idx, res->sub_channel_idx,
-1, "", "");
}
static struct gen_pool *ecclog_gen_pool_create(void)
{
struct gen_pool *pool;
pool = gen_pool_create(ilog2(sizeof(struct ecclog_node)), -1);
if (!pool)
return NULL;
if (gen_pool_add(pool, (unsigned long)ecclog_buf, ECCLOG_POOL_SIZE, -1)) {
gen_pool_destroy(pool);
return NULL;
}
return pool;
}
static int ecclog_gen_pool_add(int mc, u64 ecclog)
{
struct ecclog_node *node;
node = (void *)gen_pool_alloc(ecclog_pool, sizeof(*node));
if (!node)
return -ENOMEM;
node->mc = mc;
node->ecclog = ecclog;
llist_add(&node->llnode, &ecclog_llist);
return 0;
}
/*
* Either the memory-mapped I/O status register ECC_ERROR_LOG or the PCI
* configuration space status register ERRSTS can indicate whether a
* correctable error or an uncorrectable error occurred. We only use the
* ECC_ERROR_LOG register to check error type, but need to clear both
* registers to enable future error events.
*/
static u64 ecclog_read_and_clear(struct igen6_imc *imc)
{
u64 ecclog = readq(imc->window + ECC_ERROR_LOG_OFFSET);
if (ecclog & (ECC_ERROR_LOG_CE | ECC_ERROR_LOG_UE)) {
/* Clear CE/UE bits by writing 1s */
writeq(ecclog, imc->window + ECC_ERROR_LOG_OFFSET);
return ecclog;
}
return 0;
}
static void errsts_clear(struct igen6_imc *imc)
{
u16 errsts;
if (pci_read_config_word(imc->pdev, ERRSTS_OFFSET, &errsts)) {
igen6_printk(KERN_ERR, "Failed to read ERRSTS\n");
return;
}
/* Clear CE/UE bits by writing 1s */
if (errsts & (ERRSTS_CE | ERRSTS_UE))
pci_write_config_word(imc->pdev, ERRSTS_OFFSET, errsts);
}
static int errcmd_enable_error_reporting(bool enable)
{
struct igen6_imc *imc = &igen6_pvt->imc[0];
u16 errcmd;
int rc;
rc = pci_read_config_word(imc->pdev, ERRCMD_OFFSET, &errcmd);
if (rc)
return pcibios_err_to_errno(rc);
if (enable)
errcmd |= ERRCMD_CE | ERRSTS_UE;
else
errcmd &= ~(ERRCMD_CE | ERRSTS_UE);
rc = pci_write_config_word(imc->pdev, ERRCMD_OFFSET, errcmd);
if (rc)
return pcibios_err_to_errno(rc);
return 0;
}
static int ecclog_handler(void)
{
struct igen6_imc *imc;
int i, n = 0;
u64 ecclog;
for (i = 0; i < res_cfg->num_imc; i++) {
imc = &igen6_pvt->imc[i];
/* errsts_clear() isn't NMI-safe. Delay it in the IRQ context */
ecclog = ecclog_read_and_clear(imc);
if (!ecclog)
continue;
if (!ecclog_gen_pool_add(i, ecclog))
irq_work_queue(&ecclog_irq_work);
n++;
}
return n;
}
static void ecclog_work_cb(struct work_struct *work)
{
struct ecclog_node *node, *tmp;
struct mem_ctl_info *mci;
struct llist_node *head;
struct decoded_addr res;
u64 eaddr;
head = llist_del_all(&ecclog_llist);
if (!head)
return;
llist_for_each_entry_safe(node, tmp, head, llnode) {
memset(&res, 0, sizeof(res));
if (res_cfg->err_addr)
eaddr = res_cfg->err_addr(node->ecclog);
else
eaddr = ECC_ERROR_LOG_ADDR(node->ecclog) <<
ECC_ERROR_LOG_ADDR_SHIFT;
res.mc = node->mc;
res.sys_addr = res_cfg->err_addr_to_sys_addr(eaddr, res.mc);
res.imc_addr = res_cfg->err_addr_to_imc_addr(eaddr, res.mc);
mci = igen6_pvt->imc[res.mc].mci;
edac_dbg(2, "MC %d, ecclog = 0x%llx\n", node->mc, node->ecclog);
igen6_mc_printk(mci, KERN_DEBUG, "HANDLING IBECC MEMORY ERROR\n");
igen6_mc_printk(mci, KERN_DEBUG, "ADDR 0x%llx ", res.sys_addr);
if (!igen6_decode(&res))
igen6_output_error(&res, mci, node->ecclog);
gen_pool_free(ecclog_pool, (unsigned long)node, sizeof(*node));
}
}
static void ecclog_irq_work_cb(struct irq_work *irq_work)
{
int i;
for (i = 0; i < res_cfg->num_imc; i++)
errsts_clear(&igen6_pvt->imc[i]);
if (!llist_empty(&ecclog_llist))
schedule_work(&ecclog_work);
}
static int ecclog_nmi_handler(unsigned int cmd, struct pt_regs *regs)
{
unsigned char reason;
if (!ecclog_handler())
return NMI_DONE;
/*
* Both In-Band ECC correctable error and uncorrectable error are
* reported by SERR# NMI. The NMI generic code (see pci_serr_error())
* doesn't clear the bit NMI_REASON_CLEAR_SERR (in port 0x61) to
* re-enable the SERR# NMI after NMI handling. So clear this bit here
* to re-enable SERR# NMI for receiving future In-Band ECC errors.
*/
reason = x86_platform.get_nmi_reason() & NMI_REASON_CLEAR_MASK;
reason |= NMI_REASON_CLEAR_SERR;
outb(reason, NMI_REASON_PORT);
reason &= ~NMI_REASON_CLEAR_SERR;
outb(reason, NMI_REASON_PORT);
return NMI_HANDLED;
}
static int ecclog_mce_handler(struct notifier_block *nb, unsigned long val,
void *data)
{
struct mce *mce = (struct mce *)data;
char *type;
if (mce->kflags & MCE_HANDLED_CEC)
return NOTIFY_DONE;
/*
* Ignore unless this is a memory related error.
* We don't check the bit MCI_STATUS_ADDRV of MCi_STATUS here,
* since this bit isn't set on some CPU (e.g., Tiger Lake UP3).
*/
if ((mce->status & 0xefff) >> 7 != 1)
return NOTIFY_DONE;
if (mce->mcgstatus & MCG_STATUS_MCIP)
type = "Exception";
else
type = "Event";
edac_dbg(0, "CPU %d: Machine Check %s: 0x%llx Bank %d: 0x%llx\n",
mce->extcpu, type, mce->mcgstatus,
mce->bank, mce->status);
edac_dbg(0, "TSC 0x%llx\n", mce->tsc);
edac_dbg(0, "ADDR 0x%llx\n", mce->addr);
edac_dbg(0, "MISC 0x%llx\n", mce->misc);
edac_dbg(0, "PROCESSOR %u:0x%x TIME %llu SOCKET %u APIC 0x%x\n",
mce->cpuvendor, mce->cpuid, mce->time,
mce->socketid, mce->apicid);
/*
* We just use the Machine Check for the memory error notification.
* Each memory controller is associated with an IBECC instance.
* Directly read and clear the error information(error address and
* error type) on all the IBECC instances so that we know on which
* memory controller the memory error(s) occurred.
*/
if (!ecclog_handler())
return NOTIFY_DONE;
mce->kflags |= MCE_HANDLED_EDAC;
return NOTIFY_DONE;
}
static struct notifier_block ecclog_mce_dec = {
.notifier_call = ecclog_mce_handler,
.priority = MCE_PRIO_EDAC,
};
static bool igen6_check_ecc(struct igen6_imc *imc)
{
u32 activate = readl(imc->window + IBECC_ACTIVATE_OFFSET);
return !!(activate & IBECC_ACTIVATE_EN);
}
static int igen6_get_dimm_config(struct mem_ctl_info *mci)
{
struct igen6_imc *imc = mci->pvt_info;
u32 mad_inter, mad_intra, mad_dimm;
int i, j, ndimms, mc = imc->mc;
struct dimm_info *dimm;
enum mem_type mtype;
enum dev_type dtype;
u64 dsize;
bool ecc;
edac_dbg(2, "\n");
mad_inter = readl(imc->window + MAD_INTER_CHANNEL_OFFSET);
mtype = get_memory_type(mad_inter);
ecc = igen6_check_ecc(imc);
imc->ch_s_size = MAD_INTER_CHANNEL_CH_S_SIZE(mad_inter);
imc->ch_l_map = MAD_INTER_CHANNEL_CH_L_MAP(mad_inter);
for (i = 0; i < NUM_CHANNELS; i++) {
mad_intra = readl(imc->window + MAD_INTRA_CH0_OFFSET + i * 4);
mad_dimm = readl(imc->window + MAD_DIMM_CH0_OFFSET + i * 4);
imc->dimm_l_size[i] = MAD_DIMM_CH_DIMM_L_SIZE(mad_dimm);
imc->dimm_s_size[i] = MAD_DIMM_CH_DIMM_S_SIZE(mad_dimm);
imc->dimm_l_map[i] = MAD_INTRA_CH_DIMM_L_MAP(mad_intra);
imc->size += imc->dimm_s_size[i];
imc->size += imc->dimm_l_size[i];
ndimms = 0;
for (j = 0; j < NUM_DIMMS; j++) {
dimm = edac_get_dimm(mci, i, j, 0);
if (j ^ imc->dimm_l_map[i]) {
dtype = get_width(0, mad_dimm);
dsize = imc->dimm_s_size[i];
} else {
dtype = get_width(1, mad_dimm);
dsize = imc->dimm_l_size[i];
}
if (!dsize)
continue;
dimm->grain = 64;
dimm->mtype = mtype;
dimm->dtype = dtype;
dimm->nr_pages = MiB_TO_PAGES(dsize >> 20);
dimm->edac_mode = EDAC_SECDED;
snprintf(dimm->label, sizeof(dimm->label),
"MC#%d_Chan#%d_DIMM#%d", mc, i, j);
edac_dbg(0, "MC %d, Channel %d, DIMM %d, Size %llu MiB (%u pages)\n",
mc, i, j, dsize >> 20, dimm->nr_pages);
ndimms++;
}
if (ndimms && !ecc) {
igen6_printk(KERN_ERR, "MC%d In-Band ECC is disabled\n", mc);
return -ENODEV;
}
}
edac_dbg(0, "MC %d, total size %llu MiB\n", mc, imc->size >> 20);
return 0;
}
#ifdef CONFIG_EDAC_DEBUG
/* Top of upper usable DRAM */
static u64 igen6_touud;
#define TOUUD_OFFSET 0xa8
static void igen6_reg_dump(struct igen6_imc *imc)
{
int i;
edac_dbg(2, "CHANNEL_HASH : 0x%x\n",
readl(imc->window + CHANNEL_HASH_OFFSET));
edac_dbg(2, "CHANNEL_EHASH : 0x%x\n",
readl(imc->window + CHANNEL_EHASH_OFFSET));
edac_dbg(2, "MAD_INTER_CHANNEL: 0x%x\n",
readl(imc->window + MAD_INTER_CHANNEL_OFFSET));
edac_dbg(2, "ECC_ERROR_LOG : 0x%llx\n",
readq(imc->window + ECC_ERROR_LOG_OFFSET));
for (i = 0; i < NUM_CHANNELS; i++) {
edac_dbg(2, "MAD_INTRA_CH%d : 0x%x\n", i,
readl(imc->window + MAD_INTRA_CH0_OFFSET + i * 4));
edac_dbg(2, "MAD_DIMM_CH%d : 0x%x\n", i,
readl(imc->window + MAD_DIMM_CH0_OFFSET + i * 4));
}
edac_dbg(2, "TOLUD : 0x%x", igen6_tolud);
edac_dbg(2, "TOUUD : 0x%llx", igen6_touud);
edac_dbg(2, "TOM : 0x%llx", igen6_tom);
}
static struct dentry *igen6_test;
static int debugfs_u64_set(void *data, u64 val)
{
u64 ecclog;
if ((val >= igen6_tolud && val < _4GB) || val >= igen6_touud) {
edac_dbg(0, "Address 0x%llx out of range\n", val);
return 0;
}
pr_warn_once("Fake error to 0x%llx injected via debugfs\n", val);
val >>= ECC_ERROR_LOG_ADDR_SHIFT;
ecclog = (val << ECC_ERROR_LOG_ADDR_SHIFT) | ECC_ERROR_LOG_CE;
if (!ecclog_gen_pool_add(0, ecclog))
irq_work_queue(&ecclog_irq_work);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n");
static void igen6_debug_setup(void)
{
igen6_test = edac_debugfs_create_dir("igen6_test");
if (!igen6_test)
return;
if (!edac_debugfs_create_file("addr", 0200, igen6_test,
NULL, &fops_u64_wo)) {
debugfs_remove(igen6_test);
igen6_test = NULL;
}
}
static void igen6_debug_teardown(void)
{
debugfs_remove_recursive(igen6_test);
}
#else
static void igen6_reg_dump(struct igen6_imc *imc) {}
static void igen6_debug_setup(void) {}
static void igen6_debug_teardown(void) {}
#endif
static int igen6_pci_setup(struct pci_dev *pdev, u64 *mchbar)
{
union {
u64 v;
struct {
u32 v_lo;
u32 v_hi;
};
} u;
edac_dbg(2, "\n");
if (!res_cfg->ibecc_available(pdev)) {
edac_dbg(2, "No In-Band ECC IP\n");
goto fail;
}
if (pci_read_config_dword(pdev, TOLUD_OFFSET, &igen6_tolud)) {
igen6_printk(KERN_ERR, "Failed to read TOLUD\n");
goto fail;
}
igen6_tolud &= GENMASK(31, 20);
if (pci_read_config_dword(pdev, TOM_OFFSET, &u.v_lo)) {
igen6_printk(KERN_ERR, "Failed to read lower TOM\n");
goto fail;
}
if (pci_read_config_dword(pdev, TOM_OFFSET + 4, &u.v_hi)) {
igen6_printk(KERN_ERR, "Failed to read upper TOM\n");
goto fail;
}
igen6_tom = u.v & GENMASK_ULL(38, 20);
if (get_mchbar(pdev, mchbar))
goto fail;
#ifdef CONFIG_EDAC_DEBUG
if (pci_read_config_dword(pdev, TOUUD_OFFSET, &u.v_lo))
edac_dbg(2, "Failed to read lower TOUUD\n");
else if (pci_read_config_dword(pdev, TOUUD_OFFSET + 4, &u.v_hi))
edac_dbg(2, "Failed to read upper TOUUD\n");
else
igen6_touud = u.v & GENMASK_ULL(38, 20);
#endif
return 0;
fail:
return -ENODEV;
}
static int igen6_register_mci(int mc, u64 mchbar, struct pci_dev *pdev)
{
struct edac_mc_layer layers[2];
struct mem_ctl_info *mci;
struct igen6_imc *imc;
void __iomem *window;
int rc;
edac_dbg(2, "\n");
mchbar += mc * MCHBAR_SIZE;
window = ioremap(mchbar, MCHBAR_SIZE);
if (!window) {
igen6_printk(KERN_ERR, "Failed to ioremap 0x%llx\n", mchbar);
return -ENODEV;
}
layers[0].type = EDAC_MC_LAYER_CHANNEL;
layers[0].size = NUM_CHANNELS;
layers[0].is_virt_csrow = false;
layers[1].type = EDAC_MC_LAYER_SLOT;
layers[1].size = NUM_DIMMS;
layers[1].is_virt_csrow = true;
mci = edac_mc_alloc(mc, ARRAY_SIZE(layers), layers, 0);
if (!mci) {
rc = -ENOMEM;
goto fail;
}
mci->ctl_name = kasprintf(GFP_KERNEL, "Intel_client_SoC MC#%d", mc);
if (!mci->ctl_name) {
rc = -ENOMEM;
goto fail2;
}
mci->mtype_cap = MEM_FLAG_LPDDR4 | MEM_FLAG_DDR4;
mci->edac_ctl_cap = EDAC_FLAG_SECDED;
mci->edac_cap = EDAC_FLAG_SECDED;
mci->mod_name = EDAC_MOD_STR;
mci->dev_name = pci_name(pdev);
mci->pvt_info = &igen6_pvt->imc[mc];
imc = mci->pvt_info;
device_initialize(&imc->dev);
/*
* EDAC core uses mci->pdev(pointer of structure device) as
* memory controller ID. The client SoCs attach one or more
* memory controllers to single pci_dev (single pci_dev->dev
* can be for multiple memory controllers).
*
* To make mci->pdev unique, assign pci_dev->dev to mci->pdev
* for the first memory controller and assign a unique imc->dev
* to mci->pdev for each non-first memory controller.
*/
mci->pdev = mc ? &imc->dev : &pdev->dev;
imc->mc = mc;
imc->pdev = pdev;
imc->window = window;
igen6_reg_dump(imc);
rc = igen6_get_dimm_config(mci);
if (rc)
goto fail3;
rc = edac_mc_add_mc(mci);
if (rc) {
igen6_printk(KERN_ERR, "Failed to register mci#%d\n", mc);
goto fail3;
}
imc->mci = mci;
return 0;
fail3:
kfree(mci->ctl_name);
fail2:
edac_mc_free(mci);
fail:
iounmap(window);
return rc;
}
static void igen6_unregister_mcis(void)
{
struct mem_ctl_info *mci;
struct igen6_imc *imc;
int i;
edac_dbg(2, "\n");
for (i = 0; i < res_cfg->num_imc; i++) {
imc = &igen6_pvt->imc[i];
mci = imc->mci;
if (!mci)
continue;
edac_mc_del_mc(mci->pdev);
kfree(mci->ctl_name);
edac_mc_free(mci);
iounmap(imc->window);
}
}
static int igen6_mem_slice_setup(u64 mchbar)
{
struct igen6_imc *imc = &igen6_pvt->imc[0];
u64 base = mchbar + res_cfg->cmf_base;
u32 offset = res_cfg->ms_hash_offset;
u32 size = res_cfg->cmf_size;
u64 ms_s_size, ms_hash;
void __iomem *cmf;
int ms_l_map;
edac_dbg(2, "\n");
if (imc[0].size < imc[1].size) {
ms_s_size = imc[0].size;
ms_l_map = 1;
} else {
ms_s_size = imc[1].size;
ms_l_map = 0;
}
igen6_pvt->ms_s_size = ms_s_size;
igen6_pvt->ms_l_map = ms_l_map;
edac_dbg(0, "ms_s_size: %llu MiB, ms_l_map %d\n",
ms_s_size >> 20, ms_l_map);
if (!size)
return 0;
cmf = ioremap(base, size);
if (!cmf) {
igen6_printk(KERN_ERR, "Failed to ioremap cmf 0x%llx\n", base);
return -ENODEV;
}
ms_hash = readq(cmf + offset);
igen6_pvt->ms_hash = ms_hash;
edac_dbg(0, "MEM_SLICE_HASH: 0x%llx\n", ms_hash);
iounmap(cmf);
return 0;
}
static int register_err_handler(void)
{
int rc;
if (res_cfg->machine_check) {
mce_register_decode_chain(&ecclog_mce_dec);
return 0;
}
rc = register_nmi_handler(NMI_SERR, ecclog_nmi_handler,
0, IGEN6_NMI_NAME);
if (rc) {
igen6_printk(KERN_ERR, "Failed to register NMI handler\n");
return rc;
}
return 0;
}
static void unregister_err_handler(void)
{
if (res_cfg->machine_check) {
mce_unregister_decode_chain(&ecclog_mce_dec);
return;
}
unregister_nmi_handler(NMI_SERR, IGEN6_NMI_NAME);
}
static int igen6_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
u64 mchbar;
int i, rc;
edac_dbg(2, "\n");
igen6_pvt = kzalloc(sizeof(*igen6_pvt), GFP_KERNEL);
if (!igen6_pvt)
return -ENOMEM;
res_cfg = (struct res_config *)ent->driver_data;
rc = igen6_pci_setup(pdev, &mchbar);
if (rc)
goto fail;
for (i = 0; i < res_cfg->num_imc; i++) {
rc = igen6_register_mci(i, mchbar, pdev);
if (rc)
goto fail2;
}
if (res_cfg->num_imc > 1) {
rc = igen6_mem_slice_setup(mchbar);
if (rc)
goto fail2;
}
ecclog_pool = ecclog_gen_pool_create();
if (!ecclog_pool) {
rc = -ENOMEM;
goto fail2;
}
INIT_WORK(&ecclog_work, ecclog_work_cb);
init_irq_work(&ecclog_irq_work, ecclog_irq_work_cb);
rc = register_err_handler();
if (rc)
goto fail3;
/* Enable error reporting */
rc = errcmd_enable_error_reporting(true);
if (rc) {
igen6_printk(KERN_ERR, "Failed to enable error reporting\n");
goto fail4;
}
/* Check if any pending errors before/during the registration of the error handler */
ecclog_handler();
igen6_debug_setup();
return 0;
fail4:
unregister_nmi_handler(NMI_SERR, IGEN6_NMI_NAME);
fail3:
gen_pool_destroy(ecclog_pool);
fail2:
igen6_unregister_mcis();
fail:
kfree(igen6_pvt);
return rc;
}
static void igen6_remove(struct pci_dev *pdev)
{
edac_dbg(2, "\n");
igen6_debug_teardown();
errcmd_enable_error_reporting(false);
unregister_err_handler();
irq_work_sync(&ecclog_irq_work);
flush_work(&ecclog_work);
gen_pool_destroy(ecclog_pool);
igen6_unregister_mcis();
kfree(igen6_pvt);
}
static struct pci_driver igen6_driver = {
.name = EDAC_MOD_STR,
.probe = igen6_probe,
.remove = igen6_remove,
.id_table = igen6_pci_tbl,
};
static int __init igen6_init(void)
{
const char *owner;
int rc;
edac_dbg(2, "\n");
if (ghes_get_devices())
return -EBUSY;
owner = edac_get_owner();
if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
return -EBUSY;
edac_op_state = EDAC_OPSTATE_NMI;
rc = pci_register_driver(&igen6_driver);
if (rc)
return rc;
igen6_printk(KERN_INFO, "%s\n", IGEN6_REVISION);
return 0;
}
static void __exit igen6_exit(void)
{
edac_dbg(2, "\n");
pci_unregister_driver(&igen6_driver);
}
module_init(igen6_init);
module_exit(igen6_exit);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Qiuxu Zhuo");
MODULE_DESCRIPTION("MC Driver for Intel client SoC using In-Band ECC");
|