summaryrefslogtreecommitdiffstats
path: root/drivers/edac/pnd2_edac.c
blob: b1193be1ef1d8387bdda03407f17e149c4c87934 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Driver for Pondicherry2 memory controller.
 *
 * Copyright (c) 2016, Intel Corporation.
 *
 * [Derived from sb_edac.c]
 *
 * Translation of system physical addresses to DIMM addresses
 * is a two stage process:
 *
 * First the Pondicherry 2 memory controller handles slice and channel interleaving
 * in "sys2pmi()". This is (almost) completley common between platforms.
 *
 * Then a platform specific dunit (DIMM unit) completes the process to provide DIMM,
 * rank, bank, row and column using the appropriate "dunit_ops" functions/parameters.
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/edac.h>
#include <linux/mmzone.h>
#include <linux/smp.h>
#include <linux/bitmap.h>
#include <linux/math64.h>
#include <linux/mod_devicetable.h>
#include <asm/cpu_device_id.h>
#include <asm/intel-family.h>
#include <asm/processor.h>
#include <asm/mce.h>

#include "edac_mc.h"
#include "edac_module.h"
#include "pnd2_edac.h"

#define EDAC_MOD_STR		"pnd2_edac"

#define APL_NUM_CHANNELS	4
#define DNV_NUM_CHANNELS	2
#define DNV_MAX_DIMMS		2 /* Max DIMMs per channel */

enum type {
	APL,
	DNV, /* All requests go to PMI CH0 on each slice (CH1 disabled) */
};

struct dram_addr {
	int chan;
	int dimm;
	int rank;
	int bank;
	int row;
	int col;
};

struct pnd2_pvt {
	int dimm_geom[APL_NUM_CHANNELS];
	u64 tolm, tohm;
};

/*
 * System address space is divided into multiple regions with
 * different interleave rules in each. The as0/as1 regions
 * have no interleaving at all. The as2 region is interleaved
 * between two channels. The mot region is magic and may overlap
 * other regions, with its interleave rules taking precedence.
 * Addresses not in any of these regions are interleaved across
 * all four channels.
 */
static struct region {
	u64	base;
	u64	limit;
	u8	enabled;
} mot, as0, as1, as2;

static struct dunit_ops {
	char *name;
	enum type type;
	int pmiaddr_shift;
	int pmiidx_shift;
	int channels;
	int dimms_per_channel;
	int (*rd_reg)(int port, int off, int op, void *data, size_t sz, char *name);
	int (*get_registers)(void);
	int (*check_ecc)(void);
	void (*mk_region)(char *name, struct region *rp, void *asym);
	void (*get_dimm_config)(struct mem_ctl_info *mci);
	int (*pmi2mem)(struct mem_ctl_info *mci, u64 pmiaddr, u32 pmiidx,
				   struct dram_addr *daddr, char *msg);
} *ops;

static struct mem_ctl_info *pnd2_mci;

#define PND2_MSG_SIZE	256

/* Debug macros */
#define pnd2_printk(level, fmt, arg...)			\
	edac_printk(level, "pnd2", fmt, ##arg)

#define pnd2_mc_printk(mci, level, fmt, arg...)	\
	edac_mc_chipset_printk(mci, level, "pnd2", fmt, ##arg)

#define MOT_CHAN_INTLV_BIT_1SLC_2CH 12
#define MOT_CHAN_INTLV_BIT_2SLC_2CH 13
#define SELECTOR_DISABLED (-1)
#define _4GB (1ul << 32)

#define PMI_ADDRESS_WIDTH	31
#define PND_MAX_PHYS_BIT	39

#define APL_ASYMSHIFT		28
#define DNV_ASYMSHIFT		31
#define CH_HASH_MASK_LSB	6
#define SLICE_HASH_MASK_LSB	6
#define MOT_SLC_INTLV_BIT	12
#define LOG2_PMI_ADDR_GRANULARITY	5
#define MOT_SHIFT	24

#define GET_BITFIELD(v, lo, hi)	(((v) & GENMASK_ULL(hi, lo)) >> (lo))
#define U64_LSHIFT(val, s)	((u64)(val) << (s))

/*
 * On Apollo Lake we access memory controller registers via a
 * side-band mailbox style interface in a hidden PCI device
 * configuration space.
 */
static struct pci_bus	*p2sb_bus;
#define P2SB_DEVFN	PCI_DEVFN(0xd, 0)
#define P2SB_ADDR_OFF	0xd0
#define P2SB_DATA_OFF	0xd4
#define P2SB_STAT_OFF	0xd8
#define P2SB_ROUT_OFF	0xda
#define P2SB_EADD_OFF	0xdc
#define P2SB_HIDE_OFF	0xe1

#define P2SB_BUSY	1

#define P2SB_READ(size, off, ptr) \
	pci_bus_read_config_##size(p2sb_bus, P2SB_DEVFN, off, ptr)
#define P2SB_WRITE(size, off, val) \
	pci_bus_write_config_##size(p2sb_bus, P2SB_DEVFN, off, val)

static bool p2sb_is_busy(u16 *status)
{
	P2SB_READ(word, P2SB_STAT_OFF, status);

	return !!(*status & P2SB_BUSY);
}

static int _apl_rd_reg(int port, int off, int op, u32 *data)
{
	int retries = 0xff, ret;
	u16 status;
	u8 hidden;

	/* Unhide the P2SB device, if it's hidden */
	P2SB_READ(byte, P2SB_HIDE_OFF, &hidden);
	if (hidden)
		P2SB_WRITE(byte, P2SB_HIDE_OFF, 0);

	if (p2sb_is_busy(&status)) {
		ret = -EAGAIN;
		goto out;
	}

	P2SB_WRITE(dword, P2SB_ADDR_OFF, (port << 24) | off);
	P2SB_WRITE(dword, P2SB_DATA_OFF, 0);
	P2SB_WRITE(dword, P2SB_EADD_OFF, 0);
	P2SB_WRITE(word, P2SB_ROUT_OFF, 0);
	P2SB_WRITE(word, P2SB_STAT_OFF, (op << 8) | P2SB_BUSY);

	while (p2sb_is_busy(&status)) {
		if (retries-- == 0) {
			ret = -EBUSY;
			goto out;
		}
	}

	P2SB_READ(dword, P2SB_DATA_OFF, data);
	ret = (status >> 1) & 0x3;
out:
	/* Hide the P2SB device, if it was hidden before */
	if (hidden)
		P2SB_WRITE(byte, P2SB_HIDE_OFF, hidden);

	return ret;
}

static int apl_rd_reg(int port, int off, int op, void *data, size_t sz, char *name)
{
	int ret = 0;

	edac_dbg(2, "Read %s port=%x off=%x op=%x\n", name, port, off, op);
	switch (sz) {
	case 8:
		ret = _apl_rd_reg(port, off + 4, op, (u32 *)(data + 4));
		/* fall through */
	case 4:
		ret |= _apl_rd_reg(port, off, op, (u32 *)data);
		pnd2_printk(KERN_DEBUG, "%s=%x%08x ret=%d\n", name,
					sz == 8 ? *((u32 *)(data + 4)) : 0, *((u32 *)data), ret);
		break;
	}

	return ret;
}

static u64 get_mem_ctrl_hub_base_addr(void)
{
	struct b_cr_mchbar_lo_pci lo;
	struct b_cr_mchbar_hi_pci hi;
	struct pci_dev *pdev;

	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x1980, NULL);
	if (pdev) {
		pci_read_config_dword(pdev, 0x48, (u32 *)&lo);
		pci_read_config_dword(pdev, 0x4c, (u32 *)&hi);
		pci_dev_put(pdev);
	} else {
		return 0;
	}

	if (!lo.enable) {
		edac_dbg(2, "MMIO via memory controller hub base address is disabled!\n");
		return 0;
	}

	return U64_LSHIFT(hi.base, 32) | U64_LSHIFT(lo.base, 15);
}

static u64 get_sideband_reg_base_addr(void)
{
	struct pci_dev *pdev;
	u32 hi, lo;
	u8 hidden;

	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x19dd, NULL);
	if (pdev) {
		/* Unhide the P2SB device, if it's hidden */
		pci_read_config_byte(pdev, 0xe1, &hidden);
		if (hidden)
			pci_write_config_byte(pdev, 0xe1, 0);

		pci_read_config_dword(pdev, 0x10, &lo);
		pci_read_config_dword(pdev, 0x14, &hi);
		lo &= 0xfffffff0;

		/* Hide the P2SB device, if it was hidden before */
		if (hidden)
			pci_write_config_byte(pdev, 0xe1, hidden);

		pci_dev_put(pdev);
		return (U64_LSHIFT(hi, 32) | U64_LSHIFT(lo, 0));
	} else {
		return 0xfd000000;
	}
}

#define DNV_MCHBAR_SIZE  0x8000
#define DNV_SB_PORT_SIZE 0x10000
static int dnv_rd_reg(int port, int off, int op, void *data, size_t sz, char *name)
{
	struct pci_dev *pdev;
	char *base;
	u64 addr;
	unsigned long size;

	if (op == 4) {
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x1980, NULL);
		if (!pdev)
			return -ENODEV;

		pci_read_config_dword(pdev, off, data);
		pci_dev_put(pdev);
	} else {
		/* MMIO via memory controller hub base address */
		if (op == 0 && port == 0x4c) {
			addr = get_mem_ctrl_hub_base_addr();
			if (!addr)
				return -ENODEV;
			size = DNV_MCHBAR_SIZE;
		} else {
			/* MMIO via sideband register base address */
			addr = get_sideband_reg_base_addr();
			if (!addr)
				return -ENODEV;
			addr += (port << 16);
			size = DNV_SB_PORT_SIZE;
		}

		base = ioremap((resource_size_t)addr, size);
		if (!base)
			return -ENODEV;

		if (sz == 8)
			*(u32 *)(data + 4) = *(u32 *)(base + off + 4);
		*(u32 *)data = *(u32 *)(base + off);

		iounmap(base);
	}

	edac_dbg(2, "Read %s=%.8x_%.8x\n", name,
			(sz == 8) ? *(u32 *)(data + 4) : 0, *(u32 *)data);

	return 0;
}

#define RD_REGP(regp, regname, port)	\
	ops->rd_reg(port,					\
		regname##_offset,				\
		regname##_r_opcode,				\
		regp, sizeof(struct regname),	\
		#regname)

#define RD_REG(regp, regname)			\
	ops->rd_reg(regname ## _port,		\
		regname##_offset,				\
		regname##_r_opcode,				\
		regp, sizeof(struct regname),	\
		#regname)

static u64 top_lm, top_hm;
static bool two_slices;
static bool two_channels; /* Both PMI channels in one slice enabled */

static u8 sym_chan_mask;
static u8 asym_chan_mask;
static u8 chan_mask;

static int slice_selector = -1;
static int chan_selector = -1;
static u64 slice_hash_mask;
static u64 chan_hash_mask;

static void mk_region(char *name, struct region *rp, u64 base, u64 limit)
{
	rp->enabled = 1;
	rp->base = base;
	rp->limit = limit;
	edac_dbg(2, "Region:%s [%llx, %llx]\n", name, base, limit);
}

static void mk_region_mask(char *name, struct region *rp, u64 base, u64 mask)
{
	if (mask == 0) {
		pr_info(FW_BUG "MOT mask cannot be zero\n");
		return;
	}
	if (mask != GENMASK_ULL(PND_MAX_PHYS_BIT, __ffs(mask))) {
		pr_info(FW_BUG "MOT mask not power of two\n");
		return;
	}
	if (base & ~mask) {
		pr_info(FW_BUG "MOT region base/mask alignment error\n");
		return;
	}
	rp->base = base;
	rp->limit = (base | ~mask) & GENMASK_ULL(PND_MAX_PHYS_BIT, 0);
	rp->enabled = 1;
	edac_dbg(2, "Region:%s [%llx, %llx]\n", name, base, rp->limit);
}

static bool in_region(struct region *rp, u64 addr)
{
	if (!rp->enabled)
		return false;

	return rp->base <= addr && addr <= rp->limit;
}

static int gen_sym_mask(struct b_cr_slice_channel_hash *p)
{
	int mask = 0;

	if (!p->slice_0_mem_disabled)
		mask |= p->sym_slice0_channel_enabled;

	if (!p->slice_1_disabled)
		mask |= p->sym_slice1_channel_enabled << 2;

	if (p->ch_1_disabled || p->enable_pmi_dual_data_mode)
		mask &= 0x5;

	return mask;
}

static int gen_asym_mask(struct b_cr_slice_channel_hash *p,
			 struct b_cr_asym_mem_region0_mchbar *as0,
			 struct b_cr_asym_mem_region1_mchbar *as1,
			 struct b_cr_asym_2way_mem_region_mchbar *as2way)
{
	const int intlv[] = { 0x5, 0xA, 0x3, 0xC };
	int mask = 0;

	if (as2way->asym_2way_interleave_enable)
		mask = intlv[as2way->asym_2way_intlv_mode];
	if (as0->slice0_asym_enable)
		mask |= (1 << as0->slice0_asym_channel_select);
	if (as1->slice1_asym_enable)
		mask |= (4 << as1->slice1_asym_channel_select);
	if (p->slice_0_mem_disabled)
		mask &= 0xc;
	if (p->slice_1_disabled)
		mask &= 0x3;
	if (p->ch_1_disabled || p->enable_pmi_dual_data_mode)
		mask &= 0x5;

	return mask;
}

static struct b_cr_tolud_pci tolud;
static struct b_cr_touud_lo_pci touud_lo;
static struct b_cr_touud_hi_pci touud_hi;
static struct b_cr_asym_mem_region0_mchbar asym0;
static struct b_cr_asym_mem_region1_mchbar asym1;
static struct b_cr_asym_2way_mem_region_mchbar asym_2way;
static struct b_cr_mot_out_base_mchbar mot_base;
static struct b_cr_mot_out_mask_mchbar mot_mask;
static struct b_cr_slice_channel_hash chash;

/* Apollo Lake dunit */
/*
 * Validated on board with just two DIMMs in the [0] and [2] positions
 * in this array. Other port number matches documentation, but caution
 * advised.
 */
static const int apl_dports[APL_NUM_CHANNELS] = { 0x18, 0x10, 0x11, 0x19 };
static struct d_cr_drp0 drp0[APL_NUM_CHANNELS];

/* Denverton dunit */
static const int dnv_dports[DNV_NUM_CHANNELS] = { 0x10, 0x12 };
static struct d_cr_dsch dsch;
static struct d_cr_ecc_ctrl ecc_ctrl[DNV_NUM_CHANNELS];
static struct d_cr_drp drp[DNV_NUM_CHANNELS];
static struct d_cr_dmap dmap[DNV_NUM_CHANNELS];
static struct d_cr_dmap1 dmap1[DNV_NUM_CHANNELS];
static struct d_cr_dmap2 dmap2[DNV_NUM_CHANNELS];
static struct d_cr_dmap3 dmap3[DNV_NUM_CHANNELS];
static struct d_cr_dmap4 dmap4[DNV_NUM_CHANNELS];
static struct d_cr_dmap5 dmap5[DNV_NUM_CHANNELS];

static void apl_mk_region(char *name, struct region *rp, void *asym)
{
	struct b_cr_asym_mem_region0_mchbar *a = asym;

	mk_region(name, rp,
			  U64_LSHIFT(a->slice0_asym_base, APL_ASYMSHIFT),
			  U64_LSHIFT(a->slice0_asym_limit, APL_ASYMSHIFT) +
			  GENMASK_ULL(APL_ASYMSHIFT - 1, 0));
}

static void dnv_mk_region(char *name, struct region *rp, void *asym)
{
	struct b_cr_asym_mem_region_denverton *a = asym;

	mk_region(name, rp,
			  U64_LSHIFT(a->slice_asym_base, DNV_ASYMSHIFT),
			  U64_LSHIFT(a->slice_asym_limit, DNV_ASYMSHIFT) +
			  GENMASK_ULL(DNV_ASYMSHIFT - 1, 0));
}

static int apl_get_registers(void)
{
	int ret = -ENODEV;
	int i;

	if (RD_REG(&asym_2way, b_cr_asym_2way_mem_region_mchbar))
		return -ENODEV;

	/*
	 * RD_REGP() will fail for unpopulated or non-existent
	 * DIMM slots. Return success if we find at least one DIMM.
	 */
	for (i = 0; i < APL_NUM_CHANNELS; i++)
		if (!RD_REGP(&drp0[i], d_cr_drp0, apl_dports[i]))
			ret = 0;

	return ret;
}

static int dnv_get_registers(void)
{
	int i;

	if (RD_REG(&dsch, d_cr_dsch))
		return -ENODEV;

	for (i = 0; i < DNV_NUM_CHANNELS; i++)
		if (RD_REGP(&ecc_ctrl[i], d_cr_ecc_ctrl, dnv_dports[i]) ||
			RD_REGP(&drp[i], d_cr_drp, dnv_dports[i]) ||
			RD_REGP(&dmap[i], d_cr_dmap, dnv_dports[i]) ||
			RD_REGP(&dmap1[i], d_cr_dmap1, dnv_dports[i]) ||
			RD_REGP(&dmap2[i], d_cr_dmap2, dnv_dports[i]) ||
			RD_REGP(&dmap3[i], d_cr_dmap3, dnv_dports[i]) ||
			RD_REGP(&dmap4[i], d_cr_dmap4, dnv_dports[i]) ||
			RD_REGP(&dmap5[i], d_cr_dmap5, dnv_dports[i]))
			return -ENODEV;

	return 0;
}

/*
 * Read all the h/w config registers once here (they don't
 * change at run time. Figure out which address ranges have
 * which interleave characteristics.
 */
static int get_registers(void)
{
	const int intlv[] = { 10, 11, 12, 12 };

	if (RD_REG(&tolud, b_cr_tolud_pci) ||
		RD_REG(&touud_lo, b_cr_touud_lo_pci) ||
		RD_REG(&touud_hi, b_cr_touud_hi_pci) ||
		RD_REG(&asym0, b_cr_asym_mem_region0_mchbar) ||
		RD_REG(&asym1, b_cr_asym_mem_region1_mchbar) ||
		RD_REG(&mot_base, b_cr_mot_out_base_mchbar) ||
		RD_REG(&mot_mask, b_cr_mot_out_mask_mchbar) ||
		RD_REG(&chash, b_cr_slice_channel_hash))
		return -ENODEV;

	if (ops->get_registers())
		return -ENODEV;

	if (ops->type == DNV) {
		/* PMI channel idx (always 0) for asymmetric region */
		asym0.slice0_asym_channel_select = 0;
		asym1.slice1_asym_channel_select = 0;
		/* PMI channel bitmap (always 1) for symmetric region */
		chash.sym_slice0_channel_enabled = 0x1;
		chash.sym_slice1_channel_enabled = 0x1;
	}

	if (asym0.slice0_asym_enable)
		ops->mk_region("as0", &as0, &asym0);

	if (asym1.slice1_asym_enable)
		ops->mk_region("as1", &as1, &asym1);

	if (asym_2way.asym_2way_interleave_enable) {
		mk_region("as2way", &as2,
				  U64_LSHIFT(asym_2way.asym_2way_base, APL_ASYMSHIFT),
				  U64_LSHIFT(asym_2way.asym_2way_limit, APL_ASYMSHIFT) +
				  GENMASK_ULL(APL_ASYMSHIFT - 1, 0));
	}

	if (mot_base.imr_en) {
		mk_region_mask("mot", &mot,
					   U64_LSHIFT(mot_base.mot_out_base, MOT_SHIFT),
					   U64_LSHIFT(mot_mask.mot_out_mask, MOT_SHIFT));
	}

	top_lm = U64_LSHIFT(tolud.tolud, 20);
	top_hm = U64_LSHIFT(touud_hi.touud, 32) | U64_LSHIFT(touud_lo.touud, 20);

	two_slices = !chash.slice_1_disabled &&
				 !chash.slice_0_mem_disabled &&
				 (chash.sym_slice0_channel_enabled != 0) &&
				 (chash.sym_slice1_channel_enabled != 0);
	two_channels = !chash.ch_1_disabled &&
				 !chash.enable_pmi_dual_data_mode &&
				 ((chash.sym_slice0_channel_enabled == 3) ||
				 (chash.sym_slice1_channel_enabled == 3));

	sym_chan_mask = gen_sym_mask(&chash);
	asym_chan_mask = gen_asym_mask(&chash, &asym0, &asym1, &asym_2way);
	chan_mask = sym_chan_mask | asym_chan_mask;

	if (two_slices && !two_channels) {
		if (chash.hvm_mode)
			slice_selector = 29;
		else
			slice_selector = intlv[chash.interleave_mode];
	} else if (!two_slices && two_channels) {
		if (chash.hvm_mode)
			chan_selector = 29;
		else
			chan_selector = intlv[chash.interleave_mode];
	} else if (two_slices && two_channels) {
		if (chash.hvm_mode) {
			slice_selector = 29;
			chan_selector = 30;
		} else {
			slice_selector = intlv[chash.interleave_mode];
			chan_selector = intlv[chash.interleave_mode] + 1;
		}
	}

	if (two_slices) {
		if (!chash.hvm_mode)
			slice_hash_mask = chash.slice_hash_mask << SLICE_HASH_MASK_LSB;
		if (!two_channels)
			slice_hash_mask |= BIT_ULL(slice_selector);
	}

	if (two_channels) {
		if (!chash.hvm_mode)
			chan_hash_mask = chash.ch_hash_mask << CH_HASH_MASK_LSB;
		if (!two_slices)
			chan_hash_mask |= BIT_ULL(chan_selector);
	}

	return 0;
}

/* Get a contiguous memory address (remove the MMIO gap) */
static u64 remove_mmio_gap(u64 sys)
{
	return (sys < _4GB) ? sys : sys - (_4GB - top_lm);
}

/* Squeeze out one address bit, shift upper part down to fill gap */
static void remove_addr_bit(u64 *addr, int bitidx)
{
	u64	mask;

	if (bitidx == -1)
		return;

	mask = (1ull << bitidx) - 1;
	*addr = ((*addr >> 1) & ~mask) | (*addr & mask);
}

/* XOR all the bits from addr specified in mask */
static int hash_by_mask(u64 addr, u64 mask)
{
	u64 result = addr & mask;

	result = (result >> 32) ^ result;
	result = (result >> 16) ^ result;
	result = (result >> 8) ^ result;
	result = (result >> 4) ^ result;
	result = (result >> 2) ^ result;
	result = (result >> 1) ^ result;

	return (int)result & 1;
}

/*
 * First stage decode. Take the system address and figure out which
 * second stage will deal with it based on interleave modes.
 */
static int sys2pmi(const u64 addr, u32 *pmiidx, u64 *pmiaddr, char *msg)
{
	u64 contig_addr, contig_base, contig_offset, contig_base_adj;
	int mot_intlv_bit = two_slices ? MOT_CHAN_INTLV_BIT_2SLC_2CH :
						MOT_CHAN_INTLV_BIT_1SLC_2CH;
	int slice_intlv_bit_rm = SELECTOR_DISABLED;
	int chan_intlv_bit_rm = SELECTOR_DISABLED;
	/* Determine if address is in the MOT region. */
	bool mot_hit = in_region(&mot, addr);
	/* Calculate the number of symmetric regions enabled. */
	int sym_channels = hweight8(sym_chan_mask);

	/*
	 * The amount we need to shift the asym base can be determined by the
	 * number of enabled symmetric channels.
	 * NOTE: This can only work because symmetric memory is not supposed
	 * to do a 3-way interleave.
	 */
	int sym_chan_shift = sym_channels >> 1;

	/* Give up if address is out of range, or in MMIO gap */
	if (addr >= (1ul << PND_MAX_PHYS_BIT) ||
	   (addr >= top_lm && addr < _4GB) || addr >= top_hm) {
		snprintf(msg, PND2_MSG_SIZE, "Error address 0x%llx is not DRAM", addr);
		return -EINVAL;
	}

	/* Get a contiguous memory address (remove the MMIO gap) */
	contig_addr = remove_mmio_gap(addr);

	if (in_region(&as0, addr)) {
		*pmiidx = asym0.slice0_asym_channel_select;

		contig_base = remove_mmio_gap(as0.base);
		contig_offset = contig_addr - contig_base;
		contig_base_adj = (contig_base >> sym_chan_shift) *
						  ((chash.sym_slice0_channel_enabled >> (*pmiidx & 1)) & 1);
		contig_addr = contig_offset + ((sym_channels > 0) ? contig_base_adj : 0ull);
	} else if (in_region(&as1, addr)) {
		*pmiidx = 2u + asym1.slice1_asym_channel_select;

		contig_base = remove_mmio_gap(as1.base);
		contig_offset = contig_addr - contig_base;
		contig_base_adj = (contig_base >> sym_chan_shift) *
						  ((chash.sym_slice1_channel_enabled >> (*pmiidx & 1)) & 1);
		contig_addr = contig_offset + ((sym_channels > 0) ? contig_base_adj : 0ull);
	} else if (in_region(&as2, addr) && (asym_2way.asym_2way_intlv_mode == 0x3ul)) {
		bool channel1;

		mot_intlv_bit = MOT_CHAN_INTLV_BIT_1SLC_2CH;
		*pmiidx = (asym_2way.asym_2way_intlv_mode & 1) << 1;
		channel1 = mot_hit ? ((bool)((addr >> mot_intlv_bit) & 1)) :
			hash_by_mask(contig_addr, chan_hash_mask);
		*pmiidx |= (u32)channel1;

		contig_base = remove_mmio_gap(as2.base);
		chan_intlv_bit_rm = mot_hit ? mot_intlv_bit : chan_selector;
		contig_offset = contig_addr - contig_base;
		remove_addr_bit(&contig_offset, chan_intlv_bit_rm);
		contig_addr = (contig_base >> sym_chan_shift) + contig_offset;
	} else {
		/* Otherwise we're in normal, boring symmetric mode. */
		*pmiidx = 0u;

		if (two_slices) {
			bool slice1;

			if (mot_hit) {
				slice_intlv_bit_rm = MOT_SLC_INTLV_BIT;
				slice1 = (addr >> MOT_SLC_INTLV_BIT) & 1;
			} else {
				slice_intlv_bit_rm = slice_selector;
				slice1 = hash_by_mask(addr, slice_hash_mask);
			}

			*pmiidx = (u32)slice1 << 1;
		}

		if (two_channels) {
			bool channel1;

			mot_intlv_bit = two_slices ? MOT_CHAN_INTLV_BIT_2SLC_2CH :
							MOT_CHAN_INTLV_BIT_1SLC_2CH;

			if (mot_hit) {
				chan_intlv_bit_rm = mot_intlv_bit;
				channel1 = (addr >> mot_intlv_bit) & 1;
			} else {
				chan_intlv_bit_rm = chan_selector;
				channel1 = hash_by_mask(contig_addr, chan_hash_mask);
			}

			*pmiidx |= (u32)channel1;
		}
	}

	/* Remove the chan_selector bit first */
	remove_addr_bit(&contig_addr, chan_intlv_bit_rm);
	/* Remove the slice bit (we remove it second because it must be lower */
	remove_addr_bit(&contig_addr, slice_intlv_bit_rm);
	*pmiaddr = contig_addr;

	return 0;
}

/* Translate PMI address to memory (rank, row, bank, column) */
#define C(n) (0x10 | (n))	/* column */
#define B(n) (0x20 | (n))	/* bank */
#define R(n) (0x40 | (n))	/* row */
#define RS   (0x80)			/* rank */

/* addrdec values */
#define AMAP_1KB	0
#define AMAP_2KB	1
#define AMAP_4KB	2
#define AMAP_RSVD	3

/* dden values */
#define DEN_4Gb		0
#define DEN_8Gb		2

/* dwid values */
#define X8		0
#define X16		1

static struct dimm_geometry {
	u8	addrdec;
	u8	dden;
	u8	dwid;
	u8	rowbits, colbits;
	u16	bits[PMI_ADDRESS_WIDTH];
} dimms[] = {
	{
		.addrdec = AMAP_1KB, .dden = DEN_4Gb, .dwid = X16,
		.rowbits = 15, .colbits = 10,
		.bits = {
			C(2),  C(3),  C(4),  C(5),  C(6),  B(0),  B(1),  B(2),  R(0),
			R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),  R(8),  R(9),
			R(10), C(7),  C(8),  C(9),  R(11), RS,    R(12), R(13), R(14),
			0,     0,     0,     0
		}
	},
	{
		.addrdec = AMAP_1KB, .dden = DEN_4Gb, .dwid = X8,
		.rowbits = 16, .colbits = 10,
		.bits = {
			C(2),  C(3),  C(4),  C(5),  C(6),  B(0),  B(1),  B(2),  R(0),
			R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),  R(8),  R(9),
			R(10), C(7),  C(8),  C(9),  R(11), RS,    R(12), R(13), R(14),
			R(15), 0,     0,     0
		}
	},
	{
		.addrdec = AMAP_1KB, .dden = DEN_8Gb, .dwid = X16,
		.rowbits = 16, .colbits = 10,
		.bits = {
			C(2),  C(3),  C(4),  C(5),  C(6),  B(0),  B(1),  B(2),  R(0),
			R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),  R(8),  R(9),
			R(10), C(7),  C(8),  C(9),  R(11), RS,    R(12), R(13), R(14),
			R(15), 0,     0,     0
		}
	},
	{
		.addrdec = AMAP_1KB, .dden = DEN_8Gb, .dwid = X8,
		.rowbits = 16, .colbits = 11,
		.bits = {
			C(2),  C(3),  C(4),  C(5),  C(6),  B(0),  B(1),  B(2),  R(0),
			R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),  R(8),  R(9),
			R(10), C(7),  C(8),  C(9),  R(11), RS,    C(11), R(12), R(13),
			R(14), R(15), 0,     0
		}
	},
	{
		.addrdec = AMAP_2KB, .dden = DEN_4Gb, .dwid = X16,
		.rowbits = 15, .colbits = 10,
		.bits = {
			C(2),  C(3),  C(4),  C(5),  C(6),  C(7),  B(0),  B(1),  B(2),
			R(0),  R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),  R(8),
			R(9),  R(10), C(8),  C(9),  R(11), RS,    R(12), R(13), R(14),
			0,     0,     0,     0
		}
	},
	{
		.addrdec = AMAP_2KB, .dden = DEN_4Gb, .dwid = X8,
		.rowbits = 16, .colbits = 10,
		.bits = {
			C(2),  C(3),  C(4),  C(5),  C(6),  C(7),  B(0),  B(1),  B(2),
			R(0),  R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),  R(8),
			R(9),  R(10), C(8),  C(9),  R(11), RS,    R(12), R(13), R(14),
			R(15), 0,     0,     0
		}
	},
	{
		.addrdec = AMAP_2KB, .dden = DEN_8Gb, .dwid = X16,
		.rowbits = 16, .colbits = 10,
		.bits = {
			C(2),  C(3),  C(4),  C(5),  C(6),  C(7),  B(0),  B(1),  B(2),
			R(0),  R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),  R(8),
			R(9),  R(10), C(8),  C(9),  R(11), RS,    R(12), R(13), R(14),
			R(15), 0,     0,     0
		}
	},
	{
		.addrdec = AMAP_2KB, .dden = DEN_8Gb, .dwid = X8,
		.rowbits = 16, .colbits = 11,
		.bits = {
			C(2),  C(3),  C(4),  C(5),  C(6),  C(7),  B(0),  B(1),  B(2),
			R(0),  R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),  R(8),
			R(9),  R(10), C(8),  C(9),  R(11), RS,    C(11), R(12), R(13),
			R(14), R(15), 0,     0
		}
	},
	{
		.addrdec = AMAP_4KB, .dden = DEN_4Gb, .dwid = X16,
		.rowbits = 15, .colbits = 10,
		.bits = {
			C(2),  C(3),  C(4),  C(5),  C(6),  C(7),  C(8),  B(0),  B(1),
			B(2),  R(0),  R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),
			R(8),  R(9),  R(10), C(9),  R(11), RS,    R(12), R(13), R(14),
			0,     0,     0,     0
		}
	},
	{
		.addrdec = AMAP_4KB, .dden = DEN_4Gb, .dwid = X8,
		.rowbits = 16, .colbits = 10,
		.bits = {
			C(2),  C(3),  C(4),  C(5),  C(6),  C(7),  C(8),  B(0),  B(1),
			B(2),  R(0),  R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),
			R(8),  R(9),  R(10), C(9),  R(11), RS,    R(12), R(13), R(14),
			R(15), 0,     0,     0
		}
	},
	{
		.addrdec = AMAP_4KB, .dden = DEN_8Gb, .dwid = X16,
		.rowbits = 16, .colbits = 10,
		.bits = {
			C(2),  C(3),  C(4),  C(5),  C(6),  C(7),  C(8),  B(0),  B(1),
			B(2),  R(0),  R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),
			R(8),  R(9),  R(10), C(9),  R(11), RS,    R(12), R(13), R(14),
			R(15), 0,     0,     0
		}
	},
	{
		.addrdec = AMAP_4KB, .dden = DEN_8Gb, .dwid = X8,
		.rowbits = 16, .colbits = 11,
		.bits = {
			C(2),  C(3),  C(4),  C(5),  C(6),  C(7),  C(8),  B(0),  B(1),
			B(2),  R(0),  R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),
			R(8),  R(9),  R(10), C(9),  R(11), RS,    C(11), R(12), R(13),
			R(14), R(15), 0,     0
		}
	}
};

static int bank_hash(u64 pmiaddr, int idx, int shft)
{
	int bhash = 0;

	switch (idx) {
	case 0:
		bhash ^= ((pmiaddr >> (12 + shft)) ^ (pmiaddr >> (9 + shft))) & 1;
		break;
	case 1:
		bhash ^= (((pmiaddr >> (10 + shft)) ^ (pmiaddr >> (8 + shft))) & 1) << 1;
		bhash ^= ((pmiaddr >> 22) & 1) << 1;
		break;
	case 2:
		bhash ^= (((pmiaddr >> (13 + shft)) ^ (pmiaddr >> (11 + shft))) & 1) << 2;
		break;
	}

	return bhash;
}

static int rank_hash(u64 pmiaddr)
{
	return ((pmiaddr >> 16) ^ (pmiaddr >> 10)) & 1;
}

/* Second stage decode. Compute rank, bank, row & column. */
static int apl_pmi2mem(struct mem_ctl_info *mci, u64 pmiaddr, u32 pmiidx,
		       struct dram_addr *daddr, char *msg)
{
	struct d_cr_drp0 *cr_drp0 = &drp0[pmiidx];
	struct pnd2_pvt *pvt = mci->pvt_info;
	int g = pvt->dimm_geom[pmiidx];
	struct dimm_geometry *d = &dimms[g];
	int column = 0, bank = 0, row = 0, rank = 0;
	int i, idx, type, skiprs = 0;

	for (i = 0; i < PMI_ADDRESS_WIDTH; i++) {
		int	bit = (pmiaddr >> i) & 1;

		if (i + skiprs >= PMI_ADDRESS_WIDTH) {
			snprintf(msg, PND2_MSG_SIZE, "Bad dimm_geometry[] table\n");
			return -EINVAL;
		}

		type = d->bits[i + skiprs] & ~0xf;
		idx = d->bits[i + skiprs] & 0xf;

		/*
		 * On single rank DIMMs ignore the rank select bit
		 * and shift remainder of "bits[]" down one place.
		 */
		if (type == RS && (cr_drp0->rken0 + cr_drp0->rken1) == 1) {
			skiprs = 1;
			type = d->bits[i + skiprs] & ~0xf;
			idx = d->bits[i + skiprs] & 0xf;
		}

		switch (type) {
		case C(0):
			column |= (bit << idx);
			break;
		case B(0):
			bank |= (bit << idx);
			if (cr_drp0->bahen)
				bank ^= bank_hash(pmiaddr, idx, d->addrdec);
			break;
		case R(0):
			row |= (bit << idx);
			break;
		case RS:
			rank = bit;
			if (cr_drp0->rsien)
				rank ^= rank_hash(pmiaddr);
			break;
		default:
			if (bit) {
				snprintf(msg, PND2_MSG_SIZE, "Bad translation\n");
				return -EINVAL;
			}
			goto done;
		}
	}

done:
	daddr->col = column;
	daddr->bank = bank;
	daddr->row = row;
	daddr->rank = rank;
	daddr->dimm = 0;

	return 0;
}

/* Pluck bit "in" from pmiaddr and return value shifted to bit "out" */
#define dnv_get_bit(pmi, in, out) ((int)(((pmi) >> (in)) & 1u) << (out))

static int dnv_pmi2mem(struct mem_ctl_info *mci, u64 pmiaddr, u32 pmiidx,
					   struct dram_addr *daddr, char *msg)
{
	/* Rank 0 or 1 */
	daddr->rank = dnv_get_bit(pmiaddr, dmap[pmiidx].rs0 + 13, 0);
	/* Rank 2 or 3 */
	daddr->rank |= dnv_get_bit(pmiaddr, dmap[pmiidx].rs1 + 13, 1);

	/*
	 * Normally ranks 0,1 are DIMM0, and 2,3 are DIMM1, but we
	 * flip them if DIMM1 is larger than DIMM0.
	 */
	daddr->dimm = (daddr->rank >= 2) ^ drp[pmiidx].dimmflip;

	daddr->bank = dnv_get_bit(pmiaddr, dmap[pmiidx].ba0 + 6, 0);
	daddr->bank |= dnv_get_bit(pmiaddr, dmap[pmiidx].ba1 + 6, 1);
	daddr->bank |= dnv_get_bit(pmiaddr, dmap[pmiidx].bg0 + 6, 2);
	if (dsch.ddr4en)
		daddr->bank |= dnv_get_bit(pmiaddr, dmap[pmiidx].bg1 + 6, 3);
	if (dmap1[pmiidx].bxor) {
		if (dsch.ddr4en) {
			daddr->bank ^= dnv_get_bit(pmiaddr, dmap3[pmiidx].row6 + 6, 0);
			daddr->bank ^= dnv_get_bit(pmiaddr, dmap3[pmiidx].row7 + 6, 1);
			if (dsch.chan_width == 0)
				/* 64/72 bit dram channel width */
				daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca3 + 6, 2);
			else
				/* 32/40 bit dram channel width */
				daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca4 + 6, 2);
			daddr->bank ^= dnv_get_bit(pmiaddr, dmap2[pmiidx].row2 + 6, 3);
		} else {
			daddr->bank ^= dnv_get_bit(pmiaddr, dmap2[pmiidx].row2 + 6, 0);
			daddr->bank ^= dnv_get_bit(pmiaddr, dmap3[pmiidx].row6 + 6, 1);
			if (dsch.chan_width == 0)
				daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca3 + 6, 2);
			else
				daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca4 + 6, 2);
		}
	}

	daddr->row = dnv_get_bit(pmiaddr, dmap2[pmiidx].row0 + 6, 0);
	daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row1 + 6, 1);
	daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row2 + 6, 2);
	daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row3 + 6, 3);
	daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row4 + 6, 4);
	daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row5 + 6, 5);
	daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row6 + 6, 6);
	daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row7 + 6, 7);
	daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row8 + 6, 8);
	daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row9 + 6, 9);
	daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row10 + 6, 10);
	daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row11 + 6, 11);
	daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row12 + 6, 12);
	daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row13 + 6, 13);
	if (dmap4[pmiidx].row14 != 31)
		daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row14 + 6, 14);
	if (dmap4[pmiidx].row15 != 31)
		daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row15 + 6, 15);
	if (dmap4[pmiidx].row16 != 31)
		daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row16 + 6, 16);
	if (dmap4[pmiidx].row17 != 31)
		daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row17 + 6, 17);

	daddr->col = dnv_get_bit(pmiaddr, dmap5[pmiidx].ca3 + 6, 3);
	daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca4 + 6, 4);
	daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca5 + 6, 5);
	daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca6 + 6, 6);
	daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca7 + 6, 7);
	daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca8 + 6, 8);
	daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca9 + 6, 9);
	if (!dsch.ddr4en && dmap1[pmiidx].ca11 != 0x3f)
		daddr->col |= dnv_get_bit(pmiaddr, dmap1[pmiidx].ca11 + 13, 11);

	return 0;
}

static int check_channel(int ch)
{
	if (drp0[ch].dramtype != 0) {
		pnd2_printk(KERN_INFO, "Unsupported DIMM in channel %d\n", ch);
		return 1;
	} else if (drp0[ch].eccen == 0) {
		pnd2_printk(KERN_INFO, "ECC disabled on channel %d\n", ch);
		return 1;
	}
	return 0;
}

static int apl_check_ecc_active(void)
{
	int	i, ret = 0;

	/* Check dramtype and ECC mode for each present DIMM */
	for (i = 0; i < APL_NUM_CHANNELS; i++)
		if (chan_mask & BIT(i))
			ret += check_channel(i);
	return ret ? -EINVAL : 0;
}

#define DIMMS_PRESENT(d) ((d)->rken0 + (d)->rken1 + (d)->rken2 + (d)->rken3)

static int check_unit(int ch)
{
	struct d_cr_drp *d = &drp[ch];

	if (DIMMS_PRESENT(d) && !ecc_ctrl[ch].eccen) {
		pnd2_printk(KERN_INFO, "ECC disabled on channel %d\n", ch);
		return 1;
	}
	return 0;
}

static int dnv_check_ecc_active(void)
{
	int	i, ret = 0;

	for (i = 0; i < DNV_NUM_CHANNELS; i++)
		ret += check_unit(i);
	return ret ? -EINVAL : 0;
}

static int get_memory_error_data(struct mem_ctl_info *mci, u64 addr,
								 struct dram_addr *daddr, char *msg)
{
	u64	pmiaddr;
	u32	pmiidx;
	int	ret;

	ret = sys2pmi(addr, &pmiidx, &pmiaddr, msg);
	if (ret)
		return ret;

	pmiaddr >>= ops->pmiaddr_shift;
	/* pmi channel idx to dimm channel idx */
	pmiidx >>= ops->pmiidx_shift;
	daddr->chan = pmiidx;

	ret = ops->pmi2mem(mci, pmiaddr, pmiidx, daddr, msg);
	if (ret)
		return ret;

	edac_dbg(0, "SysAddr=%llx PmiAddr=%llx Channel=%d DIMM=%d Rank=%d Bank=%d Row=%d Column=%d\n",
			 addr, pmiaddr, daddr->chan, daddr->dimm, daddr->rank, daddr->bank, daddr->row, daddr->col);

	return 0;
}

static void pnd2_mce_output_error(struct mem_ctl_info *mci, const struct mce *m,
				  struct dram_addr *daddr)
{
	enum hw_event_mc_err_type tp_event;
	char *optype, msg[PND2_MSG_SIZE];
	bool ripv = m->mcgstatus & MCG_STATUS_RIPV;
	bool overflow = m->status & MCI_STATUS_OVER;
	bool uc_err = m->status & MCI_STATUS_UC;
	bool recov = m->status & MCI_STATUS_S;
	u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
	u32 mscod = GET_BITFIELD(m->status, 16, 31);
	u32 errcode = GET_BITFIELD(m->status, 0, 15);
	u32 optypenum = GET_BITFIELD(m->status, 4, 6);
	int rc;

	tp_event = uc_err ? (ripv ? HW_EVENT_ERR_FATAL : HW_EVENT_ERR_UNCORRECTED) :
						 HW_EVENT_ERR_CORRECTED;

	/*
	 * According with Table 15-9 of the Intel Architecture spec vol 3A,
	 * memory errors should fit in this mask:
	 *	000f 0000 1mmm cccc (binary)
	 * where:
	 *	f = Correction Report Filtering Bit. If 1, subsequent errors
	 *	    won't be shown
	 *	mmm = error type
	 *	cccc = channel
	 * If the mask doesn't match, report an error to the parsing logic
	 */
	if (!((errcode & 0xef80) == 0x80)) {
		optype = "Can't parse: it is not a mem";
	} else {
		switch (optypenum) {
		case 0:
			optype = "generic undef request error";
			break;
		case 1:
			optype = "memory read error";
			break;
		case 2:
			optype = "memory write error";
			break;
		case 3:
			optype = "addr/cmd error";
			break;
		case 4:
			optype = "memory scrubbing error";
			break;
		default:
			optype = "reserved";
			break;
		}
	}

	/* Only decode errors with an valid address (ADDRV) */
	if (!(m->status & MCI_STATUS_ADDRV))
		return;

	rc = get_memory_error_data(mci, m->addr, daddr, msg);
	if (rc)
		goto address_error;

	snprintf(msg, sizeof(msg),
		 "%s%s err_code:%04x:%04x channel:%d DIMM:%d rank:%d row:%d bank:%d col:%d",
		 overflow ? " OVERFLOW" : "", (uc_err && recov) ? " recoverable" : "", mscod,
		 errcode, daddr->chan, daddr->dimm, daddr->rank, daddr->row, daddr->bank, daddr->col);

	edac_dbg(0, "%s\n", msg);

	/* Call the helper to output message */
	edac_mc_handle_error(tp_event, mci, core_err_cnt, m->addr >> PAGE_SHIFT,
						 m->addr & ~PAGE_MASK, 0, daddr->chan, daddr->dimm, -1, optype, msg);

	return;

address_error:
	edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0, -1, -1, -1, msg, "");
}

static void apl_get_dimm_config(struct mem_ctl_info *mci)
{
	struct pnd2_pvt	*pvt = mci->pvt_info;
	struct dimm_info *dimm;
	struct d_cr_drp0 *d;
	u64	capacity;
	int	i, g;

	for (i = 0; i < APL_NUM_CHANNELS; i++) {
		if (!(chan_mask & BIT(i)))
			continue;

		dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers, i, 0, 0);
		if (!dimm) {
			edac_dbg(0, "No allocated DIMM for channel %d\n", i);
			continue;
		}

		d = &drp0[i];
		for (g = 0; g < ARRAY_SIZE(dimms); g++)
			if (dimms[g].addrdec == d->addrdec &&
			    dimms[g].dden == d->dden &&
			    dimms[g].dwid == d->dwid)
				break;

		if (g == ARRAY_SIZE(dimms)) {
			edac_dbg(0, "Channel %d: unrecognized DIMM\n", i);
			continue;
		}

		pvt->dimm_geom[i] = g;
		capacity = (d->rken0 + d->rken1) * 8 * (1ul << dimms[g].rowbits) *
				   (1ul << dimms[g].colbits);
		edac_dbg(0, "Channel %d: %lld MByte DIMM\n", i, capacity >> (20 - 3));
		dimm->nr_pages = MiB_TO_PAGES(capacity >> (20 - 3));
		dimm->grain = 32;
		dimm->dtype = (d->dwid == 0) ? DEV_X8 : DEV_X16;
		dimm->mtype = MEM_DDR3;
		dimm->edac_mode = EDAC_SECDED;
		snprintf(dimm->label, sizeof(dimm->label), "Slice#%d_Chan#%d", i / 2, i % 2);
	}
}

static const int dnv_dtypes[] = {
	DEV_X8, DEV_X4, DEV_X16, DEV_UNKNOWN
};

static void dnv_get_dimm_config(struct mem_ctl_info *mci)
{
	int	i, j, ranks_of_dimm[DNV_MAX_DIMMS], banks, rowbits, colbits, memtype;
	struct dimm_info *dimm;
	struct d_cr_drp *d;
	u64	capacity;

	if (dsch.ddr4en) {
		memtype = MEM_DDR4;
		banks = 16;
		colbits = 10;
	} else {
		memtype = MEM_DDR3;
		banks = 8;
	}

	for (i = 0; i < DNV_NUM_CHANNELS; i++) {
		if (dmap4[i].row14 == 31)
			rowbits = 14;
		else if (dmap4[i].row15 == 31)
			rowbits = 15;
		else if (dmap4[i].row16 == 31)
			rowbits = 16;
		else if (dmap4[i].row17 == 31)
			rowbits = 17;
		else
			rowbits = 18;

		if (memtype == MEM_DDR3) {
			if (dmap1[i].ca11 != 0x3f)
				colbits = 12;
			else
				colbits = 10;
		}

		d = &drp[i];
		/* DIMM0 is present if rank0 and/or rank1 is enabled */
		ranks_of_dimm[0] = d->rken0 + d->rken1;
		/* DIMM1 is present if rank2 and/or rank3 is enabled */
		ranks_of_dimm[1] = d->rken2 + d->rken3;

		for (j = 0; j < DNV_MAX_DIMMS; j++) {
			if (!ranks_of_dimm[j])
				continue;

			dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers, i, j, 0);
			if (!dimm) {
				edac_dbg(0, "No allocated DIMM for channel %d DIMM %d\n", i, j);
				continue;
			}

			capacity = ranks_of_dimm[j] * banks * (1ul << rowbits) * (1ul << colbits);
			edac_dbg(0, "Channel %d DIMM %d: %lld MByte DIMM\n", i, j, capacity >> (20 - 3));
			dimm->nr_pages = MiB_TO_PAGES(capacity >> (20 - 3));
			dimm->grain = 32;
			dimm->dtype = dnv_dtypes[j ? d->dimmdwid0 : d->dimmdwid1];
			dimm->mtype = memtype;
			dimm->edac_mode = EDAC_SECDED;
			snprintf(dimm->label, sizeof(dimm->label), "Chan#%d_DIMM#%d", i, j);
		}
	}
}

static int pnd2_register_mci(struct mem_ctl_info **ppmci)
{
	struct edac_mc_layer layers[2];
	struct mem_ctl_info *mci;
	struct pnd2_pvt *pvt;
	int rc;

	rc = ops->check_ecc();
	if (rc < 0)
		return rc;

	/* Allocate a new MC control structure */
	layers[0].type = EDAC_MC_LAYER_CHANNEL;
	layers[0].size = ops->channels;
	layers[0].is_virt_csrow = false;
	layers[1].type = EDAC_MC_LAYER_SLOT;
	layers[1].size = ops->dimms_per_channel;
	layers[1].is_virt_csrow = true;
	mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt));
	if (!mci)
		return -ENOMEM;

	pvt = mci->pvt_info;
	memset(pvt, 0, sizeof(*pvt));

	mci->mod_name = EDAC_MOD_STR;
	mci->dev_name = ops->name;
	mci->ctl_name = "Pondicherry2";

	/* Get dimm basic config and the memory layout */
	ops->get_dimm_config(mci);

	if (edac_mc_add_mc(mci)) {
		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
		edac_mc_free(mci);
		return -EINVAL;
	}

	*ppmci = mci;

	return 0;
}

static void pnd2_unregister_mci(struct mem_ctl_info *mci)
{
	if (unlikely(!mci || !mci->pvt_info)) {
		pnd2_printk(KERN_ERR, "Couldn't find mci handler\n");
		return;
	}

	/* Remove MC sysfs nodes */
	edac_mc_del_mc(NULL);
	edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
	edac_mc_free(mci);
}

/*
 * Callback function registered with core kernel mce code.
 * Called once for each logged error.
 */
static int pnd2_mce_check_error(struct notifier_block *nb, unsigned long val, void *data)
{
	struct mce *mce = (struct mce *)data;
	struct mem_ctl_info *mci;
	struct dram_addr daddr;
	char *type;

	if (edac_get_report_status() == EDAC_REPORTING_DISABLED)
		return NOTIFY_DONE;

	mci = pnd2_mci;
	if (!mci)
		return NOTIFY_DONE;

	/*
	 * Just let mcelog handle it if the error is
	 * outside the memory controller. A memory error
	 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
	 * bit 12 has an special meaning.
	 */
	if ((mce->status & 0xefff) >> 7 != 1)
		return NOTIFY_DONE;

	if (mce->mcgstatus & MCG_STATUS_MCIP)
		type = "Exception";
	else
		type = "Event";

	pnd2_mc_printk(mci, KERN_INFO, "HANDLING MCE MEMORY ERROR\n");
	pnd2_mc_printk(mci, KERN_INFO, "CPU %u: Machine Check %s: %llx Bank %u: %llx\n",
				   mce->extcpu, type, mce->mcgstatus, mce->bank, mce->status);
	pnd2_mc_printk(mci, KERN_INFO, "TSC %llx ", mce->tsc);
	pnd2_mc_printk(mci, KERN_INFO, "ADDR %llx ", mce->addr);
	pnd2_mc_printk(mci, KERN_INFO, "MISC %llx ", mce->misc);
	pnd2_mc_printk(mci, KERN_INFO, "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n",
				   mce->cpuvendor, mce->cpuid, mce->time, mce->socketid, mce->apicid);

	pnd2_mce_output_error(mci, mce, &daddr);

	/* Advice mcelog that the error were handled */
	return NOTIFY_STOP;
}

static struct notifier_block pnd2_mce_dec = {
	.notifier_call	= pnd2_mce_check_error,
};

#ifdef CONFIG_EDAC_DEBUG
/*
 * Write an address to this file to exercise the address decode
 * logic in this driver.
 */
static u64 pnd2_fake_addr;
#define PND2_BLOB_SIZE 1024
static char pnd2_result[PND2_BLOB_SIZE];
static struct dentry *pnd2_test;
static struct debugfs_blob_wrapper pnd2_blob = {
	.data = pnd2_result,
	.size = 0
};

static int debugfs_u64_set(void *data, u64 val)
{
	struct dram_addr daddr;
	struct mce m;

	*(u64 *)data = val;
	m.mcgstatus = 0;
	/* ADDRV + MemRd + Unknown channel */
	m.status = MCI_STATUS_ADDRV + 0x9f;
	m.addr = val;
	pnd2_mce_output_error(pnd2_mci, &m, &daddr);
	snprintf(pnd2_blob.data, PND2_BLOB_SIZE,
			 "SysAddr=%llx Channel=%d DIMM=%d Rank=%d Bank=%d Row=%d Column=%d\n",
			 m.addr, daddr.chan, daddr.dimm, daddr.rank, daddr.bank, daddr.row, daddr.col);
	pnd2_blob.size = strlen(pnd2_blob.data);

	return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n");

static void setup_pnd2_debug(void)
{
	pnd2_test = edac_debugfs_create_dir("pnd2_test");
	edac_debugfs_create_file("pnd2_debug_addr", 0200, pnd2_test,
							 &pnd2_fake_addr, &fops_u64_wo);
	debugfs_create_blob("pnd2_debug_results", 0400, pnd2_test, &pnd2_blob);
}

static void teardown_pnd2_debug(void)
{
	debugfs_remove_recursive(pnd2_test);
}
#else
static void setup_pnd2_debug(void)	{}
static void teardown_pnd2_debug(void)	{}
#endif /* CONFIG_EDAC_DEBUG */


static int pnd2_probe(void)
{
	int rc;

	edac_dbg(2, "\n");
	rc = get_registers();
	if (rc)
		return rc;

	return pnd2_register_mci(&pnd2_mci);
}

static void pnd2_remove(void)
{
	edac_dbg(0, "\n");
	pnd2_unregister_mci(pnd2_mci);
}

static struct dunit_ops apl_ops = {
		.name			= "pnd2/apl",
		.type			= APL,
		.pmiaddr_shift		= LOG2_PMI_ADDR_GRANULARITY,
		.pmiidx_shift		= 0,
		.channels		= APL_NUM_CHANNELS,
		.dimms_per_channel	= 1,
		.rd_reg			= apl_rd_reg,
		.get_registers		= apl_get_registers,
		.check_ecc		= apl_check_ecc_active,
		.mk_region		= apl_mk_region,
		.get_dimm_config	= apl_get_dimm_config,
		.pmi2mem		= apl_pmi2mem,
};

static struct dunit_ops dnv_ops = {
		.name			= "pnd2/dnv",
		.type			= DNV,
		.pmiaddr_shift		= 0,
		.pmiidx_shift		= 1,
		.channels		= DNV_NUM_CHANNELS,
		.dimms_per_channel	= 2,
		.rd_reg			= dnv_rd_reg,
		.get_registers		= dnv_get_registers,
		.check_ecc		= dnv_check_ecc_active,
		.mk_region		= dnv_mk_region,
		.get_dimm_config	= dnv_get_dimm_config,
		.pmi2mem		= dnv_pmi2mem,
};

static const struct x86_cpu_id pnd2_cpuids[] = {
	{ X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_GOLDMONT, 0, (kernel_ulong_t)&apl_ops },
	{ X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_GOLDMONT_D, 0, (kernel_ulong_t)&dnv_ops },
	{ }
};
MODULE_DEVICE_TABLE(x86cpu, pnd2_cpuids);

static int __init pnd2_init(void)
{
	const struct x86_cpu_id *id;
	const char *owner;
	int rc;

	edac_dbg(2, "\n");

	owner = edac_get_owner();
	if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
		return -EBUSY;

	id = x86_match_cpu(pnd2_cpuids);
	if (!id)
		return -ENODEV;

	ops = (struct dunit_ops *)id->driver_data;

	if (ops->type == APL) {
		p2sb_bus = pci_find_bus(0, 0);
		if (!p2sb_bus)
			return -ENODEV;
	}

	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
	opstate_init();

	rc = pnd2_probe();
	if (rc < 0) {
		pnd2_printk(KERN_ERR, "Failed to register device with error %d.\n", rc);
		return rc;
	}

	if (!pnd2_mci)
		return -ENODEV;

	mce_register_decode_chain(&pnd2_mce_dec);
	setup_pnd2_debug();

	return 0;
}

static void __exit pnd2_exit(void)
{
	edac_dbg(2, "\n");
	teardown_pnd2_debug();
	mce_unregister_decode_chain(&pnd2_mce_dec);
	pnd2_remove();
}

module_init(pnd2_init);
module_exit(pnd2_exit);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");

MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Tony Luck");
MODULE_DESCRIPTION("MC Driver for Intel SoC using Pondicherry memory controller");