summaryrefslogtreecommitdiffstats
path: root/drivers/edac/sb_edac.c
blob: 1522d4aa2ca62a94149746415b4bff1ed194d2c2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
// SPDX-License-Identifier: GPL-2.0-only
/* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
 *
 * This driver supports the memory controllers found on the Intel
 * processor family Sandy Bridge.
 *
 * Copyright (c) 2011 by:
 *	 Mauro Carvalho Chehab
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/edac.h>
#include <linux/mmzone.h>
#include <linux/smp.h>
#include <linux/bitmap.h>
#include <linux/math64.h>
#include <linux/mod_devicetable.h>
#include <asm/cpu_device_id.h>
#include <asm/intel-family.h>
#include <asm/processor.h>
#include <asm/mce.h>

#include "edac_module.h"

/* Static vars */
static LIST_HEAD(sbridge_edac_list);

/*
 * Alter this version for the module when modifications are made
 */
#define SBRIDGE_REVISION    " Ver: 1.1.2 "
#define EDAC_MOD_STR	    "sb_edac"

/*
 * Debug macros
 */
#define sbridge_printk(level, fmt, arg...)			\
	edac_printk(level, "sbridge", fmt, ##arg)

#define sbridge_mc_printk(mci, level, fmt, arg...)		\
	edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)

/*
 * Get a bit field at register value <v>, from bit <lo> to bit <hi>
 */
#define GET_BITFIELD(v, lo, hi)	\
	(((v) & GENMASK_ULL(hi, lo)) >> (lo))

/* Devices 12 Function 6, Offsets 0x80 to 0xcc */
static const u32 sbridge_dram_rule[] = {
	0x80, 0x88, 0x90, 0x98, 0xa0,
	0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
};

static const u32 ibridge_dram_rule[] = {
	0x60, 0x68, 0x70, 0x78, 0x80,
	0x88, 0x90, 0x98, 0xa0,	0xa8,
	0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
	0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
};

static const u32 knl_dram_rule[] = {
	0x60, 0x68, 0x70, 0x78, 0x80, /* 0-4 */
	0x88, 0x90, 0x98, 0xa0, 0xa8, /* 5-9 */
	0xb0, 0xb8, 0xc0, 0xc8, 0xd0, /* 10-14 */
	0xd8, 0xe0, 0xe8, 0xf0, 0xf8, /* 15-19 */
	0x100, 0x108, 0x110, 0x118,   /* 20-23 */
};

#define DRAM_RULE_ENABLE(reg)	GET_BITFIELD(reg, 0,  0)
#define A7MODE(reg)		GET_BITFIELD(reg, 26, 26)

static char *show_dram_attr(u32 attr)
{
	switch (attr) {
		case 0:
			return "DRAM";
		case 1:
			return "MMCFG";
		case 2:
			return "NXM";
		default:
			return "unknown";
	}
}

static const u32 sbridge_interleave_list[] = {
	0x84, 0x8c, 0x94, 0x9c, 0xa4,
	0xac, 0xb4, 0xbc, 0xc4, 0xcc,
};

static const u32 ibridge_interleave_list[] = {
	0x64, 0x6c, 0x74, 0x7c, 0x84,
	0x8c, 0x94, 0x9c, 0xa4, 0xac,
	0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
	0xdc, 0xe4, 0xec, 0xf4, 0xfc,
};

static const u32 knl_interleave_list[] = {
	0x64, 0x6c, 0x74, 0x7c, 0x84, /* 0-4 */
	0x8c, 0x94, 0x9c, 0xa4, 0xac, /* 5-9 */
	0xb4, 0xbc, 0xc4, 0xcc, 0xd4, /* 10-14 */
	0xdc, 0xe4, 0xec, 0xf4, 0xfc, /* 15-19 */
	0x104, 0x10c, 0x114, 0x11c,   /* 20-23 */
};
#define MAX_INTERLEAVE							\
	(max_t(unsigned int, ARRAY_SIZE(sbridge_interleave_list),	\
	       max_t(unsigned int, ARRAY_SIZE(ibridge_interleave_list),	\
		     ARRAY_SIZE(knl_interleave_list))))

struct interleave_pkg {
	unsigned char start;
	unsigned char end;
};

static const struct interleave_pkg sbridge_interleave_pkg[] = {
	{ 0, 2 },
	{ 3, 5 },
	{ 8, 10 },
	{ 11, 13 },
	{ 16, 18 },
	{ 19, 21 },
	{ 24, 26 },
	{ 27, 29 },
};

static const struct interleave_pkg ibridge_interleave_pkg[] = {
	{ 0, 3 },
	{ 4, 7 },
	{ 8, 11 },
	{ 12, 15 },
	{ 16, 19 },
	{ 20, 23 },
	{ 24, 27 },
	{ 28, 31 },
};

static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
			  int interleave)
{
	return GET_BITFIELD(reg, table[interleave].start,
			    table[interleave].end);
}

/* Devices 12 Function 7 */

#define TOLM		0x80
#define TOHM		0x84
#define HASWELL_TOLM	0xd0
#define HASWELL_TOHM_0	0xd4
#define HASWELL_TOHM_1	0xd8
#define KNL_TOLM	0xd0
#define KNL_TOHM_0	0xd4
#define KNL_TOHM_1	0xd8

#define GET_TOLM(reg)		((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff)
#define GET_TOHM(reg)		((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)

/* Device 13 Function 6 */

#define SAD_TARGET	0xf0

#define SOURCE_ID(reg)		GET_BITFIELD(reg, 9, 11)

#define SOURCE_ID_KNL(reg)	GET_BITFIELD(reg, 12, 14)

#define SAD_CONTROL	0xf4

/* Device 14 function 0 */

static const u32 tad_dram_rule[] = {
	0x40, 0x44, 0x48, 0x4c,
	0x50, 0x54, 0x58, 0x5c,
	0x60, 0x64, 0x68, 0x6c,
};
#define MAX_TAD	ARRAY_SIZE(tad_dram_rule)

#define TAD_LIMIT(reg)		((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
#define TAD_SOCK(reg)		GET_BITFIELD(reg, 10, 11)
#define TAD_CH(reg)		GET_BITFIELD(reg,  8,  9)
#define TAD_TGT3(reg)		GET_BITFIELD(reg,  6,  7)
#define TAD_TGT2(reg)		GET_BITFIELD(reg,  4,  5)
#define TAD_TGT1(reg)		GET_BITFIELD(reg,  2,  3)
#define TAD_TGT0(reg)		GET_BITFIELD(reg,  0,  1)

/* Device 15, function 0 */

#define MCMTR			0x7c
#define KNL_MCMTR		0x624

#define IS_ECC_ENABLED(mcmtr)		GET_BITFIELD(mcmtr, 2, 2)
#define IS_LOCKSTEP_ENABLED(mcmtr)	GET_BITFIELD(mcmtr, 1, 1)
#define IS_CLOSE_PG(mcmtr)		GET_BITFIELD(mcmtr, 0, 0)

/* Device 15, function 1 */

#define RASENABLES		0xac
#define IS_MIRROR_ENABLED(reg)		GET_BITFIELD(reg, 0, 0)

/* Device 15, functions 2-5 */

static const int mtr_regs[] = {
	0x80, 0x84, 0x88,
};

static const int knl_mtr_reg = 0xb60;

#define RANK_DISABLE(mtr)		GET_BITFIELD(mtr, 16, 19)
#define IS_DIMM_PRESENT(mtr)		GET_BITFIELD(mtr, 14, 14)
#define RANK_CNT_BITS(mtr)		GET_BITFIELD(mtr, 12, 13)
#define RANK_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 2, 4)
#define COL_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 0, 1)

static const u32 tad_ch_nilv_offset[] = {
	0x90, 0x94, 0x98, 0x9c,
	0xa0, 0xa4, 0xa8, 0xac,
	0xb0, 0xb4, 0xb8, 0xbc,
};
#define CHN_IDX_OFFSET(reg)		GET_BITFIELD(reg, 28, 29)
#define TAD_OFFSET(reg)			(GET_BITFIELD(reg,  6, 25) << 26)

static const u32 rir_way_limit[] = {
	0x108, 0x10c, 0x110, 0x114, 0x118,
};
#define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)

#define IS_RIR_VALID(reg)	GET_BITFIELD(reg, 31, 31)
#define RIR_WAY(reg)		GET_BITFIELD(reg, 28, 29)

#define MAX_RIR_WAY	8

static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
	{ 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
	{ 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
	{ 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
	{ 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
	{ 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
};

#define RIR_RNK_TGT(type, reg) (((type) == BROADWELL) ? \
	GET_BITFIELD(reg, 20, 23) : GET_BITFIELD(reg, 16, 19))

#define RIR_OFFSET(type, reg) (((type) == HASWELL || (type) == BROADWELL) ? \
	GET_BITFIELD(reg,  2, 15) : GET_BITFIELD(reg,  2, 14))

/* Device 16, functions 2-7 */

/*
 * FIXME: Implement the error count reads directly
 */

#define RANK_ODD_OV(reg)		GET_BITFIELD(reg, 31, 31)
#define RANK_ODD_ERR_CNT(reg)		GET_BITFIELD(reg, 16, 30)
#define RANK_EVEN_OV(reg)		GET_BITFIELD(reg, 15, 15)
#define RANK_EVEN_ERR_CNT(reg)		GET_BITFIELD(reg,  0, 14)

#if 0 /* Currently unused*/
static const u32 correrrcnt[] = {
	0x104, 0x108, 0x10c, 0x110,
};

static const u32 correrrthrsld[] = {
	0x11c, 0x120, 0x124, 0x128,
};
#endif

#define RANK_ODD_ERR_THRSLD(reg)	GET_BITFIELD(reg, 16, 30)
#define RANK_EVEN_ERR_THRSLD(reg)	GET_BITFIELD(reg,  0, 14)


/* Device 17, function 0 */

#define SB_RANK_CFG_A		0x0328

#define IB_RANK_CFG_A		0x0320

/*
 * sbridge structs
 */

#define NUM_CHANNELS		6	/* Max channels per MC */
#define MAX_DIMMS		3	/* Max DIMMS per channel */
#define KNL_MAX_CHAS		38	/* KNL max num. of Cache Home Agents */
#define KNL_MAX_CHANNELS	6	/* KNL max num. of PCI channels */
#define KNL_MAX_EDCS		8	/* Embedded DRAM controllers */
#define CHANNEL_UNSPECIFIED	0xf	/* Intel IA32 SDM 15-14 */

enum type {
	SANDY_BRIDGE,
	IVY_BRIDGE,
	HASWELL,
	BROADWELL,
	KNIGHTS_LANDING,
};

enum domain {
	IMC0 = 0,
	IMC1,
	SOCK,
};

enum mirroring_mode {
	NON_MIRRORING,
	ADDR_RANGE_MIRRORING,
	FULL_MIRRORING,
};

struct sbridge_pvt;
struct sbridge_info {
	enum type	type;
	u32		mcmtr;
	u32		rankcfgr;
	u64		(*get_tolm)(struct sbridge_pvt *pvt);
	u64		(*get_tohm)(struct sbridge_pvt *pvt);
	u64		(*rir_limit)(u32 reg);
	u64		(*sad_limit)(u32 reg);
	u32		(*interleave_mode)(u32 reg);
	u32		(*dram_attr)(u32 reg);
	const u32	*dram_rule;
	const u32	*interleave_list;
	const struct interleave_pkg *interleave_pkg;
	u8		max_sad;
	u8		(*get_node_id)(struct sbridge_pvt *pvt);
	u8		(*get_ha)(u8 bank);
	enum mem_type	(*get_memory_type)(struct sbridge_pvt *pvt);
	enum dev_type	(*get_width)(struct sbridge_pvt *pvt, u32 mtr);
	struct pci_dev	*pci_vtd;
};

struct sbridge_channel {
	u32		ranks;
	u32		dimms;
};

struct pci_id_descr {
	int			dev_id;
	int			optional;
	enum domain		dom;
};

struct pci_id_table {
	const struct pci_id_descr	*descr;
	int				n_devs_per_imc;
	int				n_devs_per_sock;
	int				n_imcs_per_sock;
	enum type			type;
};

struct sbridge_dev {
	struct list_head	list;
	int			seg;
	u8			bus, mc;
	u8			node_id, source_id;
	struct pci_dev		**pdev;
	enum domain		dom;
	int			n_devs;
	int			i_devs;
	struct mem_ctl_info	*mci;
};

struct knl_pvt {
	struct pci_dev          *pci_cha[KNL_MAX_CHAS];
	struct pci_dev          *pci_channel[KNL_MAX_CHANNELS];
	struct pci_dev          *pci_mc0;
	struct pci_dev          *pci_mc1;
	struct pci_dev          *pci_mc0_misc;
	struct pci_dev          *pci_mc1_misc;
	struct pci_dev          *pci_mc_info; /* tolm, tohm */
};

struct sbridge_pvt {
	/* Devices per socket */
	struct pci_dev		*pci_ddrio;
	struct pci_dev		*pci_sad0, *pci_sad1;
	struct pci_dev		*pci_br0, *pci_br1;
	/* Devices per memory controller */
	struct pci_dev		*pci_ha, *pci_ta, *pci_ras;
	struct pci_dev		*pci_tad[NUM_CHANNELS];

	struct sbridge_dev	*sbridge_dev;

	struct sbridge_info	info;
	struct sbridge_channel	channel[NUM_CHANNELS];

	/* Memory type detection */
	bool			is_cur_addr_mirrored, is_lockstep, is_close_pg;
	bool			is_chan_hash;
	enum mirroring_mode	mirror_mode;

	/* Memory description */
	u64			tolm, tohm;
	struct knl_pvt knl;
};

#define PCI_DESCR(device_id, opt, domain)	\
	.dev_id = (device_id),		\
	.optional = opt,	\
	.dom = domain

static const struct pci_id_descr pci_dev_descr_sbridge[] = {
		/* Processor Home Agent */
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0,   0, IMC0) },

		/* Memory controller */
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA,    0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS,   0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0,  0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1,  0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2,  0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3,  0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1, SOCK) },

		/* System Address Decoder */
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0,      0, SOCK) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1,      0, SOCK) },

		/* Broadcast Registers */
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR,        0, SOCK) },
};

#define PCI_ID_TABLE_ENTRY(A, N, M, T) {	\
	.descr = A,			\
	.n_devs_per_imc = N,	\
	.n_devs_per_sock = ARRAY_SIZE(A),	\
	.n_imcs_per_sock = M,	\
	.type = T			\
}

static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
	PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge, ARRAY_SIZE(pci_dev_descr_sbridge), 1, SANDY_BRIDGE),
	{0,}			/* 0 terminated list. */
};

/* This changes depending if 1HA or 2HA:
 * 1HA:
 *	0x0eb8 (17.0) is DDRIO0
 * 2HA:
 *	0x0ebc (17.4) is DDRIO0
 */
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0	0x0eb8
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0	0x0ebc

/* pci ids */
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0		0x0ea0
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA		0x0ea8
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS		0x0e71
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0	0x0eaa
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1	0x0eab
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2	0x0eac
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3	0x0ead
#define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD			0x0ec8
#define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0			0x0ec9
#define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1			0x0eca
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1		0x0e60
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA		0x0e68
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS		0x0e79
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0	0x0e6a
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1	0x0e6b
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2	0x0e6c
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3	0x0e6d

static const struct pci_id_descr pci_dev_descr_ibridge[] = {
		/* Processor Home Agent */
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0,        0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1,        1, IMC1) },

		/* Memory controller */
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA,     0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS,    0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0,   0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1,   0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2,   0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3,   0, IMC0) },

		/* Optional, mode 2HA */
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA,     1, IMC1) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS,    1, IMC1) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0,   1, IMC1) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1,   1, IMC1) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2,   1, IMC1) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3,   1, IMC1) },

	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1, SOCK) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1, SOCK) },

		/* System Address Decoder */
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD,            0, SOCK) },

		/* Broadcast Registers */
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0,            1, SOCK) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1,            0, SOCK) },

};

static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
	PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge, 12, 2, IVY_BRIDGE),
	{0,}			/* 0 terminated list. */
};

/* Haswell support */
/* EN processor:
 *	- 1 IMC
 *	- 3 DDR3 channels, 2 DPC per channel
 * EP processor:
 *	- 1 or 2 IMC
 *	- 4 DDR4 channels, 3 DPC per channel
 * EP 4S processor:
 *	- 2 IMC
 *	- 4 DDR4 channels, 3 DPC per channel
 * EX processor:
 *	- 2 IMC
 *	- each IMC interfaces with a SMI 2 channel
 *	- each SMI channel interfaces with a scalable memory buffer
 *	- each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
 */
#define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
#define HASWELL_HASYSDEFEATURE2 0x84
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0	0x2fa0
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1	0x2f60
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA	0x2fa8
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM	0x2f71
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA	0x2f68
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM	0x2f79
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb
static const struct pci_id_descr pci_dev_descr_haswell[] = {
	/* first item must be the HA */
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0,      0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1,      1, IMC1) },

	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA,   0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM,   0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1, IMC0) },

	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA,   1, IMC1) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM,   1, IMC1) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1, IMC1) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1, IMC1) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1, IMC1) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1, IMC1) },

	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0, SOCK) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0, SOCK) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0,   1, SOCK) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1,   1, SOCK) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2,   1, SOCK) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3,   1, SOCK) },
};

static const struct pci_id_table pci_dev_descr_haswell_table[] = {
	PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell, 13, 2, HASWELL),
	{0,}			/* 0 terminated list. */
};

/* Knight's Landing Support */
/*
 * KNL's memory channels are swizzled between memory controllers.
 * MC0 is mapped to CH3,4,5 and MC1 is mapped to CH0,1,2
 */
#define knl_channel_remap(mc, chan) ((mc) ? (chan) : (chan) + 3)

/* Memory controller, TAD tables, error injection - 2-8-0, 2-9-0 (2 of these) */
#define PCI_DEVICE_ID_INTEL_KNL_IMC_MC       0x7840
/* DRAM channel stuff; bank addrs, dimmmtr, etc.. 2-8-2 - 2-9-4 (6 of these) */
#define PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN     0x7843
/* kdrwdbu TAD limits/offsets, MCMTR - 2-10-1, 2-11-1 (2 of these) */
#define PCI_DEVICE_ID_INTEL_KNL_IMC_TA       0x7844
/* CHA broadcast registers, dram rules - 1-29-0 (1 of these) */
#define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0     0x782a
/* SAD target - 1-29-1 (1 of these) */
#define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1     0x782b
/* Caching / Home Agent */
#define PCI_DEVICE_ID_INTEL_KNL_IMC_CHA      0x782c
/* Device with TOLM and TOHM, 0-5-0 (1 of these) */
#define PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM    0x7810

/*
 * KNL differs from SB, IB, and Haswell in that it has multiple
 * instances of the same device with the same device ID, so we handle that
 * by creating as many copies in the table as we expect to find.
 * (Like device ID must be grouped together.)
 */

static const struct pci_id_descr pci_dev_descr_knl[] = {
	[0 ... 1]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_MC,    0, IMC0)},
	[2 ... 7]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN,  0, IMC0) },
	[8]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TA,    0, IMC0) },
	[9]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM, 0, IMC0) },
	[10]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0,  0, SOCK) },
	[11]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1,  0, SOCK) },
	[12 ... 49] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHA,   0, SOCK) },
};

static const struct pci_id_table pci_dev_descr_knl_table[] = {
	PCI_ID_TABLE_ENTRY(pci_dev_descr_knl, ARRAY_SIZE(pci_dev_descr_knl), 1, KNIGHTS_LANDING),
	{0,}
};

/*
 * Broadwell support
 *
 * DE processor:
 *	- 1 IMC
 *	- 2 DDR3 channels, 2 DPC per channel
 * EP processor:
 *	- 1 or 2 IMC
 *	- 4 DDR4 channels, 3 DPC per channel
 * EP 4S processor:
 *	- 2 IMC
 *	- 4 DDR4 channels, 3 DPC per channel
 * EX processor:
 *	- 2 IMC
 *	- each IMC interfaces with a SMI 2 channel
 *	- each SMI channel interfaces with a scalable memory buffer
 *	- each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
 */
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0	0x6fa0
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1	0x6f60
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA	0x6fa8
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM	0x6f71
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA	0x6f68
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM	0x6f79
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf

static const struct pci_id_descr pci_dev_descr_broadwell[] = {
	/* first item must be the HA */
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0,      0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1,      1, IMC1) },

	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA,   0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM,   0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 1, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 1, IMC0) },

	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA,   1, IMC1) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM,   1, IMC1) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0, 1, IMC1) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1, 1, IMC1) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2, 1, IMC1) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3, 1, IMC1) },

	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0, SOCK) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0, SOCK) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0,   1, SOCK) },
};

static const struct pci_id_table pci_dev_descr_broadwell_table[] = {
	PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell, 10, 2, BROADWELL),
	{0,}			/* 0 terminated list. */
};


/****************************************************************************
			Ancillary status routines
 ****************************************************************************/

static inline int numrank(enum type type, u32 mtr)
{
	int ranks = (1 << RANK_CNT_BITS(mtr));
	int max = 4;

	if (type == HASWELL || type == BROADWELL || type == KNIGHTS_LANDING)
		max = 8;

	if (ranks > max) {
		edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
			 ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
		return -EINVAL;
	}

	return ranks;
}

static inline int numrow(u32 mtr)
{
	int rows = (RANK_WIDTH_BITS(mtr) + 12);

	if (rows < 13 || rows > 18) {
		edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
			 rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
		return -EINVAL;
	}

	return 1 << rows;
}

static inline int numcol(u32 mtr)
{
	int cols = (COL_WIDTH_BITS(mtr) + 10);

	if (cols > 12) {
		edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
			 cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
		return -EINVAL;
	}

	return 1 << cols;
}

static struct sbridge_dev *get_sbridge_dev(int seg, u8 bus, enum domain dom,
					   int multi_bus,
					   struct sbridge_dev *prev)
{
	struct sbridge_dev *sbridge_dev;

	/*
	 * If we have devices scattered across several busses that pertain
	 * to the same memory controller, we'll lump them all together.
	 */
	if (multi_bus) {
		return list_first_entry_or_null(&sbridge_edac_list,
				struct sbridge_dev, list);
	}

	sbridge_dev = list_entry(prev ? prev->list.next
				      : sbridge_edac_list.next, struct sbridge_dev, list);

	list_for_each_entry_from(sbridge_dev, &sbridge_edac_list, list) {
		if ((sbridge_dev->seg == seg) && (sbridge_dev->bus == bus) &&
				(dom == SOCK || dom == sbridge_dev->dom))
			return sbridge_dev;
	}

	return NULL;
}

static struct sbridge_dev *alloc_sbridge_dev(int seg, u8 bus, enum domain dom,
					     const struct pci_id_table *table)
{
	struct sbridge_dev *sbridge_dev;

	sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
	if (!sbridge_dev)
		return NULL;

	sbridge_dev->pdev = kcalloc(table->n_devs_per_imc,
				    sizeof(*sbridge_dev->pdev),
				    GFP_KERNEL);
	if (!sbridge_dev->pdev) {
		kfree(sbridge_dev);
		return NULL;
	}

	sbridge_dev->seg = seg;
	sbridge_dev->bus = bus;
	sbridge_dev->dom = dom;
	sbridge_dev->n_devs = table->n_devs_per_imc;
	list_add_tail(&sbridge_dev->list, &sbridge_edac_list);

	return sbridge_dev;
}

static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
{
	list_del(&sbridge_dev->list);
	kfree(sbridge_dev->pdev);
	kfree(sbridge_dev);
}

static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
{
	u32 reg;

	/* Address range is 32:28 */
	pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
	return GET_TOLM(reg);
}

static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
{
	u32 reg;

	pci_read_config_dword(pvt->pci_sad1, TOHM, &reg);
	return GET_TOHM(reg);
}

static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
{
	u32 reg;

	pci_read_config_dword(pvt->pci_br1, TOLM, &reg);

	return GET_TOLM(reg);
}

static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
{
	u32 reg;

	pci_read_config_dword(pvt->pci_br1, TOHM, &reg);

	return GET_TOHM(reg);
}

static u64 rir_limit(u32 reg)
{
	return ((u64)GET_BITFIELD(reg,  1, 10) << 29) | 0x1fffffff;
}

static u64 sad_limit(u32 reg)
{
	return (GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff;
}

static u32 interleave_mode(u32 reg)
{
	return GET_BITFIELD(reg, 1, 1);
}

static u32 dram_attr(u32 reg)
{
	return GET_BITFIELD(reg, 2, 3);
}

static u64 knl_sad_limit(u32 reg)
{
	return (GET_BITFIELD(reg, 7, 26) << 26) | 0x3ffffff;
}

static u32 knl_interleave_mode(u32 reg)
{
	return GET_BITFIELD(reg, 1, 2);
}

static const char * const knl_intlv_mode[] = {
	"[8:6]", "[10:8]", "[14:12]", "[32:30]"
};

static const char *get_intlv_mode_str(u32 reg, enum type t)
{
	if (t == KNIGHTS_LANDING)
		return knl_intlv_mode[knl_interleave_mode(reg)];
	else
		return interleave_mode(reg) ? "[8:6]" : "[8:6]XOR[18:16]";
}

static u32 dram_attr_knl(u32 reg)
{
	return GET_BITFIELD(reg, 3, 4);
}


static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
{
	u32 reg;
	enum mem_type mtype;

	if (pvt->pci_ddrio) {
		pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
				      &reg);
		if (GET_BITFIELD(reg, 11, 11))
			/* FIXME: Can also be LRDIMM */
			mtype = MEM_RDDR3;
		else
			mtype = MEM_DDR3;
	} else
		mtype = MEM_UNKNOWN;

	return mtype;
}

static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
{
	u32 reg;
	bool registered = false;
	enum mem_type mtype = MEM_UNKNOWN;

	if (!pvt->pci_ddrio)
		goto out;

	pci_read_config_dword(pvt->pci_ddrio,
			      HASWELL_DDRCRCLKCONTROLS, &reg);
	/* Is_Rdimm */
	if (GET_BITFIELD(reg, 16, 16))
		registered = true;

	pci_read_config_dword(pvt->pci_ta, MCMTR, &reg);
	if (GET_BITFIELD(reg, 14, 14)) {
		if (registered)
			mtype = MEM_RDDR4;
		else
			mtype = MEM_DDR4;
	} else {
		if (registered)
			mtype = MEM_RDDR3;
		else
			mtype = MEM_DDR3;
	}

out:
	return mtype;
}

static enum dev_type knl_get_width(struct sbridge_pvt *pvt, u32 mtr)
{
	/* for KNL value is fixed */
	return DEV_X16;
}

static enum dev_type sbridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
{
	/* there's no way to figure out */
	return DEV_UNKNOWN;
}

static enum dev_type __ibridge_get_width(u32 mtr)
{
	enum dev_type type = DEV_UNKNOWN;

	switch (mtr) {
	case 2:
		type = DEV_X16;
		break;
	case 1:
		type = DEV_X8;
		break;
	case 0:
		type = DEV_X4;
		break;
	}

	return type;
}

static enum dev_type ibridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
{
	/*
	 * ddr3_width on the documentation but also valid for DDR4 on
	 * Haswell
	 */
	return __ibridge_get_width(GET_BITFIELD(mtr, 7, 8));
}

static enum dev_type broadwell_get_width(struct sbridge_pvt *pvt, u32 mtr)
{
	/* ddr3_width on the documentation but also valid for DDR4 */
	return __ibridge_get_width(GET_BITFIELD(mtr, 8, 9));
}

static enum mem_type knl_get_memory_type(struct sbridge_pvt *pvt)
{
	/* DDR4 RDIMMS and LRDIMMS are supported */
	return MEM_RDDR4;
}

static u8 get_node_id(struct sbridge_pvt *pvt)
{
	u32 reg;
	pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
	return GET_BITFIELD(reg, 0, 2);
}

static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
{
	u32 reg;

	pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
	return GET_BITFIELD(reg, 0, 3);
}

static u8 knl_get_node_id(struct sbridge_pvt *pvt)
{
	u32 reg;

	pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
	return GET_BITFIELD(reg, 0, 2);
}

/*
 * Use the reporting bank number to determine which memory
 * controller (also known as "ha" for "home agent"). Sandy
 * Bridge only has one memory controller per socket, so the
 * answer is always zero.
 */
static u8 sbridge_get_ha(u8 bank)
{
	return 0;
}

/*
 * On Ivy Bridge, Haswell and Broadwell the error may be in a
 * home agent bank (7, 8), or one of the per-channel memory
 * controller banks (9 .. 16).
 */
static u8 ibridge_get_ha(u8 bank)
{
	switch (bank) {
	case 7 ... 8:
		return bank - 7;
	case 9 ... 16:
		return (bank - 9) / 4;
	default:
		return 0xff;
	}
}

/* Not used, but included for safety/symmetry */
static u8 knl_get_ha(u8 bank)
{
	return 0xff;
}

static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
{
	u32 reg;

	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, &reg);
	return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
}

static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
{
	u64 rc;
	u32 reg;

	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, &reg);
	rc = GET_BITFIELD(reg, 26, 31);
	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, &reg);
	rc = ((reg << 6) | rc) << 26;

	return rc | 0x3ffffff;
}

static u64 knl_get_tolm(struct sbridge_pvt *pvt)
{
	u32 reg;

	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOLM, &reg);
	return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
}

static u64 knl_get_tohm(struct sbridge_pvt *pvt)
{
	u64 rc;
	u32 reg_lo, reg_hi;

	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_0, &reg_lo);
	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_1, &reg_hi);
	rc = ((u64)reg_hi << 32) | reg_lo;
	return rc | 0x3ffffff;
}


static u64 haswell_rir_limit(u32 reg)
{
	return (((u64)GET_BITFIELD(reg,  1, 11) + 1) << 29) - 1;
}

static inline u8 sad_pkg_socket(u8 pkg)
{
	/* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
	return ((pkg >> 3) << 2) | (pkg & 0x3);
}

static inline u8 sad_pkg_ha(u8 pkg)
{
	return (pkg >> 2) & 0x1;
}

static int haswell_chan_hash(int idx, u64 addr)
{
	int i;

	/*
	 * XOR even bits from 12:26 to bit0 of idx,
	 *     odd bits from 13:27 to bit1
	 */
	for (i = 12; i < 28; i += 2)
		idx ^= (addr >> i) & 3;

	return idx;
}

/* Low bits of TAD limit, and some metadata. */
static const u32 knl_tad_dram_limit_lo[] = {
	0x400, 0x500, 0x600, 0x700,
	0x800, 0x900, 0xa00, 0xb00,
};

/* Low bits of TAD offset. */
static const u32 knl_tad_dram_offset_lo[] = {
	0x404, 0x504, 0x604, 0x704,
	0x804, 0x904, 0xa04, 0xb04,
};

/* High 16 bits of TAD limit and offset. */
static const u32 knl_tad_dram_hi[] = {
	0x408, 0x508, 0x608, 0x708,
	0x808, 0x908, 0xa08, 0xb08,
};

/* Number of ways a tad entry is interleaved. */
static const u32 knl_tad_ways[] = {
	8, 6, 4, 3, 2, 1,
};

/*
 * Retrieve the n'th Target Address Decode table entry
 * from the memory controller's TAD table.
 *
 * @pvt:	driver private data
 * @entry:	which entry you want to retrieve
 * @mc:		which memory controller (0 or 1)
 * @offset:	output tad range offset
 * @limit:	output address of first byte above tad range
 * @ways:	output number of interleave ways
 *
 * The offset value has curious semantics.  It's a sort of running total
 * of the sizes of all the memory regions that aren't mapped in this
 * tad table.
 */
static int knl_get_tad(const struct sbridge_pvt *pvt,
		const int entry,
		const int mc,
		u64 *offset,
		u64 *limit,
		int *ways)
{
	u32 reg_limit_lo, reg_offset_lo, reg_hi;
	struct pci_dev *pci_mc;
	int way_id;

	switch (mc) {
	case 0:
		pci_mc = pvt->knl.pci_mc0;
		break;
	case 1:
		pci_mc = pvt->knl.pci_mc1;
		break;
	default:
		WARN_ON(1);
		return -EINVAL;
	}

	pci_read_config_dword(pci_mc,
			knl_tad_dram_limit_lo[entry], &reg_limit_lo);
	pci_read_config_dword(pci_mc,
			knl_tad_dram_offset_lo[entry], &reg_offset_lo);
	pci_read_config_dword(pci_mc,
			knl_tad_dram_hi[entry], &reg_hi);

	/* Is this TAD entry enabled? */
	if (!GET_BITFIELD(reg_limit_lo, 0, 0))
		return -ENODEV;

	way_id = GET_BITFIELD(reg_limit_lo, 3, 5);

	if (way_id < ARRAY_SIZE(knl_tad_ways)) {
		*ways = knl_tad_ways[way_id];
	} else {
		*ways = 0;
		sbridge_printk(KERN_ERR,
				"Unexpected value %d in mc_tad_limit_lo wayness field\n",
				way_id);
		return -ENODEV;
	}

	/*
	 * The least significant 6 bits of base and limit are truncated.
	 * For limit, we fill the missing bits with 1s.
	 */
	*offset = ((u64) GET_BITFIELD(reg_offset_lo, 6, 31) << 6) |
				((u64) GET_BITFIELD(reg_hi, 0,  15) << 32);
	*limit = ((u64) GET_BITFIELD(reg_limit_lo,  6, 31) << 6) | 63 |
				((u64) GET_BITFIELD(reg_hi, 16, 31) << 32);

	return 0;
}

/* Determine which memory controller is responsible for a given channel. */
static int knl_channel_mc(int channel)
{
	WARN_ON(channel < 0 || channel >= 6);

	return channel < 3 ? 1 : 0;
}

/*
 * Get the Nth entry from EDC_ROUTE_TABLE register.
 * (This is the per-tile mapping of logical interleave targets to
 *  physical EDC modules.)
 *
 * entry 0: 0:2
 *       1: 3:5
 *       2: 6:8
 *       3: 9:11
 *       4: 12:14
 *       5: 15:17
 *       6: 18:20
 *       7: 21:23
 * reserved: 24:31
 */
static u32 knl_get_edc_route(int entry, u32 reg)
{
	WARN_ON(entry >= KNL_MAX_EDCS);
	return GET_BITFIELD(reg, entry*3, (entry*3)+2);
}

/*
 * Get the Nth entry from MC_ROUTE_TABLE register.
 * (This is the per-tile mapping of logical interleave targets to
 *  physical DRAM channels modules.)
 *
 * entry 0: mc 0:2   channel 18:19
 *       1: mc 3:5   channel 20:21
 *       2: mc 6:8   channel 22:23
 *       3: mc 9:11  channel 24:25
 *       4: mc 12:14 channel 26:27
 *       5: mc 15:17 channel 28:29
 * reserved: 30:31
 *
 * Though we have 3 bits to identify the MC, we should only see
 * the values 0 or 1.
 */

static u32 knl_get_mc_route(int entry, u32 reg)
{
	int mc, chan;

	WARN_ON(entry >= KNL_MAX_CHANNELS);

	mc = GET_BITFIELD(reg, entry*3, (entry*3)+2);
	chan = GET_BITFIELD(reg, (entry*2) + 18, (entry*2) + 18 + 1);

	return knl_channel_remap(mc, chan);
}

/*
 * Render the EDC_ROUTE register in human-readable form.
 * Output string s should be at least KNL_MAX_EDCS*2 bytes.
 */
static void knl_show_edc_route(u32 reg, char *s)
{
	int i;

	for (i = 0; i < KNL_MAX_EDCS; i++) {
		s[i*2] = knl_get_edc_route(i, reg) + '0';
		s[i*2+1] = '-';
	}

	s[KNL_MAX_EDCS*2 - 1] = '\0';
}

/*
 * Render the MC_ROUTE register in human-readable form.
 * Output string s should be at least KNL_MAX_CHANNELS*2 bytes.
 */
static void knl_show_mc_route(u32 reg, char *s)
{
	int i;

	for (i = 0; i < KNL_MAX_CHANNELS; i++) {
		s[i*2] = knl_get_mc_route(i, reg) + '0';
		s[i*2+1] = '-';
	}

	s[KNL_MAX_CHANNELS*2 - 1] = '\0';
}

#define KNL_EDC_ROUTE 0xb8
#define KNL_MC_ROUTE 0xb4

/* Is this dram rule backed by regular DRAM in flat mode? */
#define KNL_EDRAM(reg) GET_BITFIELD(reg, 29, 29)

/* Is this dram rule cached? */
#define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)

/* Is this rule backed by edc ? */
#define KNL_EDRAM_ONLY(reg) GET_BITFIELD(reg, 29, 29)

/* Is this rule backed by DRAM, cacheable in EDRAM? */
#define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)

/* Is this rule mod3? */
#define KNL_MOD3(reg) GET_BITFIELD(reg, 27, 27)

/*
 * Figure out how big our RAM modules are.
 *
 * The DIMMMTR register in KNL doesn't tell us the size of the DIMMs, so we
 * have to figure this out from the SAD rules, interleave lists, route tables,
 * and TAD rules.
 *
 * SAD rules can have holes in them (e.g. the 3G-4G hole), so we have to
 * inspect the TAD rules to figure out how large the SAD regions really are.
 *
 * When we know the real size of a SAD region and how many ways it's
 * interleaved, we know the individual contribution of each channel to
 * TAD is size/ways.
 *
 * Finally, we have to check whether each channel participates in each SAD
 * region.
 *
 * Fortunately, KNL only supports one DIMM per channel, so once we know how
 * much memory the channel uses, we know the DIMM is at least that large.
 * (The BIOS might possibly choose not to map all available memory, in which
 * case we will underreport the size of the DIMM.)
 *
 * In theory, we could try to determine the EDC sizes as well, but that would
 * only work in flat mode, not in cache mode.
 *
 * @mc_sizes: Output sizes of channels (must have space for KNL_MAX_CHANNELS
 *            elements)
 */
static int knl_get_dimm_capacity(struct sbridge_pvt *pvt, u64 *mc_sizes)
{
	u64 sad_base, sad_limit = 0;
	u64 tad_base, tad_size, tad_limit, tad_deadspace, tad_livespace;
	int sad_rule = 0;
	int tad_rule = 0;
	int intrlv_ways, tad_ways;
	u32 first_pkg, pkg;
	int i;
	u64 sad_actual_size[2]; /* sad size accounting for holes, per mc */
	u32 dram_rule, interleave_reg;
	u32 mc_route_reg[KNL_MAX_CHAS];
	u32 edc_route_reg[KNL_MAX_CHAS];
	int edram_only;
	char edc_route_string[KNL_MAX_EDCS*2];
	char mc_route_string[KNL_MAX_CHANNELS*2];
	int cur_reg_start;
	int mc;
	int channel;
	int participants[KNL_MAX_CHANNELS];

	for (i = 0; i < KNL_MAX_CHANNELS; i++)
		mc_sizes[i] = 0;

	/* Read the EDC route table in each CHA. */
	cur_reg_start = 0;
	for (i = 0; i < KNL_MAX_CHAS; i++) {
		pci_read_config_dword(pvt->knl.pci_cha[i],
				KNL_EDC_ROUTE, &edc_route_reg[i]);

		if (i > 0 && edc_route_reg[i] != edc_route_reg[i-1]) {
			knl_show_edc_route(edc_route_reg[i-1],
					edc_route_string);
			if (cur_reg_start == i-1)
				edac_dbg(0, "edc route table for CHA %d: %s\n",
					cur_reg_start, edc_route_string);
			else
				edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
					cur_reg_start, i-1, edc_route_string);
			cur_reg_start = i;
		}
	}
	knl_show_edc_route(edc_route_reg[i-1], edc_route_string);
	if (cur_reg_start == i-1)
		edac_dbg(0, "edc route table for CHA %d: %s\n",
			cur_reg_start, edc_route_string);
	else
		edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
			cur_reg_start, i-1, edc_route_string);

	/* Read the MC route table in each CHA. */
	cur_reg_start = 0;
	for (i = 0; i < KNL_MAX_CHAS; i++) {
		pci_read_config_dword(pvt->knl.pci_cha[i],
			KNL_MC_ROUTE, &mc_route_reg[i]);

		if (i > 0 && mc_route_reg[i] != mc_route_reg[i-1]) {
			knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
			if (cur_reg_start == i-1)
				edac_dbg(0, "mc route table for CHA %d: %s\n",
					cur_reg_start, mc_route_string);
			else
				edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
					cur_reg_start, i-1, mc_route_string);
			cur_reg_start = i;
		}
	}
	knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
	if (cur_reg_start == i-1)
		edac_dbg(0, "mc route table for CHA %d: %s\n",
			cur_reg_start, mc_route_string);
	else
		edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
			cur_reg_start, i-1, mc_route_string);

	/* Process DRAM rules */
	for (sad_rule = 0; sad_rule < pvt->info.max_sad; sad_rule++) {
		/* previous limit becomes the new base */
		sad_base = sad_limit;

		pci_read_config_dword(pvt->pci_sad0,
			pvt->info.dram_rule[sad_rule], &dram_rule);

		if (!DRAM_RULE_ENABLE(dram_rule))
			break;

		edram_only = KNL_EDRAM_ONLY(dram_rule);

		sad_limit = pvt->info.sad_limit(dram_rule)+1;

		pci_read_config_dword(pvt->pci_sad0,
			pvt->info.interleave_list[sad_rule], &interleave_reg);

		/*
		 * Find out how many ways this dram rule is interleaved.
		 * We stop when we see the first channel again.
		 */
		first_pkg = sad_pkg(pvt->info.interleave_pkg,
						interleave_reg, 0);
		for (intrlv_ways = 1; intrlv_ways < 8; intrlv_ways++) {
			pkg = sad_pkg(pvt->info.interleave_pkg,
						interleave_reg, intrlv_ways);

			if ((pkg & 0x8) == 0) {
				/*
				 * 0 bit means memory is non-local,
				 * which KNL doesn't support
				 */
				edac_dbg(0, "Unexpected interleave target %d\n",
					pkg);
				return -1;
			}

			if (pkg == first_pkg)
				break;
		}
		if (KNL_MOD3(dram_rule))
			intrlv_ways *= 3;

		edac_dbg(3, "dram rule %d (base 0x%llx, limit 0x%llx), %d way interleave%s\n",
			sad_rule,
			sad_base,
			sad_limit,
			intrlv_ways,
			edram_only ? ", EDRAM" : "");

		/*
		 * Find out how big the SAD region really is by iterating
		 * over TAD tables (SAD regions may contain holes).
		 * Each memory controller might have a different TAD table, so
		 * we have to look at both.
		 *
		 * Livespace is the memory that's mapped in this TAD table,
		 * deadspace is the holes (this could be the MMIO hole, or it
		 * could be memory that's mapped by the other TAD table but
		 * not this one).
		 */
		for (mc = 0; mc < 2; mc++) {
			sad_actual_size[mc] = 0;
			tad_livespace = 0;
			for (tad_rule = 0;
					tad_rule < ARRAY_SIZE(
						knl_tad_dram_limit_lo);
					tad_rule++) {
				if (knl_get_tad(pvt,
						tad_rule,
						mc,
						&tad_deadspace,
						&tad_limit,
						&tad_ways))
					break;

				tad_size = (tad_limit+1) -
					(tad_livespace + tad_deadspace);
				tad_livespace += tad_size;
				tad_base = (tad_limit+1) - tad_size;

				if (tad_base < sad_base) {
					if (tad_limit > sad_base)
						edac_dbg(0, "TAD region overlaps lower SAD boundary -- TAD tables may be configured incorrectly.\n");
				} else if (tad_base < sad_limit) {
					if (tad_limit+1 > sad_limit) {
						edac_dbg(0, "TAD region overlaps upper SAD boundary -- TAD tables may be configured incorrectly.\n");
					} else {
						/* TAD region is completely inside SAD region */
						edac_dbg(3, "TAD region %d 0x%llx - 0x%llx (%lld bytes) table%d\n",
							tad_rule, tad_base,
							tad_limit, tad_size,
							mc);
						sad_actual_size[mc] += tad_size;
					}
				}
			}
		}

		for (mc = 0; mc < 2; mc++) {
			edac_dbg(3, " total TAD DRAM footprint in table%d : 0x%llx (%lld bytes)\n",
				mc, sad_actual_size[mc], sad_actual_size[mc]);
		}

		/* Ignore EDRAM rule */
		if (edram_only)
			continue;

		/* Figure out which channels participate in interleave. */
		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++)
			participants[channel] = 0;

		/* For each channel, does at least one CHA have
		 * this channel mapped to the given target?
		 */
		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
			int target;
			int cha;

			for (target = 0; target < KNL_MAX_CHANNELS; target++) {
				for (cha = 0; cha < KNL_MAX_CHAS; cha++) {
					if (knl_get_mc_route(target,
						mc_route_reg[cha]) == channel
						&& !participants[channel]) {
						participants[channel] = 1;
						break;
					}
				}
			}
		}

		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
			mc = knl_channel_mc(channel);
			if (participants[channel]) {
				edac_dbg(4, "mc channel %d contributes %lld bytes via sad entry %d\n",
					channel,
					sad_actual_size[mc]/intrlv_ways,
					sad_rule);
				mc_sizes[channel] +=
					sad_actual_size[mc]/intrlv_ways;
			}
		}
	}

	return 0;
}

static void get_source_id(struct mem_ctl_info *mci)
{
	struct sbridge_pvt *pvt = mci->pvt_info;
	u32 reg;

	if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL ||
	    pvt->info.type == KNIGHTS_LANDING)
		pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, &reg);
	else
		pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);

	if (pvt->info.type == KNIGHTS_LANDING)
		pvt->sbridge_dev->source_id = SOURCE_ID_KNL(reg);
	else
		pvt->sbridge_dev->source_id = SOURCE_ID(reg);
}

static int __populate_dimms(struct mem_ctl_info *mci,
			    u64 knl_mc_sizes[KNL_MAX_CHANNELS],
			    enum edac_type mode)
{
	struct sbridge_pvt *pvt = mci->pvt_info;
	int channels = pvt->info.type == KNIGHTS_LANDING ? KNL_MAX_CHANNELS
							 : NUM_CHANNELS;
	unsigned int i, j, banks, ranks, rows, cols, npages;
	struct dimm_info *dimm;
	enum mem_type mtype;
	u64 size;

	mtype = pvt->info.get_memory_type(pvt);
	if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
		edac_dbg(0, "Memory is registered\n");
	else if (mtype == MEM_UNKNOWN)
		edac_dbg(0, "Cannot determine memory type\n");
	else
		edac_dbg(0, "Memory is unregistered\n");

	if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
		banks = 16;
	else
		banks = 8;

	for (i = 0; i < channels; i++) {
		u32 mtr;

		int max_dimms_per_channel;

		if (pvt->info.type == KNIGHTS_LANDING) {
			max_dimms_per_channel = 1;
			if (!pvt->knl.pci_channel[i])
				continue;
		} else {
			max_dimms_per_channel = ARRAY_SIZE(mtr_regs);
			if (!pvt->pci_tad[i])
				continue;
		}

		for (j = 0; j < max_dimms_per_channel; j++) {
			dimm = edac_get_dimm(mci, i, j, 0);
			if (pvt->info.type == KNIGHTS_LANDING) {
				pci_read_config_dword(pvt->knl.pci_channel[i],
					knl_mtr_reg, &mtr);
			} else {
				pci_read_config_dword(pvt->pci_tad[i],
					mtr_regs[j], &mtr);
			}
			edac_dbg(4, "Channel #%d  MTR%d = %x\n", i, j, mtr);
			if (IS_DIMM_PRESENT(mtr)) {
				if (!IS_ECC_ENABLED(pvt->info.mcmtr)) {
					sbridge_printk(KERN_ERR, "CPU SrcID #%d, Ha #%d, Channel #%d has DIMMs, but ECC is disabled\n",
						       pvt->sbridge_dev->source_id,
						       pvt->sbridge_dev->dom, i);
					return -ENODEV;
				}
				pvt->channel[i].dimms++;

				ranks = numrank(pvt->info.type, mtr);

				if (pvt->info.type == KNIGHTS_LANDING) {
					/* For DDR4, this is fixed. */
					cols = 1 << 10;
					rows = knl_mc_sizes[i] /
						((u64) cols * ranks * banks * 8);
				} else {
					rows = numrow(mtr);
					cols = numcol(mtr);
				}

				size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
				npages = MiB_TO_PAGES(size);

				edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld MiB (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
					 pvt->sbridge_dev->mc, pvt->sbridge_dev->dom, i, j,
					 size, npages,
					 banks, ranks, rows, cols);

				dimm->nr_pages = npages;
				dimm->grain = 32;
				dimm->dtype = pvt->info.get_width(pvt, mtr);
				dimm->mtype = mtype;
				dimm->edac_mode = mode;
				snprintf(dimm->label, sizeof(dimm->label),
						 "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u",
						 pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom, i, j);
			}
		}
	}

	return 0;
}

static int get_dimm_config(struct mem_ctl_info *mci)
{
	struct sbridge_pvt *pvt = mci->pvt_info;
	u64 knl_mc_sizes[KNL_MAX_CHANNELS];
	enum edac_type mode;
	u32 reg;

	pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
	edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
		 pvt->sbridge_dev->mc,
		 pvt->sbridge_dev->node_id,
		 pvt->sbridge_dev->source_id);

	/* KNL doesn't support mirroring or lockstep,
	 * and is always closed page
	 */
	if (pvt->info.type == KNIGHTS_LANDING) {
		mode = EDAC_S4ECD4ED;
		pvt->mirror_mode = NON_MIRRORING;
		pvt->is_cur_addr_mirrored = false;

		if (knl_get_dimm_capacity(pvt, knl_mc_sizes) != 0)
			return -1;
		if (pci_read_config_dword(pvt->pci_ta, KNL_MCMTR, &pvt->info.mcmtr)) {
			edac_dbg(0, "Failed to read KNL_MCMTR register\n");
			return -ENODEV;
		}
	} else {
		if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
			if (pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, &reg)) {
				edac_dbg(0, "Failed to read HASWELL_HASYSDEFEATURE2 register\n");
				return -ENODEV;
			}
			pvt->is_chan_hash = GET_BITFIELD(reg, 21, 21);
			if (GET_BITFIELD(reg, 28, 28)) {
				pvt->mirror_mode = ADDR_RANGE_MIRRORING;
				edac_dbg(0, "Address range partial memory mirroring is enabled\n");
				goto next;
			}
		}
		if (pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg)) {
			edac_dbg(0, "Failed to read RASENABLES register\n");
			return -ENODEV;
		}
		if (IS_MIRROR_ENABLED(reg)) {
			pvt->mirror_mode = FULL_MIRRORING;
			edac_dbg(0, "Full memory mirroring is enabled\n");
		} else {
			pvt->mirror_mode = NON_MIRRORING;
			edac_dbg(0, "Memory mirroring is disabled\n");
		}

next:
		if (pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr)) {
			edac_dbg(0, "Failed to read MCMTR register\n");
			return -ENODEV;
		}
		if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
			edac_dbg(0, "Lockstep is enabled\n");
			mode = EDAC_S8ECD8ED;
			pvt->is_lockstep = true;
		} else {
			edac_dbg(0, "Lockstep is disabled\n");
			mode = EDAC_S4ECD4ED;
			pvt->is_lockstep = false;
		}
		if (IS_CLOSE_PG(pvt->info.mcmtr)) {
			edac_dbg(0, "address map is on closed page mode\n");
			pvt->is_close_pg = true;
		} else {
			edac_dbg(0, "address map is on open page mode\n");
			pvt->is_close_pg = false;
		}
	}

	return __populate_dimms(mci, knl_mc_sizes, mode);
}

static void get_memory_layout(const struct mem_ctl_info *mci)
{
	struct sbridge_pvt *pvt = mci->pvt_info;
	int i, j, k, n_sads, n_tads, sad_interl;
	u32 reg;
	u64 limit, prv = 0;
	u64 tmp_mb;
	u32 gb, mb;
	u32 rir_way;

	/*
	 * Step 1) Get TOLM/TOHM ranges
	 */

	pvt->tolm = pvt->info.get_tolm(pvt);
	tmp_mb = (1 + pvt->tolm) >> 20;

	gb = div_u64_rem(tmp_mb, 1024, &mb);
	edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
		gb, (mb*1000)/1024, (u64)pvt->tolm);

	/* Address range is already 45:25 */
	pvt->tohm = pvt->info.get_tohm(pvt);
	tmp_mb = (1 + pvt->tohm) >> 20;

	gb = div_u64_rem(tmp_mb, 1024, &mb);
	edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
		gb, (mb*1000)/1024, (u64)pvt->tohm);

	/*
	 * Step 2) Get SAD range and SAD Interleave list
	 * TAD registers contain the interleave wayness. However, it
	 * seems simpler to just discover it indirectly, with the
	 * algorithm bellow.
	 */
	prv = 0;
	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
		/* SAD_LIMIT Address range is 45:26 */
		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
				      &reg);
		limit = pvt->info.sad_limit(reg);

		if (!DRAM_RULE_ENABLE(reg))
			continue;

		if (limit <= prv)
			break;

		tmp_mb = (limit + 1) >> 20;
		gb = div_u64_rem(tmp_mb, 1024, &mb);
		edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
			 n_sads,
			 show_dram_attr(pvt->info.dram_attr(reg)),
			 gb, (mb*1000)/1024,
			 ((u64)tmp_mb) << 20L,
			 get_intlv_mode_str(reg, pvt->info.type),
			 reg);
		prv = limit;

		pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
				      &reg);
		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
		for (j = 0; j < 8; j++) {
			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
			if (j > 0 && sad_interl == pkg)
				break;

			edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
				 n_sads, j, pkg);
		}
	}

	if (pvt->info.type == KNIGHTS_LANDING)
		return;

	/*
	 * Step 3) Get TAD range
	 */
	prv = 0;
	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
		pci_read_config_dword(pvt->pci_ha, tad_dram_rule[n_tads], &reg);
		limit = TAD_LIMIT(reg);
		if (limit <= prv)
			break;
		tmp_mb = (limit + 1) >> 20;

		gb = div_u64_rem(tmp_mb, 1024, &mb);
		edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
			 n_tads, gb, (mb*1000)/1024,
			 ((u64)tmp_mb) << 20L,
			 (u32)(1 << TAD_SOCK(reg)),
			 (u32)TAD_CH(reg) + 1,
			 (u32)TAD_TGT0(reg),
			 (u32)TAD_TGT1(reg),
			 (u32)TAD_TGT2(reg),
			 (u32)TAD_TGT3(reg),
			 reg);
		prv = limit;
	}

	/*
	 * Step 4) Get TAD offsets, per each channel
	 */
	for (i = 0; i < NUM_CHANNELS; i++) {
		if (!pvt->channel[i].dimms)
			continue;
		for (j = 0; j < n_tads; j++) {
			pci_read_config_dword(pvt->pci_tad[i],
					      tad_ch_nilv_offset[j],
					      &reg);
			tmp_mb = TAD_OFFSET(reg) >> 20;
			gb = div_u64_rem(tmp_mb, 1024, &mb);
			edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
				 i, j,
				 gb, (mb*1000)/1024,
				 ((u64)tmp_mb) << 20L,
				 reg);
		}
	}

	/*
	 * Step 6) Get RIR Wayness/Limit, per each channel
	 */
	for (i = 0; i < NUM_CHANNELS; i++) {
		if (!pvt->channel[i].dimms)
			continue;
		for (j = 0; j < MAX_RIR_RANGES; j++) {
			pci_read_config_dword(pvt->pci_tad[i],
					      rir_way_limit[j],
					      &reg);

			if (!IS_RIR_VALID(reg))
				continue;

			tmp_mb = pvt->info.rir_limit(reg) >> 20;
			rir_way = 1 << RIR_WAY(reg);
			gb = div_u64_rem(tmp_mb, 1024, &mb);
			edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
				 i, j,
				 gb, (mb*1000)/1024,
				 ((u64)tmp_mb) << 20L,
				 rir_way,
				 reg);

			for (k = 0; k < rir_way; k++) {
				pci_read_config_dword(pvt->pci_tad[i],
						      rir_offset[j][k],
						      &reg);
				tmp_mb = RIR_OFFSET(pvt->info.type, reg) << 6;

				gb = div_u64_rem(tmp_mb, 1024, &mb);
				edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
					 i, j, k,
					 gb, (mb*1000)/1024,
					 ((u64)tmp_mb) << 20L,
					 (u32)RIR_RNK_TGT(pvt->info.type, reg),
					 reg);
			}
		}
	}
}

static struct mem_ctl_info *get_mci_for_node_id(u8 node_id, u8 ha)
{
	struct sbridge_dev *sbridge_dev;

	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
		if (sbridge_dev->node_id == node_id && sbridge_dev->dom == ha)
			return sbridge_dev->mci;
	}
	return NULL;
}

static int get_memory_error_data(struct mem_ctl_info *mci,
				 u64 addr,
				 u8 *socket, u8 *ha,
				 long *channel_mask,
				 u8 *rank,
				 char **area_type, char *msg)
{
	struct mem_ctl_info	*new_mci;
	struct sbridge_pvt *pvt = mci->pvt_info;
	struct pci_dev		*pci_ha;
	int			n_rir, n_sads, n_tads, sad_way, sck_xch;
	int			sad_interl, idx, base_ch;
	int			interleave_mode, shiftup = 0;
	unsigned int		sad_interleave[MAX_INTERLEAVE];
	u32			reg, dram_rule;
	u8			ch_way, sck_way, pkg, sad_ha = 0;
	u32			tad_offset;
	u32			rir_way;
	u32			mb, gb;
	u64			ch_addr, offset, limit = 0, prv = 0;


	/*
	 * Step 0) Check if the address is at special memory ranges
	 * The check bellow is probably enough to fill all cases where
	 * the error is not inside a memory, except for the legacy
	 * range (e. g. VGA addresses). It is unlikely, however, that the
	 * memory controller would generate an error on that range.
	 */
	if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
		sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
		return -EINVAL;
	}
	if (addr >= (u64)pvt->tohm) {
		sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
		return -EINVAL;
	}

	/*
	 * Step 1) Get socket
	 */
	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
				      &reg);

		if (!DRAM_RULE_ENABLE(reg))
			continue;

		limit = pvt->info.sad_limit(reg);
		if (limit <= prv) {
			sprintf(msg, "Can't discover the memory socket");
			return -EINVAL;
		}
		if  (addr <= limit)
			break;
		prv = limit;
	}
	if (n_sads == pvt->info.max_sad) {
		sprintf(msg, "Can't discover the memory socket");
		return -EINVAL;
	}
	dram_rule = reg;
	*area_type = show_dram_attr(pvt->info.dram_attr(dram_rule));
	interleave_mode = pvt->info.interleave_mode(dram_rule);

	pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
			      &reg);

	if (pvt->info.type == SANDY_BRIDGE) {
		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
		for (sad_way = 0; sad_way < 8; sad_way++) {
			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
			if (sad_way > 0 && sad_interl == pkg)
				break;
			sad_interleave[sad_way] = pkg;
			edac_dbg(0, "SAD interleave #%d: %d\n",
				 sad_way, sad_interleave[sad_way]);
		}
		edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
			 pvt->sbridge_dev->mc,
			 n_sads,
			 addr,
			 limit,
			 sad_way + 7,
			 !interleave_mode ? "" : "XOR[18:16]");
		if (interleave_mode)
			idx = ((addr >> 6) ^ (addr >> 16)) & 7;
		else
			idx = (addr >> 6) & 7;
		switch (sad_way) {
		case 1:
			idx = 0;
			break;
		case 2:
			idx = idx & 1;
			break;
		case 4:
			idx = idx & 3;
			break;
		case 8:
			break;
		default:
			sprintf(msg, "Can't discover socket interleave");
			return -EINVAL;
		}
		*socket = sad_interleave[idx];
		edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
			 idx, sad_way, *socket);
	} else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
		int bits, a7mode = A7MODE(dram_rule);

		if (a7mode) {
			/* A7 mode swaps P9 with P6 */
			bits = GET_BITFIELD(addr, 7, 8) << 1;
			bits |= GET_BITFIELD(addr, 9, 9);
		} else
			bits = GET_BITFIELD(addr, 6, 8);

		if (interleave_mode == 0) {
			/* interleave mode will XOR {8,7,6} with {18,17,16} */
			idx = GET_BITFIELD(addr, 16, 18);
			idx ^= bits;
		} else
			idx = bits;

		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
		*socket = sad_pkg_socket(pkg);
		sad_ha = sad_pkg_ha(pkg);

		if (a7mode) {
			/* MCChanShiftUpEnable */
			pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, &reg);
			shiftup = GET_BITFIELD(reg, 22, 22);
		}

		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
			 idx, *socket, sad_ha, shiftup);
	} else {
		/* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
		idx = (addr >> 6) & 7;
		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
		*socket = sad_pkg_socket(pkg);
		sad_ha = sad_pkg_ha(pkg);
		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
			 idx, *socket, sad_ha);
	}

	*ha = sad_ha;

	/*
	 * Move to the proper node structure, in order to access the
	 * right PCI registers
	 */
	new_mci = get_mci_for_node_id(*socket, sad_ha);
	if (!new_mci) {
		sprintf(msg, "Struct for socket #%u wasn't initialized",
			*socket);
		return -EINVAL;
	}
	mci = new_mci;
	pvt = mci->pvt_info;

	/*
	 * Step 2) Get memory channel
	 */
	prv = 0;
	pci_ha = pvt->pci_ha;
	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
		pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], &reg);
		limit = TAD_LIMIT(reg);
		if (limit <= prv) {
			sprintf(msg, "Can't discover the memory channel");
			return -EINVAL;
		}
		if  (addr <= limit)
			break;
		prv = limit;
	}
	if (n_tads == MAX_TAD) {
		sprintf(msg, "Can't discover the memory channel");
		return -EINVAL;
	}

	ch_way = TAD_CH(reg) + 1;
	sck_way = TAD_SOCK(reg);

	if (ch_way == 3)
		idx = addr >> 6;
	else {
		idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
		if (pvt->is_chan_hash)
			idx = haswell_chan_hash(idx, addr);
	}
	idx = idx % ch_way;

	/*
	 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
	 */
	switch (idx) {
	case 0:
		base_ch = TAD_TGT0(reg);
		break;
	case 1:
		base_ch = TAD_TGT1(reg);
		break;
	case 2:
		base_ch = TAD_TGT2(reg);
		break;
	case 3:
		base_ch = TAD_TGT3(reg);
		break;
	default:
		sprintf(msg, "Can't discover the TAD target");
		return -EINVAL;
	}
	*channel_mask = 1 << base_ch;

	pci_read_config_dword(pvt->pci_tad[base_ch], tad_ch_nilv_offset[n_tads], &tad_offset);

	if (pvt->mirror_mode == FULL_MIRRORING ||
	    (pvt->mirror_mode == ADDR_RANGE_MIRRORING && n_tads == 0)) {
		*channel_mask |= 1 << ((base_ch + 2) % 4);
		switch(ch_way) {
		case 2:
		case 4:
			sck_xch = (1 << sck_way) * (ch_way >> 1);
			break;
		default:
			sprintf(msg, "Invalid mirror set. Can't decode addr");
			return -EINVAL;
		}

		pvt->is_cur_addr_mirrored = true;
	} else {
		sck_xch = (1 << sck_way) * ch_way;
		pvt->is_cur_addr_mirrored = false;
	}

	if (pvt->is_lockstep)
		*channel_mask |= 1 << ((base_ch + 1) % 4);

	offset = TAD_OFFSET(tad_offset);

	edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
		 n_tads,
		 addr,
		 limit,
		 sck_way,
		 ch_way,
		 offset,
		 idx,
		 base_ch,
		 *channel_mask);

	/* Calculate channel address */
	/* Remove the TAD offset */

	if (offset > addr) {
		sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
			offset, addr);
		return -EINVAL;
	}

	ch_addr = addr - offset;
	ch_addr >>= (6 + shiftup);
	ch_addr /= sck_xch;
	ch_addr <<= (6 + shiftup);
	ch_addr |= addr & ((1 << (6 + shiftup)) - 1);

	/*
	 * Step 3) Decode rank
	 */
	for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
		pci_read_config_dword(pvt->pci_tad[base_ch], rir_way_limit[n_rir], &reg);

		if (!IS_RIR_VALID(reg))
			continue;

		limit = pvt->info.rir_limit(reg);
		gb = div_u64_rem(limit >> 20, 1024, &mb);
		edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
			 n_rir,
			 gb, (mb*1000)/1024,
			 limit,
			 1 << RIR_WAY(reg));
		if  (ch_addr <= limit)
			break;
	}
	if (n_rir == MAX_RIR_RANGES) {
		sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
			ch_addr);
		return -EINVAL;
	}
	rir_way = RIR_WAY(reg);

	if (pvt->is_close_pg)
		idx = (ch_addr >> 6);
	else
		idx = (ch_addr >> 13);	/* FIXME: Datasheet says to shift by 15 */
	idx %= 1 << rir_way;

	pci_read_config_dword(pvt->pci_tad[base_ch], rir_offset[n_rir][idx], &reg);
	*rank = RIR_RNK_TGT(pvt->info.type, reg);

	edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
		 n_rir,
		 ch_addr,
		 limit,
		 rir_way,
		 idx);

	return 0;
}

static int get_memory_error_data_from_mce(struct mem_ctl_info *mci,
					  const struct mce *m, u8 *socket,
					  u8 *ha, long *channel_mask,
					  char *msg)
{
	u32 reg, channel = GET_BITFIELD(m->status, 0, 3);
	struct mem_ctl_info *new_mci;
	struct sbridge_pvt *pvt;
	struct pci_dev *pci_ha;
	bool tad0;

	if (channel >= NUM_CHANNELS) {
		sprintf(msg, "Invalid channel 0x%x", channel);
		return -EINVAL;
	}

	pvt = mci->pvt_info;
	if (!pvt->info.get_ha) {
		sprintf(msg, "No get_ha()");
		return -EINVAL;
	}
	*ha = pvt->info.get_ha(m->bank);
	if (*ha != 0 && *ha != 1) {
		sprintf(msg, "Impossible bank %d", m->bank);
		return -EINVAL;
	}

	*socket = m->socketid;
	new_mci = get_mci_for_node_id(*socket, *ha);
	if (!new_mci) {
		strcpy(msg, "mci socket got corrupted!");
		return -EINVAL;
	}

	pvt = new_mci->pvt_info;
	pci_ha = pvt->pci_ha;
	pci_read_config_dword(pci_ha, tad_dram_rule[0], &reg);
	tad0 = m->addr <= TAD_LIMIT(reg);

	*channel_mask = 1 << channel;
	if (pvt->mirror_mode == FULL_MIRRORING ||
	    (pvt->mirror_mode == ADDR_RANGE_MIRRORING && tad0)) {
		*channel_mask |= 1 << ((channel + 2) % 4);
		pvt->is_cur_addr_mirrored = true;
	} else {
		pvt->is_cur_addr_mirrored = false;
	}

	if (pvt->is_lockstep)
		*channel_mask |= 1 << ((channel + 1) % 4);

	return 0;
}

/****************************************************************************
	Device initialization routines: put/get, init/exit
 ****************************************************************************/

/*
 *	sbridge_put_all_devices	'put' all the devices that we have
 *				reserved via 'get'
 */
static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
{
	int i;

	edac_dbg(0, "\n");
	for (i = 0; i < sbridge_dev->n_devs; i++) {
		struct pci_dev *pdev = sbridge_dev->pdev[i];
		if (!pdev)
			continue;
		edac_dbg(0, "Removing dev %02x:%02x.%d\n",
			 pdev->bus->number,
			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
		pci_dev_put(pdev);
	}
}

static void sbridge_put_all_devices(void)
{
	struct sbridge_dev *sbridge_dev, *tmp;

	list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
		sbridge_put_devices(sbridge_dev);
		free_sbridge_dev(sbridge_dev);
	}
}

static int sbridge_get_onedevice(struct pci_dev **prev,
				 u8 *num_mc,
				 const struct pci_id_table *table,
				 const unsigned devno,
				 const int multi_bus)
{
	struct sbridge_dev *sbridge_dev = NULL;
	const struct pci_id_descr *dev_descr = &table->descr[devno];
	struct pci_dev *pdev = NULL;
	int seg = 0;
	u8 bus = 0;
	int i = 0;

	sbridge_printk(KERN_DEBUG,
		"Seeking for: PCI ID %04x:%04x\n",
		PCI_VENDOR_ID_INTEL, dev_descr->dev_id);

	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
			      dev_descr->dev_id, *prev);

	if (!pdev) {
		if (*prev) {
			*prev = pdev;
			return 0;
		}

		if (dev_descr->optional)
			return 0;

		/* if the HA wasn't found */
		if (devno == 0)
			return -ENODEV;

		sbridge_printk(KERN_INFO,
			"Device not found: %04x:%04x\n",
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);

		/* End of list, leave */
		return -ENODEV;
	}
	seg = pci_domain_nr(pdev->bus);
	bus = pdev->bus->number;

next_imc:
	sbridge_dev = get_sbridge_dev(seg, bus, dev_descr->dom,
				      multi_bus, sbridge_dev);
	if (!sbridge_dev) {
		/* If the HA1 wasn't found, don't create EDAC second memory controller */
		if (dev_descr->dom == IMC1 && devno != 1) {
			edac_dbg(0, "Skip IMC1: %04x:%04x (since HA1 was absent)\n",
				 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
			pci_dev_put(pdev);
			return 0;
		}

		if (dev_descr->dom == SOCK)
			goto out_imc;

		sbridge_dev = alloc_sbridge_dev(seg, bus, dev_descr->dom, table);
		if (!sbridge_dev) {
			pci_dev_put(pdev);
			return -ENOMEM;
		}
		(*num_mc)++;
	}

	if (sbridge_dev->pdev[sbridge_dev->i_devs]) {
		sbridge_printk(KERN_ERR,
			"Duplicated device for %04x:%04x\n",
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
		pci_dev_put(pdev);
		return -ENODEV;
	}

	sbridge_dev->pdev[sbridge_dev->i_devs++] = pdev;

	/* pdev belongs to more than one IMC, do extra gets */
	if (++i > 1)
		pci_dev_get(pdev);

	if (dev_descr->dom == SOCK && i < table->n_imcs_per_sock)
		goto next_imc;

out_imc:
	/* Be sure that the device is enabled */
	if (unlikely(pci_enable_device(pdev) < 0)) {
		sbridge_printk(KERN_ERR,
			"Couldn't enable %04x:%04x\n",
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
		return -ENODEV;
	}

	edac_dbg(0, "Detected %04x:%04x\n",
		 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);

	/*
	 * As stated on drivers/pci/search.c, the reference count for
	 * @from is always decremented if it is not %NULL. So, as we need
	 * to get all devices up to null, we need to do a get for the device
	 */
	pci_dev_get(pdev);

	*prev = pdev;

	return 0;
}

/*
 * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
 *			     devices we want to reference for this driver.
 * @num_mc: pointer to the memory controllers count, to be incremented in case
 *	    of success.
 * @table: model specific table
 *
 * returns 0 in case of success or error code
 */
static int sbridge_get_all_devices(u8 *num_mc,
					const struct pci_id_table *table)
{
	int i, rc;
	struct pci_dev *pdev = NULL;
	int allow_dups = 0;
	int multi_bus = 0;

	if (table->type == KNIGHTS_LANDING)
		allow_dups = multi_bus = 1;
	while (table && table->descr) {
		for (i = 0; i < table->n_devs_per_sock; i++) {
			if (!allow_dups || i == 0 ||
					table->descr[i].dev_id !=
						table->descr[i-1].dev_id) {
				pdev = NULL;
			}
			do {
				rc = sbridge_get_onedevice(&pdev, num_mc,
							   table, i, multi_bus);
				if (rc < 0) {
					if (i == 0) {
						i = table->n_devs_per_sock;
						break;
					}
					sbridge_put_all_devices();
					return -ENODEV;
				}
			} while (pdev && !allow_dups);
		}
		table++;
	}

	return 0;
}

/*
 * Device IDs for {SBRIDGE,IBRIDGE,HASWELL,BROADWELL}_IMC_HA0_TAD0 are in
 * the format: XXXa. So we can convert from a device to the corresponding
 * channel like this
 */
#define TAD_DEV_TO_CHAN(dev) (((dev) & 0xf) - 0xa)

static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
				 struct sbridge_dev *sbridge_dev)
{
	struct sbridge_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
	u8 saw_chan_mask = 0;
	int i;

	for (i = 0; i < sbridge_dev->n_devs; i++) {
		pdev = sbridge_dev->pdev[i];
		if (!pdev)
			continue;

		switch (pdev->device) {
		case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
			pvt->pci_sad0 = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
			pvt->pci_sad1 = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
			pvt->pci_br0 = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
			pvt->pci_ha = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
			pvt->pci_ta = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
			pvt->pci_ras = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
		{
			int id = TAD_DEV_TO_CHAN(pdev->device);
			pvt->pci_tad[id] = pdev;
			saw_chan_mask |= 1 << id;
		}
			break;
		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
			pvt->pci_ddrio = pdev;
			break;
		default:
			goto error;
		}

		edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
			 pdev->vendor, pdev->device,
			 sbridge_dev->bus,
			 pdev);
	}

	/* Check if everything were registered */
	if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha ||
	    !pvt->pci_ras || !pvt->pci_ta)
		goto enodev;

	if (saw_chan_mask != 0x0f)
		goto enodev;
	return 0;

enodev:
	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
	return -ENODEV;

error:
	sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
		       PCI_VENDOR_ID_INTEL, pdev->device);
	return -EINVAL;
}

static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
				 struct sbridge_dev *sbridge_dev)
{
	struct sbridge_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
	u8 saw_chan_mask = 0;
	int i;

	for (i = 0; i < sbridge_dev->n_devs; i++) {
		pdev = sbridge_dev->pdev[i];
		if (!pdev)
			continue;

		switch (pdev->device) {
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
			pvt->pci_ha = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA:
			pvt->pci_ta = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS:
			pvt->pci_ras = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2:
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3:
		{
			int id = TAD_DEV_TO_CHAN(pdev->device);
			pvt->pci_tad[id] = pdev;
			saw_chan_mask |= 1 << id;
		}
			break;
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
			pvt->pci_ddrio = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
			pvt->pci_ddrio = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
			pvt->pci_sad0 = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
			pvt->pci_br0 = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
			pvt->pci_br1 = pdev;
			break;
		default:
			goto error;
		}

		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
			 sbridge_dev->bus,
			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
			 pdev);
	}

	/* Check if everything were registered */
	if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_br0 ||
	    !pvt->pci_br1 || !pvt->pci_ras || !pvt->pci_ta)
		goto enodev;

	if (saw_chan_mask != 0x0f && /* -EN/-EX */
	    saw_chan_mask != 0x03)   /* -EP */
		goto enodev;
	return 0;

enodev:
	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
	return -ENODEV;

error:
	sbridge_printk(KERN_ERR,
		       "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
			pdev->device);
	return -EINVAL;
}

static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
				 struct sbridge_dev *sbridge_dev)
{
	struct sbridge_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
	u8 saw_chan_mask = 0;
	int i;

	/* there's only one device per system; not tied to any bus */
	if (pvt->info.pci_vtd == NULL)
		/* result will be checked later */
		pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
						   PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
						   NULL);

	for (i = 0; i < sbridge_dev->n_devs; i++) {
		pdev = sbridge_dev->pdev[i];
		if (!pdev)
			continue;

		switch (pdev->device) {
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
			pvt->pci_sad0 = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
			pvt->pci_sad1 = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
			pvt->pci_ha = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
			pvt->pci_ta = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM:
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM:
			pvt->pci_ras = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2:
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3:
		{
			int id = TAD_DEV_TO_CHAN(pdev->device);
			pvt->pci_tad[id] = pdev;
			saw_chan_mask |= 1 << id;
		}
			break;
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1:
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2:
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3:
			if (!pvt->pci_ddrio)
				pvt->pci_ddrio = pdev;
			break;
		default:
			break;
		}

		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
			 sbridge_dev->bus,
			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
			 pdev);
	}

	/* Check if everything were registered */
	if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
	    !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
		goto enodev;

	if (saw_chan_mask != 0x0f && /* -EN/-EX */
	    saw_chan_mask != 0x03)   /* -EP */
		goto enodev;
	return 0;

enodev:
	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
	return -ENODEV;
}

static int broadwell_mci_bind_devs(struct mem_ctl_info *mci,
				 struct sbridge_dev *sbridge_dev)
{
	struct sbridge_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
	u8 saw_chan_mask = 0;
	int i;

	/* there's only one device per system; not tied to any bus */
	if (pvt->info.pci_vtd == NULL)
		/* result will be checked later */
		pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
						   PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC,
						   NULL);

	for (i = 0; i < sbridge_dev->n_devs; i++) {
		pdev = sbridge_dev->pdev[i];
		if (!pdev)
			continue;

		switch (pdev->device) {
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0:
			pvt->pci_sad0 = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1:
			pvt->pci_sad1 = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1:
			pvt->pci_ha = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA:
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA:
			pvt->pci_ta = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM:
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM:
			pvt->pci_ras = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0:
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1:
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2:
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3:
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0:
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1:
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2:
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3:
		{
			int id = TAD_DEV_TO_CHAN(pdev->device);
			pvt->pci_tad[id] = pdev;
			saw_chan_mask |= 1 << id;
		}
			break;
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0:
			pvt->pci_ddrio = pdev;
			break;
		default:
			break;
		}

		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
			 sbridge_dev->bus,
			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
			 pdev);
	}

	/* Check if everything were registered */
	if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
	    !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
		goto enodev;

	if (saw_chan_mask != 0x0f && /* -EN/-EX */
	    saw_chan_mask != 0x03)   /* -EP */
		goto enodev;
	return 0;

enodev:
	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
	return -ENODEV;
}

static int knl_mci_bind_devs(struct mem_ctl_info *mci,
			struct sbridge_dev *sbridge_dev)
{
	struct sbridge_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
	int dev, func;

	int i;
	int devidx;

	for (i = 0; i < sbridge_dev->n_devs; i++) {
		pdev = sbridge_dev->pdev[i];
		if (!pdev)
			continue;

		/* Extract PCI device and function. */
		dev = (pdev->devfn >> 3) & 0x1f;
		func = pdev->devfn & 0x7;

		switch (pdev->device) {
		case PCI_DEVICE_ID_INTEL_KNL_IMC_MC:
			if (dev == 8)
				pvt->knl.pci_mc0 = pdev;
			else if (dev == 9)
				pvt->knl.pci_mc1 = pdev;
			else {
				sbridge_printk(KERN_ERR,
					"Memory controller in unexpected place! (dev %d, fn %d)\n",
					dev, func);
				continue;
			}
			break;

		case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0:
			pvt->pci_sad0 = pdev;
			break;

		case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1:
			pvt->pci_sad1 = pdev;
			break;

		case PCI_DEVICE_ID_INTEL_KNL_IMC_CHA:
			/* There are one of these per tile, and range from
			 * 1.14.0 to 1.18.5.
			 */
			devidx = ((dev-14)*8)+func;

			if (devidx < 0 || devidx >= KNL_MAX_CHAS) {
				sbridge_printk(KERN_ERR,
					"Caching and Home Agent in unexpected place! (dev %d, fn %d)\n",
					dev, func);
				continue;
			}

			WARN_ON(pvt->knl.pci_cha[devidx] != NULL);

			pvt->knl.pci_cha[devidx] = pdev;
			break;

		case PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN:
			devidx = -1;

			/*
			 *  MC0 channels 0-2 are device 9 function 2-4,
			 *  MC1 channels 3-5 are device 8 function 2-4.
			 */

			if (dev == 9)
				devidx = func-2;
			else if (dev == 8)
				devidx = 3 + (func-2);

			if (devidx < 0 || devidx >= KNL_MAX_CHANNELS) {
				sbridge_printk(KERN_ERR,
					"DRAM Channel Registers in unexpected place! (dev %d, fn %d)\n",
					dev, func);
				continue;
			}

			WARN_ON(pvt->knl.pci_channel[devidx] != NULL);
			pvt->knl.pci_channel[devidx] = pdev;
			break;

		case PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM:
			pvt->knl.pci_mc_info = pdev;
			break;

		case PCI_DEVICE_ID_INTEL_KNL_IMC_TA:
			pvt->pci_ta = pdev;
			break;

		default:
			sbridge_printk(KERN_ERR, "Unexpected device %d\n",
				pdev->device);
			break;
		}
	}

	if (!pvt->knl.pci_mc0  || !pvt->knl.pci_mc1 ||
	    !pvt->pci_sad0     || !pvt->pci_sad1    ||
	    !pvt->pci_ta) {
		goto enodev;
	}

	for (i = 0; i < KNL_MAX_CHANNELS; i++) {
		if (!pvt->knl.pci_channel[i]) {
			sbridge_printk(KERN_ERR, "Missing channel %d\n", i);
			goto enodev;
		}
	}

	for (i = 0; i < KNL_MAX_CHAS; i++) {
		if (!pvt->knl.pci_cha[i]) {
			sbridge_printk(KERN_ERR, "Missing CHA %d\n", i);
			goto enodev;
		}
	}

	return 0;

enodev:
	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
	return -ENODEV;
}

/****************************************************************************
			Error check routines
 ****************************************************************************/

/*
 * While Sandy Bridge has error count registers, SMI BIOS read values from
 * and resets the counters. So, they are not reliable for the OS to read
 * from them. So, we have no option but to just trust on whatever MCE is
 * telling us about the errors.
 */
static void sbridge_mce_output_error(struct mem_ctl_info *mci,
				    const struct mce *m)
{
	struct mem_ctl_info *new_mci;
	struct sbridge_pvt *pvt = mci->pvt_info;
	enum hw_event_mc_err_type tp_event;
	char *optype, msg[256];
	bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
	bool overflow = GET_BITFIELD(m->status, 62, 62);
	bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
	bool recoverable;
	u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
	u32 mscod = GET_BITFIELD(m->status, 16, 31);
	u32 errcode = GET_BITFIELD(m->status, 0, 15);
	u32 channel = GET_BITFIELD(m->status, 0, 3);
	u32 optypenum = GET_BITFIELD(m->status, 4, 6);
	/*
	 * Bits 5-0 of MCi_MISC give the least significant bit that is valid.
	 * A value 6 is for cache line aligned address, a value 12 is for page
	 * aligned address reported by patrol scrubber.
	 */
	u32 lsb = GET_BITFIELD(m->misc, 0, 5);
	long channel_mask, first_channel;
	u8  rank = 0xff, socket, ha;
	int rc, dimm;
	char *area_type = "DRAM";

	if (pvt->info.type != SANDY_BRIDGE)
		recoverable = true;
	else
		recoverable = GET_BITFIELD(m->status, 56, 56);

	if (uncorrected_error) {
		core_err_cnt = 1;
		if (ripv) {
			tp_event = HW_EVENT_ERR_UNCORRECTED;
		} else {
			tp_event = HW_EVENT_ERR_FATAL;
		}
	} else {
		tp_event = HW_EVENT_ERR_CORRECTED;
	}

	/*
	 * According with Table 15-9 of the Intel Architecture spec vol 3A,
	 * memory errors should fit in this mask:
	 *	000f 0000 1mmm cccc (binary)
	 * where:
	 *	f = Correction Report Filtering Bit. If 1, subsequent errors
	 *	    won't be shown
	 *	mmm = error type
	 *	cccc = channel
	 * If the mask doesn't match, report an error to the parsing logic
	 */
	switch (optypenum) {
	case 0:
		optype = "generic undef request error";
		break;
	case 1:
		optype = "memory read error";
		break;
	case 2:
		optype = "memory write error";
		break;
	case 3:
		optype = "addr/cmd error";
		break;
	case 4:
		optype = "memory scrubbing error";
		break;
	default:
		optype = "reserved";
		break;
	}

	if (pvt->info.type == KNIGHTS_LANDING) {
		if (channel == 14) {
			edac_dbg(0, "%s%s err_code:%04x:%04x EDRAM bank %d\n",
				overflow ? " OVERFLOW" : "",
				(uncorrected_error && recoverable)
				? " recoverable" : "",
				mscod, errcode,
				m->bank);
		} else {
			char A = *("A");

			/*
			 * Reported channel is in range 0-2, so we can't map it
			 * back to mc. To figure out mc we check machine check
			 * bank register that reported this error.
			 * bank15 means mc0 and bank16 means mc1.
			 */
			channel = knl_channel_remap(m->bank == 16, channel);
			channel_mask = 1 << channel;

			snprintf(msg, sizeof(msg),
				"%s%s err_code:%04x:%04x channel:%d (DIMM_%c)",
				overflow ? " OVERFLOW" : "",
				(uncorrected_error && recoverable)
				? " recoverable" : " ",
				mscod, errcode, channel, A + channel);
			edac_mc_handle_error(tp_event, mci, core_err_cnt,
				m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
				channel, 0, -1,
				optype, msg);
		}
		return;
	} else if (lsb < 12) {
		rc = get_memory_error_data(mci, m->addr, &socket, &ha,
					   &channel_mask, &rank,
					   &area_type, msg);
	} else {
		rc = get_memory_error_data_from_mce(mci, m, &socket, &ha,
						    &channel_mask, msg);
	}

	if (rc < 0)
		goto err_parsing;
	new_mci = get_mci_for_node_id(socket, ha);
	if (!new_mci) {
		strcpy(msg, "Error: socket got corrupted!");
		goto err_parsing;
	}
	mci = new_mci;
	pvt = mci->pvt_info;

	first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);

	if (rank == 0xff)
		dimm = -1;
	else if (rank < 4)
		dimm = 0;
	else if (rank < 8)
		dimm = 1;
	else
		dimm = 2;

	/*
	 * FIXME: On some memory configurations (mirror, lockstep), the
	 * Memory Controller can't point the error to a single DIMM. The
	 * EDAC core should be handling the channel mask, in order to point
	 * to the group of dimm's where the error may be happening.
	 */
	if (!pvt->is_lockstep && !pvt->is_cur_addr_mirrored && !pvt->is_close_pg)
		channel = first_channel;

	snprintf(msg, sizeof(msg),
		 "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d",
		 overflow ? " OVERFLOW" : "",
		 (uncorrected_error && recoverable) ? " recoverable" : "",
		 area_type,
		 mscod, errcode,
		 socket, ha,
		 channel_mask,
		 rank);

	edac_dbg(0, "%s\n", msg);

	/* FIXME: need support for channel mask */

	if (channel == CHANNEL_UNSPECIFIED)
		channel = -1;

	/* Call the helper to output message */
	edac_mc_handle_error(tp_event, mci, core_err_cnt,
			     m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
			     channel, dimm, -1,
			     optype, msg);
	return;
err_parsing:
	edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
			     -1, -1, -1,
			     msg, "");

}

/*
 * Check that logging is enabled and that this is the right type
 * of error for us to handle.
 */
static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
				   void *data)
{
	struct mce *mce = (struct mce *)data;
	struct mem_ctl_info *mci;
	char *type;

	if (mce->kflags & MCE_HANDLED_CEC)
		return NOTIFY_DONE;

	/*
	 * Just let mcelog handle it if the error is
	 * outside the memory controller. A memory error
	 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
	 * bit 12 has an special meaning.
	 */
	if ((mce->status & 0xefff) >> 7 != 1)
		return NOTIFY_DONE;

	/* Check ADDRV bit in STATUS */
	if (!GET_BITFIELD(mce->status, 58, 58))
		return NOTIFY_DONE;

	/* Check MISCV bit in STATUS */
	if (!GET_BITFIELD(mce->status, 59, 59))
		return NOTIFY_DONE;

	/* Check address type in MISC (physical address only) */
	if (GET_BITFIELD(mce->misc, 6, 8) != 2)
		return NOTIFY_DONE;

	mci = get_mci_for_node_id(mce->socketid, IMC0);
	if (!mci)
		return NOTIFY_DONE;

	if (mce->mcgstatus & MCG_STATUS_MCIP)
		type = "Exception";
	else
		type = "Event";

	sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");

	sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
			  "Bank %d: %016Lx\n", mce->extcpu, type,
			  mce->mcgstatus, mce->bank, mce->status);
	sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
	sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
	sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);

	sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
			  "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
			  mce->time, mce->socketid, mce->apicid);

	sbridge_mce_output_error(mci, mce);

	/* Advice mcelog that the error were handled */
	mce->kflags |= MCE_HANDLED_EDAC;
	return NOTIFY_OK;
}

static struct notifier_block sbridge_mce_dec = {
	.notifier_call	= sbridge_mce_check_error,
	.priority	= MCE_PRIO_EDAC,
};

/****************************************************************************
			EDAC register/unregister logic
 ****************************************************************************/

static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
{
	struct mem_ctl_info *mci = sbridge_dev->mci;

	if (unlikely(!mci || !mci->pvt_info)) {
		edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);

		sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
		return;
	}

	edac_dbg(0, "MC: mci = %p, dev = %p\n",
		 mci, &sbridge_dev->pdev[0]->dev);

	/* Remove MC sysfs nodes */
	edac_mc_del_mc(mci->pdev);

	edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
	kfree(mci->ctl_name);
	edac_mc_free(mci);
	sbridge_dev->mci = NULL;
}

static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
{
	struct mem_ctl_info *mci;
	struct edac_mc_layer layers[2];
	struct sbridge_pvt *pvt;
	struct pci_dev *pdev = sbridge_dev->pdev[0];
	int rc;

	/* allocate a new MC control structure */
	layers[0].type = EDAC_MC_LAYER_CHANNEL;
	layers[0].size = type == KNIGHTS_LANDING ?
		KNL_MAX_CHANNELS : NUM_CHANNELS;
	layers[0].is_virt_csrow = false;
	layers[1].type = EDAC_MC_LAYER_SLOT;
	layers[1].size = type == KNIGHTS_LANDING ? 1 : MAX_DIMMS;
	layers[1].is_virt_csrow = true;
	mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
			    sizeof(*pvt));

	if (unlikely(!mci))
		return -ENOMEM;

	edac_dbg(0, "MC: mci = %p, dev = %p\n",
		 mci, &pdev->dev);

	pvt = mci->pvt_info;
	memset(pvt, 0, sizeof(*pvt));

	/* Associate sbridge_dev and mci for future usage */
	pvt->sbridge_dev = sbridge_dev;
	sbridge_dev->mci = mci;

	mci->mtype_cap = type == KNIGHTS_LANDING ?
		MEM_FLAG_DDR4 : MEM_FLAG_DDR3;
	mci->edac_ctl_cap = EDAC_FLAG_NONE;
	mci->edac_cap = EDAC_FLAG_NONE;
	mci->mod_name = EDAC_MOD_STR;
	mci->dev_name = pci_name(pdev);
	mci->ctl_page_to_phys = NULL;

	pvt->info.type = type;
	switch (type) {
	case IVY_BRIDGE:
		pvt->info.rankcfgr = IB_RANK_CFG_A;
		pvt->info.get_tolm = ibridge_get_tolm;
		pvt->info.get_tohm = ibridge_get_tohm;
		pvt->info.dram_rule = ibridge_dram_rule;
		pvt->info.get_memory_type = get_memory_type;
		pvt->info.get_node_id = get_node_id;
		pvt->info.get_ha = ibridge_get_ha;
		pvt->info.rir_limit = rir_limit;
		pvt->info.sad_limit = sad_limit;
		pvt->info.interleave_mode = interleave_mode;
		pvt->info.dram_attr = dram_attr;
		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
		pvt->info.interleave_list = ibridge_interleave_list;
		pvt->info.interleave_pkg = ibridge_interleave_pkg;
		pvt->info.get_width = ibridge_get_width;

		/* Store pci devices at mci for faster access */
		rc = ibridge_mci_bind_devs(mci, sbridge_dev);
		if (unlikely(rc < 0))
			goto fail0;
		get_source_id(mci);
		mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge SrcID#%d_Ha#%d",
			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
		break;
	case SANDY_BRIDGE:
		pvt->info.rankcfgr = SB_RANK_CFG_A;
		pvt->info.get_tolm = sbridge_get_tolm;
		pvt->info.get_tohm = sbridge_get_tohm;
		pvt->info.dram_rule = sbridge_dram_rule;
		pvt->info.get_memory_type = get_memory_type;
		pvt->info.get_node_id = get_node_id;
		pvt->info.get_ha = sbridge_get_ha;
		pvt->info.rir_limit = rir_limit;
		pvt->info.sad_limit = sad_limit;
		pvt->info.interleave_mode = interleave_mode;
		pvt->info.dram_attr = dram_attr;
		pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
		pvt->info.interleave_list = sbridge_interleave_list;
		pvt->info.interleave_pkg = sbridge_interleave_pkg;
		pvt->info.get_width = sbridge_get_width;

		/* Store pci devices at mci for faster access */
		rc = sbridge_mci_bind_devs(mci, sbridge_dev);
		if (unlikely(rc < 0))
			goto fail0;
		get_source_id(mci);
		mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge SrcID#%d_Ha#%d",
			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
		break;
	case HASWELL:
		/* rankcfgr isn't used */
		pvt->info.get_tolm = haswell_get_tolm;
		pvt->info.get_tohm = haswell_get_tohm;
		pvt->info.dram_rule = ibridge_dram_rule;
		pvt->info.get_memory_type = haswell_get_memory_type;
		pvt->info.get_node_id = haswell_get_node_id;
		pvt->info.get_ha = ibridge_get_ha;
		pvt->info.rir_limit = haswell_rir_limit;
		pvt->info.sad_limit = sad_limit;
		pvt->info.interleave_mode = interleave_mode;
		pvt->info.dram_attr = dram_attr;
		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
		pvt->info.interleave_list = ibridge_interleave_list;
		pvt->info.interleave_pkg = ibridge_interleave_pkg;
		pvt->info.get_width = ibridge_get_width;

		/* Store pci devices at mci for faster access */
		rc = haswell_mci_bind_devs(mci, sbridge_dev);
		if (unlikely(rc < 0))
			goto fail0;
		get_source_id(mci);
		mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell SrcID#%d_Ha#%d",
			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
		break;
	case BROADWELL:
		/* rankcfgr isn't used */
		pvt->info.get_tolm = haswell_get_tolm;
		pvt->info.get_tohm = haswell_get_tohm;
		pvt->info.dram_rule = ibridge_dram_rule;
		pvt->info.get_memory_type = haswell_get_memory_type;
		pvt->info.get_node_id = haswell_get_node_id;
		pvt->info.get_ha = ibridge_get_ha;
		pvt->info.rir_limit = haswell_rir_limit;
		pvt->info.sad_limit = sad_limit;
		pvt->info.interleave_mode = interleave_mode;
		pvt->info.dram_attr = dram_attr;
		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
		pvt->info.interleave_list = ibridge_interleave_list;
		pvt->info.interleave_pkg = ibridge_interleave_pkg;
		pvt->info.get_width = broadwell_get_width;

		/* Store pci devices at mci for faster access */
		rc = broadwell_mci_bind_devs(mci, sbridge_dev);
		if (unlikely(rc < 0))
			goto fail0;
		get_source_id(mci);
		mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell SrcID#%d_Ha#%d",
			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
		break;
	case KNIGHTS_LANDING:
		/* pvt->info.rankcfgr == ??? */
		pvt->info.get_tolm = knl_get_tolm;
		pvt->info.get_tohm = knl_get_tohm;
		pvt->info.dram_rule = knl_dram_rule;
		pvt->info.get_memory_type = knl_get_memory_type;
		pvt->info.get_node_id = knl_get_node_id;
		pvt->info.get_ha = knl_get_ha;
		pvt->info.rir_limit = NULL;
		pvt->info.sad_limit = knl_sad_limit;
		pvt->info.interleave_mode = knl_interleave_mode;
		pvt->info.dram_attr = dram_attr_knl;
		pvt->info.max_sad = ARRAY_SIZE(knl_dram_rule);
		pvt->info.interleave_list = knl_interleave_list;
		pvt->info.interleave_pkg = ibridge_interleave_pkg;
		pvt->info.get_width = knl_get_width;

		rc = knl_mci_bind_devs(mci, sbridge_dev);
		if (unlikely(rc < 0))
			goto fail0;
		get_source_id(mci);
		mci->ctl_name = kasprintf(GFP_KERNEL, "Knights Landing SrcID#%d_Ha#%d",
			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
		break;
	}

	if (!mci->ctl_name) {
		rc = -ENOMEM;
		goto fail0;
	}

	/* Get dimm basic config and the memory layout */
	rc = get_dimm_config(mci);
	if (rc < 0) {
		edac_dbg(0, "MC: failed to get_dimm_config()\n");
		goto fail;
	}
	get_memory_layout(mci);

	/* record ptr to the generic device */
	mci->pdev = &pdev->dev;

	/* add this new MC control structure to EDAC's list of MCs */
	if (unlikely(edac_mc_add_mc(mci))) {
		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
		rc = -EINVAL;
		goto fail;
	}

	return 0;

fail:
	kfree(mci->ctl_name);
fail0:
	edac_mc_free(mci);
	sbridge_dev->mci = NULL;
	return rc;
}

static const struct x86_cpu_id sbridge_cpuids[] = {
	X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE_X, &pci_dev_descr_sbridge_table),
	X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X,	  &pci_dev_descr_ibridge_table),
	X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X,	  &pci_dev_descr_haswell_table),
	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X,	  &pci_dev_descr_broadwell_table),
	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D,	  &pci_dev_descr_broadwell_table),
	X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL,  &pci_dev_descr_knl_table),
	X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM,  &pci_dev_descr_knl_table),
	{ }
};
MODULE_DEVICE_TABLE(x86cpu, sbridge_cpuids);

/*
 *	sbridge_probe	Get all devices and register memory controllers
 *			present.
 *	return:
 *		0 for FOUND a device
 *		< 0 for error code
 */

static int sbridge_probe(const struct x86_cpu_id *id)
{
	int rc = -ENODEV;
	u8 mc, num_mc = 0;
	struct sbridge_dev *sbridge_dev;
	struct pci_id_table *ptable = (struct pci_id_table *)id->driver_data;

	/* get the pci devices we want to reserve for our use */
	rc = sbridge_get_all_devices(&num_mc, ptable);

	if (unlikely(rc < 0)) {
		edac_dbg(0, "couldn't get all devices\n");
		goto fail0;
	}

	mc = 0;

	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
		edac_dbg(0, "Registering MC#%d (%d of %d)\n",
			 mc, mc + 1, num_mc);

		sbridge_dev->mc = mc++;
		rc = sbridge_register_mci(sbridge_dev, ptable->type);
		if (unlikely(rc < 0))
			goto fail1;
	}

	sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION);

	return 0;

fail1:
	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
		sbridge_unregister_mci(sbridge_dev);

	sbridge_put_all_devices();
fail0:
	return rc;
}

/*
 *	sbridge_remove	cleanup
 *
 */
static void sbridge_remove(void)
{
	struct sbridge_dev *sbridge_dev;

	edac_dbg(0, "\n");

	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
		sbridge_unregister_mci(sbridge_dev);

	/* Release PCI resources */
	sbridge_put_all_devices();
}

/*
 *	sbridge_init		Module entry function
 *			Try to initialize this module for its devices
 */
static int __init sbridge_init(void)
{
	const struct x86_cpu_id *id;
	const char *owner;
	int rc;

	edac_dbg(2, "\n");

	owner = edac_get_owner();
	if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
		return -EBUSY;

	if (cpu_feature_enabled(X86_FEATURE_HYPERVISOR))
		return -ENODEV;

	id = x86_match_cpu(sbridge_cpuids);
	if (!id)
		return -ENODEV;

	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
	opstate_init();

	rc = sbridge_probe(id);

	if (rc >= 0) {
		mce_register_decode_chain(&sbridge_mce_dec);
		return 0;
	}

	sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
		      rc);

	return rc;
}

/*
 *	sbridge_exit()	Module exit function
 *			Unregister the driver
 */
static void __exit sbridge_exit(void)
{
	edac_dbg(2, "\n");
	sbridge_remove();
	mce_unregister_decode_chain(&sbridge_mce_dec);
}

module_init(sbridge_init);
module_exit(sbridge_exit);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mauro Carvalho Chehab");
MODULE_AUTHOR("Red Hat Inc. (https://www.redhat.com)");
MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
		   SBRIDGE_REVISION);