summaryrefslogtreecommitdiffstats
path: root/drivers/firmware/efi/efi.c
blob: 232f4915223b519b3ee6580cb08354ac9b0a7016 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
/*
 * efi.c - EFI subsystem
 *
 * Copyright (C) 2001,2003,2004 Dell <Matt_Domsch@dell.com>
 * Copyright (C) 2004 Intel Corporation <matthew.e.tolentino@intel.com>
 * Copyright (C) 2013 Tom Gundersen <teg@jklm.no>
 *
 * This code registers /sys/firmware/efi{,/efivars} when EFI is supported,
 * allowing the efivarfs to be mounted or the efivars module to be loaded.
 * The existance of /sys/firmware/efi may also be used by userspace to
 * determine that the system supports EFI.
 *
 * This file is released under the GPLv2.
 */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/kobject.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/efi.h>
#include <linux/of.h>
#include <linux/of_fdt.h>
#include <linux/io.h>
#include <linux/kexec.h>
#include <linux/platform_device.h>
#include <linux/random.h>
#include <linux/reboot.h>
#include <linux/slab.h>
#include <linux/acpi.h>
#include <linux/ucs2_string.h>
#include <linux/memblock.h>

#include <asm/early_ioremap.h>

struct efi __read_mostly efi = {
	.mps			= EFI_INVALID_TABLE_ADDR,
	.acpi			= EFI_INVALID_TABLE_ADDR,
	.acpi20			= EFI_INVALID_TABLE_ADDR,
	.smbios			= EFI_INVALID_TABLE_ADDR,
	.smbios3		= EFI_INVALID_TABLE_ADDR,
	.sal_systab		= EFI_INVALID_TABLE_ADDR,
	.boot_info		= EFI_INVALID_TABLE_ADDR,
	.hcdp			= EFI_INVALID_TABLE_ADDR,
	.uga			= EFI_INVALID_TABLE_ADDR,
	.uv_systab		= EFI_INVALID_TABLE_ADDR,
	.fw_vendor		= EFI_INVALID_TABLE_ADDR,
	.runtime		= EFI_INVALID_TABLE_ADDR,
	.config_table		= EFI_INVALID_TABLE_ADDR,
	.esrt			= EFI_INVALID_TABLE_ADDR,
	.properties_table	= EFI_INVALID_TABLE_ADDR,
	.mem_attr_table		= EFI_INVALID_TABLE_ADDR,
	.rng_seed		= EFI_INVALID_TABLE_ADDR,
	.tpm_log		= EFI_INVALID_TABLE_ADDR
};
EXPORT_SYMBOL(efi);

static unsigned long *efi_tables[] = {
	&efi.mps,
	&efi.acpi,
	&efi.acpi20,
	&efi.smbios,
	&efi.smbios3,
	&efi.sal_systab,
	&efi.boot_info,
	&efi.hcdp,
	&efi.uga,
	&efi.uv_systab,
	&efi.fw_vendor,
	&efi.runtime,
	&efi.config_table,
	&efi.esrt,
	&efi.properties_table,
	&efi.mem_attr_table,
};

struct mm_struct efi_mm = {
	.mm_rb			= RB_ROOT,
	.mm_users		= ATOMIC_INIT(2),
	.mm_count		= ATOMIC_INIT(1),
	.mmap_sem		= __RWSEM_INITIALIZER(efi_mm.mmap_sem),
	.page_table_lock	= __SPIN_LOCK_UNLOCKED(efi_mm.page_table_lock),
	.mmlist			= LIST_HEAD_INIT(efi_mm.mmlist),
};

static bool disable_runtime;
static int __init setup_noefi(char *arg)
{
	disable_runtime = true;
	return 0;
}
early_param("noefi", setup_noefi);

bool efi_runtime_disabled(void)
{
	return disable_runtime;
}

static int __init parse_efi_cmdline(char *str)
{
	if (!str) {
		pr_warn("need at least one option\n");
		return -EINVAL;
	}

	if (parse_option_str(str, "debug"))
		set_bit(EFI_DBG, &efi.flags);

	if (parse_option_str(str, "noruntime"))
		disable_runtime = true;

	return 0;
}
early_param("efi", parse_efi_cmdline);

struct kobject *efi_kobj;

/*
 * Let's not leave out systab information that snuck into
 * the efivars driver
 * Note, do not add more fields in systab sysfs file as it breaks sysfs
 * one value per file rule!
 */
static ssize_t systab_show(struct kobject *kobj,
			   struct kobj_attribute *attr, char *buf)
{
	char *str = buf;

	if (!kobj || !buf)
		return -EINVAL;

	if (efi.mps != EFI_INVALID_TABLE_ADDR)
		str += sprintf(str, "MPS=0x%lx\n", efi.mps);
	if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
		str += sprintf(str, "ACPI20=0x%lx\n", efi.acpi20);
	if (efi.acpi != EFI_INVALID_TABLE_ADDR)
		str += sprintf(str, "ACPI=0x%lx\n", efi.acpi);
	/*
	 * If both SMBIOS and SMBIOS3 entry points are implemented, the
	 * SMBIOS3 entry point shall be preferred, so we list it first to
	 * let applications stop parsing after the first match.
	 */
	if (efi.smbios3 != EFI_INVALID_TABLE_ADDR)
		str += sprintf(str, "SMBIOS3=0x%lx\n", efi.smbios3);
	if (efi.smbios != EFI_INVALID_TABLE_ADDR)
		str += sprintf(str, "SMBIOS=0x%lx\n", efi.smbios);
	if (efi.hcdp != EFI_INVALID_TABLE_ADDR)
		str += sprintf(str, "HCDP=0x%lx\n", efi.hcdp);
	if (efi.boot_info != EFI_INVALID_TABLE_ADDR)
		str += sprintf(str, "BOOTINFO=0x%lx\n", efi.boot_info);
	if (efi.uga != EFI_INVALID_TABLE_ADDR)
		str += sprintf(str, "UGA=0x%lx\n", efi.uga);

	return str - buf;
}

static struct kobj_attribute efi_attr_systab = __ATTR_RO_MODE(systab, 0400);

#define EFI_FIELD(var) efi.var

#define EFI_ATTR_SHOW(name) \
static ssize_t name##_show(struct kobject *kobj, \
				struct kobj_attribute *attr, char *buf) \
{ \
	return sprintf(buf, "0x%lx\n", EFI_FIELD(name)); \
}

EFI_ATTR_SHOW(fw_vendor);
EFI_ATTR_SHOW(runtime);
EFI_ATTR_SHOW(config_table);

static ssize_t fw_platform_size_show(struct kobject *kobj,
				     struct kobj_attribute *attr, char *buf)
{
	return sprintf(buf, "%d\n", efi_enabled(EFI_64BIT) ? 64 : 32);
}

static struct kobj_attribute efi_attr_fw_vendor = __ATTR_RO(fw_vendor);
static struct kobj_attribute efi_attr_runtime = __ATTR_RO(runtime);
static struct kobj_attribute efi_attr_config_table = __ATTR_RO(config_table);
static struct kobj_attribute efi_attr_fw_platform_size =
	__ATTR_RO(fw_platform_size);

static struct attribute *efi_subsys_attrs[] = {
	&efi_attr_systab.attr,
	&efi_attr_fw_vendor.attr,
	&efi_attr_runtime.attr,
	&efi_attr_config_table.attr,
	&efi_attr_fw_platform_size.attr,
	NULL,
};

static umode_t efi_attr_is_visible(struct kobject *kobj,
				   struct attribute *attr, int n)
{
	if (attr == &efi_attr_fw_vendor.attr) {
		if (efi_enabled(EFI_PARAVIRT) ||
				efi.fw_vendor == EFI_INVALID_TABLE_ADDR)
			return 0;
	} else if (attr == &efi_attr_runtime.attr) {
		if (efi.runtime == EFI_INVALID_TABLE_ADDR)
			return 0;
	} else if (attr == &efi_attr_config_table.attr) {
		if (efi.config_table == EFI_INVALID_TABLE_ADDR)
			return 0;
	}

	return attr->mode;
}

static const struct attribute_group efi_subsys_attr_group = {
	.attrs = efi_subsys_attrs,
	.is_visible = efi_attr_is_visible,
};

static struct efivars generic_efivars;
static struct efivar_operations generic_ops;

static int generic_ops_register(void)
{
	generic_ops.get_variable = efi.get_variable;
	generic_ops.set_variable = efi.set_variable;
	generic_ops.set_variable_nonblocking = efi.set_variable_nonblocking;
	generic_ops.get_next_variable = efi.get_next_variable;
	generic_ops.query_variable_store = efi_query_variable_store;

	return efivars_register(&generic_efivars, &generic_ops, efi_kobj);
}

static void generic_ops_unregister(void)
{
	efivars_unregister(&generic_efivars);
}

#if IS_ENABLED(CONFIG_ACPI)
#define EFIVAR_SSDT_NAME_MAX	16
static char efivar_ssdt[EFIVAR_SSDT_NAME_MAX] __initdata;
static int __init efivar_ssdt_setup(char *str)
{
	if (strlen(str) < sizeof(efivar_ssdt))
		memcpy(efivar_ssdt, str, strlen(str));
	else
		pr_warn("efivar_ssdt: name too long: %s\n", str);
	return 0;
}
__setup("efivar_ssdt=", efivar_ssdt_setup);

static __init int efivar_ssdt_iter(efi_char16_t *name, efi_guid_t vendor,
				   unsigned long name_size, void *data)
{
	struct efivar_entry *entry;
	struct list_head *list = data;
	char utf8_name[EFIVAR_SSDT_NAME_MAX];
	int limit = min_t(unsigned long, EFIVAR_SSDT_NAME_MAX, name_size);

	ucs2_as_utf8(utf8_name, name, limit - 1);
	if (strncmp(utf8_name, efivar_ssdt, limit) != 0)
		return 0;

	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
	if (!entry)
		return 0;

	memcpy(entry->var.VariableName, name, name_size);
	memcpy(&entry->var.VendorGuid, &vendor, sizeof(efi_guid_t));

	efivar_entry_add(entry, list);

	return 0;
}

static __init int efivar_ssdt_load(void)
{
	LIST_HEAD(entries);
	struct efivar_entry *entry, *aux;
	unsigned long size;
	void *data;
	int ret;

	ret = efivar_init(efivar_ssdt_iter, &entries, true, &entries);

	list_for_each_entry_safe(entry, aux, &entries, list) {
		pr_info("loading SSDT from variable %s-%pUl\n", efivar_ssdt,
			&entry->var.VendorGuid);

		list_del(&entry->list);

		ret = efivar_entry_size(entry, &size);
		if (ret) {
			pr_err("failed to get var size\n");
			goto free_entry;
		}

		data = kmalloc(size, GFP_KERNEL);
		if (!data) {
			ret = -ENOMEM;
			goto free_entry;
		}

		ret = efivar_entry_get(entry, NULL, &size, data);
		if (ret) {
			pr_err("failed to get var data\n");
			goto free_data;
		}

		ret = acpi_load_table(data);
		if (ret) {
			pr_err("failed to load table: %d\n", ret);
			goto free_data;
		}

		goto free_entry;

free_data:
		kfree(data);

free_entry:
		kfree(entry);
	}

	return ret;
}
#else
static inline int efivar_ssdt_load(void) { return 0; }
#endif

/*
 * We register the efi subsystem with the firmware subsystem and the
 * efivars subsystem with the efi subsystem, if the system was booted with
 * EFI.
 */
static int __init efisubsys_init(void)
{
	int error;

	if (!efi_enabled(EFI_BOOT))
		return 0;

	/* We register the efi directory at /sys/firmware/efi */
	efi_kobj = kobject_create_and_add("efi", firmware_kobj);
	if (!efi_kobj) {
		pr_err("efi: Firmware registration failed.\n");
		return -ENOMEM;
	}

	error = generic_ops_register();
	if (error)
		goto err_put;

	if (efi_enabled(EFI_RUNTIME_SERVICES))
		efivar_ssdt_load();

	error = sysfs_create_group(efi_kobj, &efi_subsys_attr_group);
	if (error) {
		pr_err("efi: Sysfs attribute export failed with error %d.\n",
		       error);
		goto err_unregister;
	}

	error = efi_runtime_map_init(efi_kobj);
	if (error)
		goto err_remove_group;

	/* and the standard mountpoint for efivarfs */
	error = sysfs_create_mount_point(efi_kobj, "efivars");
	if (error) {
		pr_err("efivars: Subsystem registration failed.\n");
		goto err_remove_group;
	}

	return 0;

err_remove_group:
	sysfs_remove_group(efi_kobj, &efi_subsys_attr_group);
err_unregister:
	generic_ops_unregister();
err_put:
	kobject_put(efi_kobj);
	return error;
}

subsys_initcall(efisubsys_init);

/*
 * Find the efi memory descriptor for a given physical address.  Given a
 * physical address, determine if it exists within an EFI Memory Map entry,
 * and if so, populate the supplied memory descriptor with the appropriate
 * data.
 */
int __init efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md)
{
	efi_memory_desc_t *md;

	if (!efi_enabled(EFI_MEMMAP)) {
		pr_err_once("EFI_MEMMAP is not enabled.\n");
		return -EINVAL;
	}

	if (!out_md) {
		pr_err_once("out_md is null.\n");
		return -EINVAL;
        }

	for_each_efi_memory_desc(md) {
		u64 size;
		u64 end;

		if (!(md->attribute & EFI_MEMORY_RUNTIME) &&
		    md->type != EFI_BOOT_SERVICES_DATA &&
		    md->type != EFI_RUNTIME_SERVICES_DATA) {
			continue;
		}

		size = md->num_pages << EFI_PAGE_SHIFT;
		end = md->phys_addr + size;
		if (phys_addr >= md->phys_addr && phys_addr < end) {
			memcpy(out_md, md, sizeof(*out_md));
			return 0;
		}
	}
	return -ENOENT;
}

/*
 * Calculate the highest address of an efi memory descriptor.
 */
u64 __init efi_mem_desc_end(efi_memory_desc_t *md)
{
	u64 size = md->num_pages << EFI_PAGE_SHIFT;
	u64 end = md->phys_addr + size;
	return end;
}

void __init __weak efi_arch_mem_reserve(phys_addr_t addr, u64 size) {}

/**
 * efi_mem_reserve - Reserve an EFI memory region
 * @addr: Physical address to reserve
 * @size: Size of reservation
 *
 * Mark a region as reserved from general kernel allocation and
 * prevent it being released by efi_free_boot_services().
 *
 * This function should be called drivers once they've parsed EFI
 * configuration tables to figure out where their data lives, e.g.
 * efi_esrt_init().
 */
void __init efi_mem_reserve(phys_addr_t addr, u64 size)
{
	if (!memblock_is_region_reserved(addr, size))
		memblock_reserve(addr, size);

	/*
	 * Some architectures (x86) reserve all boot services ranges
	 * until efi_free_boot_services() because of buggy firmware
	 * implementations. This means the above memblock_reserve() is
	 * superfluous on x86 and instead what it needs to do is
	 * ensure the @start, @size is not freed.
	 */
	efi_arch_mem_reserve(addr, size);
}

static __initdata efi_config_table_type_t common_tables[] = {
	{ACPI_20_TABLE_GUID, "ACPI 2.0", &efi.acpi20},
	{ACPI_TABLE_GUID, "ACPI", &efi.acpi},
	{HCDP_TABLE_GUID, "HCDP", &efi.hcdp},
	{MPS_TABLE_GUID, "MPS", &efi.mps},
	{SAL_SYSTEM_TABLE_GUID, "SALsystab", &efi.sal_systab},
	{SMBIOS_TABLE_GUID, "SMBIOS", &efi.smbios},
	{SMBIOS3_TABLE_GUID, "SMBIOS 3.0", &efi.smbios3},
	{UGA_IO_PROTOCOL_GUID, "UGA", &efi.uga},
	{EFI_SYSTEM_RESOURCE_TABLE_GUID, "ESRT", &efi.esrt},
	{EFI_PROPERTIES_TABLE_GUID, "PROP", &efi.properties_table},
	{EFI_MEMORY_ATTRIBUTES_TABLE_GUID, "MEMATTR", &efi.mem_attr_table},
	{LINUX_EFI_RANDOM_SEED_TABLE_GUID, "RNG", &efi.rng_seed},
	{LINUX_EFI_TPM_EVENT_LOG_GUID, "TPMEventLog", &efi.tpm_log},
	{NULL_GUID, NULL, NULL},
};

static __init int match_config_table(efi_guid_t *guid,
				     unsigned long table,
				     efi_config_table_type_t *table_types)
{
	int i;

	if (table_types) {
		for (i = 0; efi_guidcmp(table_types[i].guid, NULL_GUID); i++) {
			if (!efi_guidcmp(*guid, table_types[i].guid)) {
				*(table_types[i].ptr) = table;
				if (table_types[i].name)
					pr_cont(" %s=0x%lx ",
						table_types[i].name, table);
				return 1;
			}
		}
	}

	return 0;
}

int __init efi_config_parse_tables(void *config_tables, int count, int sz,
				   efi_config_table_type_t *arch_tables)
{
	void *tablep;
	int i;

	tablep = config_tables;
	pr_info("");
	for (i = 0; i < count; i++) {
		efi_guid_t guid;
		unsigned long table;

		if (efi_enabled(EFI_64BIT)) {
			u64 table64;
			guid = ((efi_config_table_64_t *)tablep)->guid;
			table64 = ((efi_config_table_64_t *)tablep)->table;
			table = table64;
#ifndef CONFIG_64BIT
			if (table64 >> 32) {
				pr_cont("\n");
				pr_err("Table located above 4GB, disabling EFI.\n");
				return -EINVAL;
			}
#endif
		} else {
			guid = ((efi_config_table_32_t *)tablep)->guid;
			table = ((efi_config_table_32_t *)tablep)->table;
		}

		if (!match_config_table(&guid, table, common_tables))
			match_config_table(&guid, table, arch_tables);

		tablep += sz;
	}
	pr_cont("\n");
	set_bit(EFI_CONFIG_TABLES, &efi.flags);

	if (efi.rng_seed != EFI_INVALID_TABLE_ADDR) {
		struct linux_efi_random_seed *seed;
		u32 size = 0;

		seed = early_memremap(efi.rng_seed, sizeof(*seed));
		if (seed != NULL) {
			size = seed->size;
			early_memunmap(seed, sizeof(*seed));
		} else {
			pr_err("Could not map UEFI random seed!\n");
		}
		if (size > 0) {
			seed = early_memremap(efi.rng_seed,
					      sizeof(*seed) + size);
			if (seed != NULL) {
				pr_notice("seeding entropy pool\n");
				add_device_randomness(seed->bits, seed->size);
				early_memunmap(seed, sizeof(*seed) + size);
			} else {
				pr_err("Could not map UEFI random seed!\n");
			}
		}
	}

	if (efi_enabled(EFI_MEMMAP))
		efi_memattr_init();

	efi_tpm_eventlog_init();

	/* Parse the EFI Properties table if it exists */
	if (efi.properties_table != EFI_INVALID_TABLE_ADDR) {
		efi_properties_table_t *tbl;

		tbl = early_memremap(efi.properties_table, sizeof(*tbl));
		if (tbl == NULL) {
			pr_err("Could not map Properties table!\n");
			return -ENOMEM;
		}

		if (tbl->memory_protection_attribute &
		    EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA)
			set_bit(EFI_NX_PE_DATA, &efi.flags);

		early_memunmap(tbl, sizeof(*tbl));
	}

	return 0;
}

int __init efi_config_init(efi_config_table_type_t *arch_tables)
{
	void *config_tables;
	int sz, ret;

	if (efi_enabled(EFI_64BIT))
		sz = sizeof(efi_config_table_64_t);
	else
		sz = sizeof(efi_config_table_32_t);

	/*
	 * Let's see what config tables the firmware passed to us.
	 */
	config_tables = early_memremap(efi.systab->tables,
				       efi.systab->nr_tables * sz);
	if (config_tables == NULL) {
		pr_err("Could not map Configuration table!\n");
		return -ENOMEM;
	}

	ret = efi_config_parse_tables(config_tables, efi.systab->nr_tables, sz,
				      arch_tables);

	early_memunmap(config_tables, efi.systab->nr_tables * sz);
	return ret;
}

#ifdef CONFIG_EFI_VARS_MODULE
static int __init efi_load_efivars(void)
{
	struct platform_device *pdev;

	if (!efi_enabled(EFI_RUNTIME_SERVICES))
		return 0;

	pdev = platform_device_register_simple("efivars", 0, NULL, 0);
	return PTR_ERR_OR_ZERO(pdev);
}
device_initcall(efi_load_efivars);
#endif

#ifdef CONFIG_EFI_PARAMS_FROM_FDT

#define UEFI_PARAM(name, prop, field)			   \
	{						   \
		{ name },				   \
		{ prop },				   \
		offsetof(struct efi_fdt_params, field),    \
		FIELD_SIZEOF(struct efi_fdt_params, field) \
	}

struct params {
	const char name[32];
	const char propname[32];
	int offset;
	int size;
};

static __initdata struct params fdt_params[] = {
	UEFI_PARAM("System Table", "linux,uefi-system-table", system_table),
	UEFI_PARAM("MemMap Address", "linux,uefi-mmap-start", mmap),
	UEFI_PARAM("MemMap Size", "linux,uefi-mmap-size", mmap_size),
	UEFI_PARAM("MemMap Desc. Size", "linux,uefi-mmap-desc-size", desc_size),
	UEFI_PARAM("MemMap Desc. Version", "linux,uefi-mmap-desc-ver", desc_ver)
};

static __initdata struct params xen_fdt_params[] = {
	UEFI_PARAM("System Table", "xen,uefi-system-table", system_table),
	UEFI_PARAM("MemMap Address", "xen,uefi-mmap-start", mmap),
	UEFI_PARAM("MemMap Size", "xen,uefi-mmap-size", mmap_size),
	UEFI_PARAM("MemMap Desc. Size", "xen,uefi-mmap-desc-size", desc_size),
	UEFI_PARAM("MemMap Desc. Version", "xen,uefi-mmap-desc-ver", desc_ver)
};

#define EFI_FDT_PARAMS_SIZE	ARRAY_SIZE(fdt_params)

static __initdata struct {
	const char *uname;
	const char *subnode;
	struct params *params;
} dt_params[] = {
	{ "hypervisor", "uefi", xen_fdt_params },
	{ "chosen", NULL, fdt_params },
};

struct param_info {
	int found;
	void *params;
	const char *missing;
};

static int __init __find_uefi_params(unsigned long node,
				     struct param_info *info,
				     struct params *params)
{
	const void *prop;
	void *dest;
	u64 val;
	int i, len;

	for (i = 0; i < EFI_FDT_PARAMS_SIZE; i++) {
		prop = of_get_flat_dt_prop(node, params[i].propname, &len);
		if (!prop) {
			info->missing = params[i].name;
			return 0;
		}

		dest = info->params + params[i].offset;
		info->found++;

		val = of_read_number(prop, len / sizeof(u32));

		if (params[i].size == sizeof(u32))
			*(u32 *)dest = val;
		else
			*(u64 *)dest = val;

		if (efi_enabled(EFI_DBG))
			pr_info("  %s: 0x%0*llx\n", params[i].name,
				params[i].size * 2, val);
	}

	return 1;
}

static int __init fdt_find_uefi_params(unsigned long node, const char *uname,
				       int depth, void *data)
{
	struct param_info *info = data;
	int i;

	for (i = 0; i < ARRAY_SIZE(dt_params); i++) {
		const char *subnode = dt_params[i].subnode;

		if (depth != 1 || strcmp(uname, dt_params[i].uname) != 0) {
			info->missing = dt_params[i].params[0].name;
			continue;
		}

		if (subnode) {
			int err = of_get_flat_dt_subnode_by_name(node, subnode);

			if (err < 0)
				return 0;

			node = err;
		}

		return __find_uefi_params(node, info, dt_params[i].params);
	}

	return 0;
}

int __init efi_get_fdt_params(struct efi_fdt_params *params)
{
	struct param_info info;
	int ret;

	pr_info("Getting EFI parameters from FDT:\n");

	info.found = 0;
	info.params = params;

	ret = of_scan_flat_dt(fdt_find_uefi_params, &info);
	if (!info.found)
		pr_info("UEFI not found.\n");
	else if (!ret)
		pr_err("Can't find '%s' in device tree!\n",
		       info.missing);

	return ret;
}
#endif /* CONFIG_EFI_PARAMS_FROM_FDT */

static __initdata char memory_type_name[][20] = {
	"Reserved",
	"Loader Code",
	"Loader Data",
	"Boot Code",
	"Boot Data",
	"Runtime Code",
	"Runtime Data",
	"Conventional Memory",
	"Unusable Memory",
	"ACPI Reclaim Memory",
	"ACPI Memory NVS",
	"Memory Mapped I/O",
	"MMIO Port Space",
	"PAL Code",
	"Persistent Memory",
};

char * __init efi_md_typeattr_format(char *buf, size_t size,
				     const efi_memory_desc_t *md)
{
	char *pos;
	int type_len;
	u64 attr;

	pos = buf;
	if (md->type >= ARRAY_SIZE(memory_type_name))
		type_len = snprintf(pos, size, "[type=%u", md->type);
	else
		type_len = snprintf(pos, size, "[%-*s",
				    (int)(sizeof(memory_type_name[0]) - 1),
				    memory_type_name[md->type]);
	if (type_len >= size)
		return buf;

	pos += type_len;
	size -= type_len;

	attr = md->attribute;
	if (attr & ~(EFI_MEMORY_UC | EFI_MEMORY_WC | EFI_MEMORY_WT |
		     EFI_MEMORY_WB | EFI_MEMORY_UCE | EFI_MEMORY_RO |
		     EFI_MEMORY_WP | EFI_MEMORY_RP | EFI_MEMORY_XP |
		     EFI_MEMORY_NV |
		     EFI_MEMORY_RUNTIME | EFI_MEMORY_MORE_RELIABLE))
		snprintf(pos, size, "|attr=0x%016llx]",
			 (unsigned long long)attr);
	else
		snprintf(pos, size,
			 "|%3s|%2s|%2s|%2s|%2s|%2s|%2s|%3s|%2s|%2s|%2s|%2s]",
			 attr & EFI_MEMORY_RUNTIME ? "RUN" : "",
			 attr & EFI_MEMORY_MORE_RELIABLE ? "MR" : "",
			 attr & EFI_MEMORY_NV      ? "NV"  : "",
			 attr & EFI_MEMORY_XP      ? "XP"  : "",
			 attr & EFI_MEMORY_RP      ? "RP"  : "",
			 attr & EFI_MEMORY_WP      ? "WP"  : "",
			 attr & EFI_MEMORY_RO      ? "RO"  : "",
			 attr & EFI_MEMORY_UCE     ? "UCE" : "",
			 attr & EFI_MEMORY_WB      ? "WB"  : "",
			 attr & EFI_MEMORY_WT      ? "WT"  : "",
			 attr & EFI_MEMORY_WC      ? "WC"  : "",
			 attr & EFI_MEMORY_UC      ? "UC"  : "");
	return buf;
}

/*
 * IA64 has a funky EFI memory map that doesn't work the same way as
 * other architectures.
 */
#ifndef CONFIG_IA64
/*
 * efi_mem_attributes - lookup memmap attributes for physical address
 * @phys_addr: the physical address to lookup
 *
 * Search in the EFI memory map for the region covering
 * @phys_addr. Returns the EFI memory attributes if the region
 * was found in the memory map, 0 otherwise.
 */
u64 efi_mem_attributes(unsigned long phys_addr)
{
	efi_memory_desc_t *md;

	if (!efi_enabled(EFI_MEMMAP))
		return 0;

	for_each_efi_memory_desc(md) {
		if ((md->phys_addr <= phys_addr) &&
		    (phys_addr < (md->phys_addr +
		    (md->num_pages << EFI_PAGE_SHIFT))))
			return md->attribute;
	}
	return 0;
}

/*
 * efi_mem_type - lookup memmap type for physical address
 * @phys_addr: the physical address to lookup
 *
 * Search in the EFI memory map for the region covering @phys_addr.
 * Returns the EFI memory type if the region was found in the memory
 * map, EFI_RESERVED_TYPE (zero) otherwise.
 */
int efi_mem_type(unsigned long phys_addr)
{
	const efi_memory_desc_t *md;

	if (!efi_enabled(EFI_MEMMAP))
		return -ENOTSUPP;

	for_each_efi_memory_desc(md) {
		if ((md->phys_addr <= phys_addr) &&
		    (phys_addr < (md->phys_addr +
				  (md->num_pages << EFI_PAGE_SHIFT))))
			return md->type;
	}
	return -EINVAL;
}
#endif

int efi_status_to_err(efi_status_t status)
{
	int err;

	switch (status) {
	case EFI_SUCCESS:
		err = 0;
		break;
	case EFI_INVALID_PARAMETER:
		err = -EINVAL;
		break;
	case EFI_OUT_OF_RESOURCES:
		err = -ENOSPC;
		break;
	case EFI_DEVICE_ERROR:
		err = -EIO;
		break;
	case EFI_WRITE_PROTECTED:
		err = -EROFS;
		break;
	case EFI_SECURITY_VIOLATION:
		err = -EACCES;
		break;
	case EFI_NOT_FOUND:
		err = -ENOENT;
		break;
	case EFI_ABORTED:
		err = -EINTR;
		break;
	default:
		err = -EINVAL;
	}

	return err;
}

bool efi_is_table_address(unsigned long phys_addr)
{
	unsigned int i;

	if (phys_addr == EFI_INVALID_TABLE_ADDR)
		return false;

	for (i = 0; i < ARRAY_SIZE(efi_tables); i++)
		if (*(efi_tables[i]) == phys_addr)
			return true;

	return false;
}

#ifdef CONFIG_KEXEC
static int update_efi_random_seed(struct notifier_block *nb,
				  unsigned long code, void *unused)
{
	struct linux_efi_random_seed *seed;
	u32 size = 0;

	if (!kexec_in_progress)
		return NOTIFY_DONE;

	seed = memremap(efi.rng_seed, sizeof(*seed), MEMREMAP_WB);
	if (seed != NULL) {
		size = min(seed->size, EFI_RANDOM_SEED_SIZE);
		memunmap(seed);
	} else {
		pr_err("Could not map UEFI random seed!\n");
	}
	if (size > 0) {
		seed = memremap(efi.rng_seed, sizeof(*seed) + size,
				MEMREMAP_WB);
		if (seed != NULL) {
			seed->size = size;
			get_random_bytes(seed->bits, seed->size);
			memunmap(seed);
		} else {
			pr_err("Could not map UEFI random seed!\n");
		}
	}
	return NOTIFY_DONE;
}

static struct notifier_block efi_random_seed_nb = {
	.notifier_call = update_efi_random_seed,
};

static int register_update_efi_random_seed(void)
{
	if (efi.rng_seed == EFI_INVALID_TABLE_ADDR)
		return 0;
	return register_reboot_notifier(&efi_random_seed_nb);
}
late_initcall(register_update_efi_random_seed);
#endif