summaryrefslogtreecommitdiffstats
path: root/drivers/firmware/efi/libstub/arm64-stub.c
blob: b09dda600c78e41e16433eed83f9b752db0f685a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (C) 2013, 2014 Linaro Ltd;  <roy.franz@linaro.org>
 *
 * This file implements the EFI boot stub for the arm64 kernel.
 * Adapted from ARM version by Mark Salter <msalter@redhat.com>
 */

/*
 * To prevent the compiler from emitting GOT-indirected (and thus absolute)
 * references to the section markers, override their visibility as 'hidden'
 */
#pragma GCC visibility push(hidden)
#include <asm/sections.h>
#pragma GCC visibility pop

#include <linux/efi.h>
#include <asm/efi.h>
#include <asm/memory.h>
#include <asm/sysreg.h>

#include "efistub.h"

efi_status_t check_platform_features(efi_system_table_t *sys_table_arg)
{
	u64 tg;

	/* UEFI mandates support for 4 KB granularity, no need to check */
	if (IS_ENABLED(CONFIG_ARM64_4K_PAGES))
		return EFI_SUCCESS;

	tg = (read_cpuid(ID_AA64MMFR0_EL1) >> ID_AA64MMFR0_TGRAN_SHIFT) & 0xf;
	if (tg != ID_AA64MMFR0_TGRAN_SUPPORTED) {
		if (IS_ENABLED(CONFIG_ARM64_64K_PAGES))
			pr_efi_err("This 64 KB granular kernel is not supported by your CPU\n");
		else
			pr_efi_err("This 16 KB granular kernel is not supported by your CPU\n");
		return EFI_UNSUPPORTED;
	}
	return EFI_SUCCESS;
}

efi_status_t handle_kernel_image(efi_system_table_t *sys_table_arg,
				 unsigned long *image_addr,
				 unsigned long *image_size,
				 unsigned long *reserve_addr,
				 unsigned long *reserve_size,
				 unsigned long dram_base,
				 efi_loaded_image_t *image)
{
	efi_status_t status;
	unsigned long kernel_size, kernel_memsize = 0;
	void *old_image_addr = (void *)*image_addr;
	unsigned long preferred_offset;
	u64 phys_seed = 0;

	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
		if (!nokaslr()) {
			status = efi_get_random_bytes(sys_table_arg,
						      sizeof(phys_seed),
						      (u8 *)&phys_seed);
			if (status == EFI_NOT_FOUND) {
				pr_efi("EFI_RNG_PROTOCOL unavailable, no randomness supplied\n");
			} else if (status != EFI_SUCCESS) {
				pr_efi_err("efi_get_random_bytes() failed\n");
				return status;
			}
		} else {
			pr_efi("KASLR disabled on kernel command line\n");
		}
	}

	/*
	 * The preferred offset of the kernel Image is TEXT_OFFSET bytes beyond
	 * a 2 MB aligned base, which itself may be lower than dram_base, as
	 * long as the resulting offset equals or exceeds it.
	 */
	preferred_offset = round_down(dram_base, MIN_KIMG_ALIGN) + TEXT_OFFSET;
	if (preferred_offset < dram_base)
		preferred_offset += MIN_KIMG_ALIGN;

	kernel_size = _edata - _text;
	kernel_memsize = kernel_size + (_end - _edata);

	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && phys_seed != 0) {
		/*
		 * If CONFIG_DEBUG_ALIGN_RODATA is not set, produce a
		 * displacement in the interval [0, MIN_KIMG_ALIGN) that
		 * doesn't violate this kernel's de-facto alignment
		 * constraints.
		 */
		u32 mask = (MIN_KIMG_ALIGN - 1) & ~(EFI_KIMG_ALIGN - 1);
		u32 offset = !IS_ENABLED(CONFIG_DEBUG_ALIGN_RODATA) ?
			     (phys_seed >> 32) & mask : TEXT_OFFSET;

		/*
		 * With CONFIG_RANDOMIZE_TEXT_OFFSET=y, TEXT_OFFSET may not
		 * be a multiple of EFI_KIMG_ALIGN, and we must ensure that
		 * we preserve the misalignment of 'offset' relative to
		 * EFI_KIMG_ALIGN so that statically allocated objects whose
		 * alignment exceeds PAGE_SIZE appear correctly aligned in
		 * memory.
		 */
		offset |= TEXT_OFFSET % EFI_KIMG_ALIGN;

		/*
		 * If KASLR is enabled, and we have some randomness available,
		 * locate the kernel at a randomized offset in physical memory.
		 */
		*reserve_size = kernel_memsize + offset;
		status = efi_random_alloc(sys_table_arg, *reserve_size,
					  MIN_KIMG_ALIGN, reserve_addr,
					  (u32)phys_seed);

		*image_addr = *reserve_addr + offset;
	} else {
		/*
		 * Else, try a straight allocation at the preferred offset.
		 * This will work around the issue where, if dram_base == 0x0,
		 * efi_low_alloc() refuses to allocate at 0x0 (to prevent the
		 * address of the allocation to be mistaken for a FAIL return
		 * value or a NULL pointer). It will also ensure that, on
		 * platforms where the [dram_base, dram_base + TEXT_OFFSET)
		 * interval is partially occupied by the firmware (like on APM
		 * Mustang), we can still place the kernel at the address
		 * 'dram_base + TEXT_OFFSET'.
		 */
		if (*image_addr == preferred_offset)
			return EFI_SUCCESS;

		*image_addr = *reserve_addr = preferred_offset;
		*reserve_size = round_up(kernel_memsize, EFI_ALLOC_ALIGN);

		status = efi_call_early(allocate_pages, EFI_ALLOCATE_ADDRESS,
					EFI_LOADER_DATA,
					*reserve_size / EFI_PAGE_SIZE,
					(efi_physical_addr_t *)reserve_addr);
	}

	if (status != EFI_SUCCESS) {
		*reserve_size = kernel_memsize + TEXT_OFFSET;
		status = efi_low_alloc(sys_table_arg, *reserve_size,
				       MIN_KIMG_ALIGN, reserve_addr);

		if (status != EFI_SUCCESS) {
			pr_efi_err("Failed to relocate kernel\n");
			*reserve_size = 0;
			return status;
		}
		*image_addr = *reserve_addr + TEXT_OFFSET;
	}
	memcpy((void *)*image_addr, old_image_addr, kernel_size);

	return EFI_SUCCESS;
}