1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
|
/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* DOC: Panel Self Refresh (PSR/SRD)
*
* Since Haswell Display controller supports Panel Self-Refresh on display
* panels witch have a remote frame buffer (RFB) implemented according to PSR
* spec in eDP1.3. PSR feature allows the display to go to lower standby states
* when system is idle but display is on as it eliminates display refresh
* request to DDR memory completely as long as the frame buffer for that
* display is unchanged.
*
* Panel Self Refresh must be supported by both Hardware (source) and
* Panel (sink).
*
* PSR saves power by caching the framebuffer in the panel RFB, which allows us
* to power down the link and memory controller. For DSI panels the same idea
* is called "manual mode".
*
* The implementation uses the hardware-based PSR support which automatically
* enters/exits self-refresh mode. The hardware takes care of sending the
* required DP aux message and could even retrain the link (that part isn't
* enabled yet though). The hardware also keeps track of any frontbuffer
* changes to know when to exit self-refresh mode again. Unfortunately that
* part doesn't work too well, hence why the i915 PSR support uses the
* software frontbuffer tracking to make sure it doesn't miss a screen
* update. For this integration intel_psr_invalidate() and intel_psr_flush()
* get called by the frontbuffer tracking code. Note that because of locking
* issues the self-refresh re-enable code is done from a work queue, which
* must be correctly synchronized/cancelled when shutting down the pipe."
*/
#include <drm/drmP.h>
#include "intel_drv.h"
#include "i915_drv.h"
static inline enum intel_display_power_domain
psr_aux_domain(struct intel_dp *intel_dp)
{
/* CNL HW requires corresponding AUX IOs to be powered up for PSR.
* However, for non-A AUX ports the corresponding non-EDP transcoders
* would have already enabled power well 2 and DC_OFF. This means we can
* acquire a wider POWER_DOMAIN_AUX_{B,C,D,F} reference instead of a
* specific AUX_IO reference without powering up any extra wells.
* Note that PSR is enabled only on Port A even though this function
* returns the correct domain for other ports too.
*/
return intel_dp->aux_ch == AUX_CH_A ? POWER_DOMAIN_AUX_IO_A :
intel_dp->aux_power_domain;
}
static void psr_aux_io_power_get(struct intel_dp *intel_dp)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
if (INTEL_GEN(dev_priv) < 10)
return;
intel_display_power_get(dev_priv, psr_aux_domain(intel_dp));
}
static void psr_aux_io_power_put(struct intel_dp *intel_dp)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
if (INTEL_GEN(dev_priv) < 10)
return;
intel_display_power_put(dev_priv, psr_aux_domain(intel_dp));
}
void intel_psr_irq_control(struct drm_i915_private *dev_priv, bool debug)
{
u32 debug_mask, mask;
mask = EDP_PSR_ERROR(TRANSCODER_EDP);
debug_mask = EDP_PSR_POST_EXIT(TRANSCODER_EDP) |
EDP_PSR_PRE_ENTRY(TRANSCODER_EDP);
if (INTEL_GEN(dev_priv) >= 8) {
mask |= EDP_PSR_ERROR(TRANSCODER_A) |
EDP_PSR_ERROR(TRANSCODER_B) |
EDP_PSR_ERROR(TRANSCODER_C);
debug_mask |= EDP_PSR_POST_EXIT(TRANSCODER_A) |
EDP_PSR_PRE_ENTRY(TRANSCODER_A) |
EDP_PSR_POST_EXIT(TRANSCODER_B) |
EDP_PSR_PRE_ENTRY(TRANSCODER_B) |
EDP_PSR_POST_EXIT(TRANSCODER_C) |
EDP_PSR_PRE_ENTRY(TRANSCODER_C);
}
if (debug)
mask |= debug_mask;
WRITE_ONCE(dev_priv->psr.debug, debug);
I915_WRITE(EDP_PSR_IMR, ~mask);
}
static void psr_event_print(u32 val, bool psr2_enabled)
{
DRM_DEBUG_KMS("PSR exit events: 0x%x\n", val);
if (val & PSR_EVENT_PSR2_WD_TIMER_EXPIRE)
DRM_DEBUG_KMS("\tPSR2 watchdog timer expired\n");
if ((val & PSR_EVENT_PSR2_DISABLED) && psr2_enabled)
DRM_DEBUG_KMS("\tPSR2 disabled\n");
if (val & PSR_EVENT_SU_DIRTY_FIFO_UNDERRUN)
DRM_DEBUG_KMS("\tSU dirty FIFO underrun\n");
if (val & PSR_EVENT_SU_CRC_FIFO_UNDERRUN)
DRM_DEBUG_KMS("\tSU CRC FIFO underrun\n");
if (val & PSR_EVENT_GRAPHICS_RESET)
DRM_DEBUG_KMS("\tGraphics reset\n");
if (val & PSR_EVENT_PCH_INTERRUPT)
DRM_DEBUG_KMS("\tPCH interrupt\n");
if (val & PSR_EVENT_MEMORY_UP)
DRM_DEBUG_KMS("\tMemory up\n");
if (val & PSR_EVENT_FRONT_BUFFER_MODIFY)
DRM_DEBUG_KMS("\tFront buffer modification\n");
if (val & PSR_EVENT_WD_TIMER_EXPIRE)
DRM_DEBUG_KMS("\tPSR watchdog timer expired\n");
if (val & PSR_EVENT_PIPE_REGISTERS_UPDATE)
DRM_DEBUG_KMS("\tPIPE registers updated\n");
if (val & PSR_EVENT_REGISTER_UPDATE)
DRM_DEBUG_KMS("\tRegister updated\n");
if (val & PSR_EVENT_HDCP_ENABLE)
DRM_DEBUG_KMS("\tHDCP enabled\n");
if (val & PSR_EVENT_KVMR_SESSION_ENABLE)
DRM_DEBUG_KMS("\tKVMR session enabled\n");
if (val & PSR_EVENT_VBI_ENABLE)
DRM_DEBUG_KMS("\tVBI enabled\n");
if (val & PSR_EVENT_LPSP_MODE_EXIT)
DRM_DEBUG_KMS("\tLPSP mode exited\n");
if ((val & PSR_EVENT_PSR_DISABLE) && !psr2_enabled)
DRM_DEBUG_KMS("\tPSR disabled\n");
}
void intel_psr_irq_handler(struct drm_i915_private *dev_priv, u32 psr_iir)
{
u32 transcoders = BIT(TRANSCODER_EDP);
enum transcoder cpu_transcoder;
ktime_t time_ns = ktime_get();
if (INTEL_GEN(dev_priv) >= 8)
transcoders |= BIT(TRANSCODER_A) |
BIT(TRANSCODER_B) |
BIT(TRANSCODER_C);
for_each_cpu_transcoder_masked(dev_priv, cpu_transcoder, transcoders) {
/* FIXME: Exit PSR and link train manually when this happens. */
if (psr_iir & EDP_PSR_ERROR(cpu_transcoder))
DRM_DEBUG_KMS("[transcoder %s] PSR aux error\n",
transcoder_name(cpu_transcoder));
if (psr_iir & EDP_PSR_PRE_ENTRY(cpu_transcoder)) {
dev_priv->psr.last_entry_attempt = time_ns;
DRM_DEBUG_KMS("[transcoder %s] PSR entry attempt in 2 vblanks\n",
transcoder_name(cpu_transcoder));
}
if (psr_iir & EDP_PSR_POST_EXIT(cpu_transcoder)) {
dev_priv->psr.last_exit = time_ns;
DRM_DEBUG_KMS("[transcoder %s] PSR exit completed\n",
transcoder_name(cpu_transcoder));
if (INTEL_GEN(dev_priv) >= 9) {
u32 val = I915_READ(PSR_EVENT(cpu_transcoder));
bool psr2_enabled = dev_priv->psr.psr2_enabled;
I915_WRITE(PSR_EVENT(cpu_transcoder), val);
psr_event_print(val, psr2_enabled);
}
}
}
}
static bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp)
{
uint8_t dprx = 0;
if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST,
&dprx) != 1)
return false;
return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED;
}
static bool intel_dp_get_alpm_status(struct intel_dp *intel_dp)
{
uint8_t alpm_caps = 0;
if (drm_dp_dpcd_readb(&intel_dp->aux, DP_RECEIVER_ALPM_CAP,
&alpm_caps) != 1)
return false;
return alpm_caps & DP_ALPM_CAP;
}
static u8 intel_dp_get_sink_sync_latency(struct intel_dp *intel_dp)
{
u8 val = 8; /* assume the worst if we can't read the value */
if (drm_dp_dpcd_readb(&intel_dp->aux,
DP_SYNCHRONIZATION_LATENCY_IN_SINK, &val) == 1)
val &= DP_MAX_RESYNC_FRAME_COUNT_MASK;
else
DRM_DEBUG_KMS("Unable to get sink synchronization latency, assuming 8 frames\n");
return val;
}
void intel_psr_init_dpcd(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv =
to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
drm_dp_dpcd_read(&intel_dp->aux, DP_PSR_SUPPORT, intel_dp->psr_dpcd,
sizeof(intel_dp->psr_dpcd));
if (!intel_dp->psr_dpcd[0])
return;
DRM_DEBUG_KMS("eDP panel supports PSR version %x\n",
intel_dp->psr_dpcd[0]);
if (!(intel_dp->edp_dpcd[1] & DP_EDP_SET_POWER_CAP)) {
DRM_DEBUG_KMS("Panel lacks power state control, PSR cannot be enabled\n");
return;
}
dev_priv->psr.sink_support = true;
dev_priv->psr.sink_sync_latency =
intel_dp_get_sink_sync_latency(intel_dp);
if (INTEL_GEN(dev_priv) >= 9 &&
(intel_dp->psr_dpcd[0] == DP_PSR2_WITH_Y_COORD_IS_SUPPORTED)) {
bool y_req = intel_dp->psr_dpcd[1] &
DP_PSR2_SU_Y_COORDINATE_REQUIRED;
bool alpm = intel_dp_get_alpm_status(intel_dp);
/*
* All panels that supports PSR version 03h (PSR2 +
* Y-coordinate) can handle Y-coordinates in VSC but we are
* only sure that it is going to be used when required by the
* panel. This way panel is capable to do selective update
* without a aux frame sync.
*
* To support PSR version 02h and PSR version 03h without
* Y-coordinate requirement panels we would need to enable
* GTC first.
*/
dev_priv->psr.sink_psr2_support = y_req && alpm;
DRM_DEBUG_KMS("PSR2 %ssupported\n",
dev_priv->psr.sink_psr2_support ? "" : "not ");
if (dev_priv->psr.sink_psr2_support) {
dev_priv->psr.colorimetry_support =
intel_dp_get_colorimetry_status(intel_dp);
}
}
}
static void hsw_psr_setup_vsc(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
struct edp_vsc_psr psr_vsc;
if (dev_priv->psr.psr2_enabled) {
/* Prepare VSC Header for SU as per EDP 1.4 spec, Table 6.11 */
memset(&psr_vsc, 0, sizeof(psr_vsc));
psr_vsc.sdp_header.HB0 = 0;
psr_vsc.sdp_header.HB1 = 0x7;
if (dev_priv->psr.colorimetry_support) {
psr_vsc.sdp_header.HB2 = 0x5;
psr_vsc.sdp_header.HB3 = 0x13;
} else {
psr_vsc.sdp_header.HB2 = 0x4;
psr_vsc.sdp_header.HB3 = 0xe;
}
} else {
/* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
memset(&psr_vsc, 0, sizeof(psr_vsc));
psr_vsc.sdp_header.HB0 = 0;
psr_vsc.sdp_header.HB1 = 0x7;
psr_vsc.sdp_header.HB2 = 0x2;
psr_vsc.sdp_header.HB3 = 0x8;
}
intel_dig_port->write_infoframe(&intel_dig_port->base.base, crtc_state,
DP_SDP_VSC, &psr_vsc, sizeof(psr_vsc));
}
static void hsw_psr_setup_aux(struct intel_dp *intel_dp)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
u32 aux_clock_divider, aux_ctl;
int i;
static const uint8_t aux_msg[] = {
[0] = DP_AUX_NATIVE_WRITE << 4,
[1] = DP_SET_POWER >> 8,
[2] = DP_SET_POWER & 0xff,
[3] = 1 - 1,
[4] = DP_SET_POWER_D0,
};
u32 psr_aux_mask = EDP_PSR_AUX_CTL_TIME_OUT_MASK |
EDP_PSR_AUX_CTL_MESSAGE_SIZE_MASK |
EDP_PSR_AUX_CTL_PRECHARGE_2US_MASK |
EDP_PSR_AUX_CTL_BIT_CLOCK_2X_MASK;
BUILD_BUG_ON(sizeof(aux_msg) > 20);
for (i = 0; i < sizeof(aux_msg); i += 4)
I915_WRITE(EDP_PSR_AUX_DATA(i >> 2),
intel_dp_pack_aux(&aux_msg[i], sizeof(aux_msg) - i));
aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
/* Start with bits set for DDI_AUX_CTL register */
aux_ctl = intel_dp->get_aux_send_ctl(intel_dp, 0, sizeof(aux_msg),
aux_clock_divider);
/* Select only valid bits for SRD_AUX_CTL */
aux_ctl &= psr_aux_mask;
I915_WRITE(EDP_PSR_AUX_CTL, aux_ctl);
}
static void hsw_psr_enable_sink(struct intel_dp *intel_dp)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = dig_port->base.base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
u8 dpcd_val = DP_PSR_ENABLE;
/* Enable ALPM at sink for psr2 */
if (dev_priv->psr.psr2_enabled) {
drm_dp_dpcd_writeb(&intel_dp->aux, DP_RECEIVER_ALPM_CONFIG,
DP_ALPM_ENABLE);
dpcd_val |= DP_PSR_ENABLE_PSR2;
}
if (dev_priv->psr.link_standby)
dpcd_val |= DP_PSR_MAIN_LINK_ACTIVE;
drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, dpcd_val);
drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, DP_SET_POWER_D0);
}
static void hsw_activate_psr1(struct intel_dp *intel_dp)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = dig_port->base.base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
u32 max_sleep_time = 0x1f;
u32 val = EDP_PSR_ENABLE;
/* Let's use 6 as the minimum to cover all known cases including the
* off-by-one issue that HW has in some cases.
*/
int idle_frames = max(6, dev_priv->vbt.psr.idle_frames);
/* sink_sync_latency of 8 means source has to wait for more than 8
* frames, we'll go with 9 frames for now
*/
idle_frames = max(idle_frames, dev_priv->psr.sink_sync_latency + 1);
val |= idle_frames << EDP_PSR_IDLE_FRAME_SHIFT;
val |= max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT;
if (IS_HASWELL(dev_priv))
val |= EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
if (dev_priv->psr.link_standby)
val |= EDP_PSR_LINK_STANDBY;
if (dev_priv->vbt.psr.tp1_wakeup_time_us == 0)
val |= EDP_PSR_TP1_TIME_0us;
else if (dev_priv->vbt.psr.tp1_wakeup_time_us <= 100)
val |= EDP_PSR_TP1_TIME_100us;
else if (dev_priv->vbt.psr.tp1_wakeup_time_us <= 500)
val |= EDP_PSR_TP1_TIME_500us;
else
val |= EDP_PSR_TP1_TIME_2500us;
if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us == 0)
val |= EDP_PSR_TP2_TP3_TIME_0us;
else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 100)
val |= EDP_PSR_TP2_TP3_TIME_100us;
else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 500)
val |= EDP_PSR_TP2_TP3_TIME_500us;
else
val |= EDP_PSR_TP2_TP3_TIME_2500us;
if (intel_dp_source_supports_hbr2(intel_dp) &&
drm_dp_tps3_supported(intel_dp->dpcd))
val |= EDP_PSR_TP1_TP3_SEL;
else
val |= EDP_PSR_TP1_TP2_SEL;
val |= I915_READ(EDP_PSR_CTL) & EDP_PSR_RESTORE_PSR_ACTIVE_CTX_MASK;
I915_WRITE(EDP_PSR_CTL, val);
}
static void hsw_activate_psr2(struct intel_dp *intel_dp)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = dig_port->base.base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
u32 val;
/* Let's use 6 as the minimum to cover all known cases including the
* off-by-one issue that HW has in some cases.
*/
int idle_frames = max(6, dev_priv->vbt.psr.idle_frames);
idle_frames = max(idle_frames, dev_priv->psr.sink_sync_latency + 1);
val = idle_frames << EDP_PSR2_IDLE_FRAME_SHIFT;
/* FIXME: selective update is probably totally broken because it doesn't
* mesh at all with our frontbuffer tracking. And the hw alone isn't
* good enough. */
val |= EDP_PSR2_ENABLE | EDP_SU_TRACK_ENABLE;
if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
val |= EDP_Y_COORDINATE_ENABLE;
val |= EDP_PSR2_FRAME_BEFORE_SU(dev_priv->psr.sink_sync_latency + 1);
if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us >= 0 &&
dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 50)
val |= EDP_PSR2_TP2_TIME_50us;
else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 100)
val |= EDP_PSR2_TP2_TIME_100us;
else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 500)
val |= EDP_PSR2_TP2_TIME_500us;
else
val |= EDP_PSR2_TP2_TIME_2500us;
I915_WRITE(EDP_PSR2_CTL, val);
}
static void hsw_psr_activate(struct intel_dp *intel_dp)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = dig_port->base.base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
/* On HSW+ after we enable PSR on source it will activate it
* as soon as it match configure idle_frame count. So
* we just actually enable it here on activation time.
*/
/* psr1 and psr2 are mutually exclusive.*/
if (dev_priv->psr.psr2_enabled)
hsw_activate_psr2(intel_dp);
else
hsw_activate_psr1(intel_dp);
}
static bool intel_psr2_config_valid(struct intel_dp *intel_dp,
struct intel_crtc_state *crtc_state)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
int crtc_hdisplay = crtc_state->base.adjusted_mode.crtc_hdisplay;
int crtc_vdisplay = crtc_state->base.adjusted_mode.crtc_vdisplay;
int psr_max_h = 0, psr_max_v = 0;
/*
* FIXME psr2_support is messed up. It's both computed
* dynamically during PSR enable, and extracted from sink
* caps during eDP detection.
*/
if (!dev_priv->psr.sink_psr2_support)
return false;
if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) {
psr_max_h = 4096;
psr_max_v = 2304;
} else if (IS_GEN9(dev_priv)) {
psr_max_h = 3640;
psr_max_v = 2304;
}
if (crtc_hdisplay > psr_max_h || crtc_vdisplay > psr_max_v) {
DRM_DEBUG_KMS("PSR2 not enabled, resolution %dx%d > max supported %dx%d\n",
crtc_hdisplay, crtc_vdisplay,
psr_max_h, psr_max_v);
return false;
}
return true;
}
void intel_psr_compute_config(struct intel_dp *intel_dp,
struct intel_crtc_state *crtc_state)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
const struct drm_display_mode *adjusted_mode =
&crtc_state->base.adjusted_mode;
int psr_setup_time;
if (!CAN_PSR(dev_priv))
return;
if (!i915_modparams.enable_psr) {
DRM_DEBUG_KMS("PSR disable by flag\n");
return;
}
/*
* HSW spec explicitly says PSR is tied to port A.
* BDW+ platforms with DDI implementation of PSR have different
* PSR registers per transcoder and we only implement transcoder EDP
* ones. Since by Display design transcoder EDP is tied to port A
* we can safely escape based on the port A.
*/
if (dig_port->base.port != PORT_A) {
DRM_DEBUG_KMS("PSR condition failed: Port not supported\n");
return;
}
if (IS_HASWELL(dev_priv) &&
I915_READ(HSW_STEREO_3D_CTL(crtc_state->cpu_transcoder)) &
S3D_ENABLE) {
DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
return;
}
if (IS_HASWELL(dev_priv) &&
adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
return;
}
psr_setup_time = drm_dp_psr_setup_time(intel_dp->psr_dpcd);
if (psr_setup_time < 0) {
DRM_DEBUG_KMS("PSR condition failed: Invalid PSR setup time (0x%02x)\n",
intel_dp->psr_dpcd[1]);
return;
}
if (intel_usecs_to_scanlines(adjusted_mode, psr_setup_time) >
adjusted_mode->crtc_vtotal - adjusted_mode->crtc_vdisplay - 1) {
DRM_DEBUG_KMS("PSR condition failed: PSR setup time (%d us) too long\n",
psr_setup_time);
return;
}
crtc_state->has_psr = true;
crtc_state->has_psr2 = intel_psr2_config_valid(intel_dp, crtc_state);
DRM_DEBUG_KMS("Enabling PSR%s\n", crtc_state->has_psr2 ? "2" : "");
}
static void intel_psr_activate(struct intel_dp *intel_dp)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = intel_dig_port->base.base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
if (dev_priv->psr.psr2_enabled)
WARN_ON(I915_READ(EDP_PSR2_CTL) & EDP_PSR2_ENABLE);
else
WARN_ON(I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE);
WARN_ON(dev_priv->psr.active);
lockdep_assert_held(&dev_priv->psr.lock);
dev_priv->psr.activate(intel_dp);
dev_priv->psr.active = true;
}
static void hsw_psr_enable_source(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = dig_port->base.base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
psr_aux_io_power_get(intel_dp);
/* Only HSW and BDW have PSR AUX registers that need to be setup. SKL+
* use hardcoded values PSR AUX transactions
*/
if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
hsw_psr_setup_aux(intel_dp);
if (dev_priv->psr.psr2_enabled) {
u32 chicken = I915_READ(CHICKEN_TRANS(cpu_transcoder));
if (INTEL_GEN(dev_priv) == 9 && !IS_GEMINILAKE(dev_priv))
chicken |= (PSR2_VSC_ENABLE_PROG_HEADER
| PSR2_ADD_VERTICAL_LINE_COUNT);
else
chicken &= ~VSC_DATA_SEL_SOFTWARE_CONTROL;
I915_WRITE(CHICKEN_TRANS(cpu_transcoder), chicken);
I915_WRITE(EDP_PSR_DEBUG,
EDP_PSR_DEBUG_MASK_MEMUP |
EDP_PSR_DEBUG_MASK_HPD |
EDP_PSR_DEBUG_MASK_LPSP |
EDP_PSR_DEBUG_MASK_MAX_SLEEP |
EDP_PSR_DEBUG_MASK_DISP_REG_WRITE);
} else {
/*
* Per Spec: Avoid continuous PSR exit by masking MEMUP
* and HPD. also mask LPSP to avoid dependency on other
* drivers that might block runtime_pm besides
* preventing other hw tracking issues now we can rely
* on frontbuffer tracking.
*/
I915_WRITE(EDP_PSR_DEBUG,
EDP_PSR_DEBUG_MASK_MEMUP |
EDP_PSR_DEBUG_MASK_HPD |
EDP_PSR_DEBUG_MASK_LPSP |
EDP_PSR_DEBUG_MASK_DISP_REG_WRITE);
}
}
/**
* intel_psr_enable - Enable PSR
* @intel_dp: Intel DP
* @crtc_state: new CRTC state
*
* This function can only be called after the pipe is fully trained and enabled.
*/
void intel_psr_enable(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = intel_dig_port->base.base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
if (!crtc_state->has_psr)
return;
if (WARN_ON(!CAN_PSR(dev_priv)))
return;
WARN_ON(dev_priv->drrs.dp);
mutex_lock(&dev_priv->psr.lock);
if (dev_priv->psr.enabled) {
DRM_DEBUG_KMS("PSR already in use\n");
goto unlock;
}
dev_priv->psr.psr2_enabled = crtc_state->has_psr2;
dev_priv->psr.busy_frontbuffer_bits = 0;
dev_priv->psr.setup_vsc(intel_dp, crtc_state);
dev_priv->psr.enable_sink(intel_dp);
dev_priv->psr.enable_source(intel_dp, crtc_state);
dev_priv->psr.enabled = intel_dp;
if (INTEL_GEN(dev_priv) >= 9) {
intel_psr_activate(intel_dp);
} else {
/*
* FIXME: Activation should happen immediately since this
* function is just called after pipe is fully trained and
* enabled.
* However on some platforms we face issues when first
* activation follows a modeset so quickly.
* - On HSW/BDW we get a recoverable frozen screen until
* next exit-activate sequence.
*/
schedule_delayed_work(&dev_priv->psr.work,
msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
}
unlock:
mutex_unlock(&dev_priv->psr.lock);
}
static void hsw_psr_disable(struct intel_dp *intel_dp,
const struct intel_crtc_state *old_crtc_state)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = intel_dig_port->base.base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
if (dev_priv->psr.active) {
i915_reg_t psr_status;
u32 psr_status_mask;
if (dev_priv->psr.psr2_enabled) {
psr_status = EDP_PSR2_STATUS;
psr_status_mask = EDP_PSR2_STATUS_STATE_MASK;
I915_WRITE(EDP_PSR2_CTL,
I915_READ(EDP_PSR2_CTL) &
~(EDP_PSR2_ENABLE | EDP_SU_TRACK_ENABLE));
} else {
psr_status = EDP_PSR_STATUS;
psr_status_mask = EDP_PSR_STATUS_STATE_MASK;
I915_WRITE(EDP_PSR_CTL,
I915_READ(EDP_PSR_CTL) & ~EDP_PSR_ENABLE);
}
/* Wait till PSR is idle */
if (intel_wait_for_register(dev_priv,
psr_status, psr_status_mask, 0,
2000))
DRM_ERROR("Timed out waiting for PSR Idle State\n");
dev_priv->psr.active = false;
} else {
if (dev_priv->psr.psr2_enabled)
WARN_ON(I915_READ(EDP_PSR2_CTL) & EDP_PSR2_ENABLE);
else
WARN_ON(I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE);
}
psr_aux_io_power_put(intel_dp);
}
/**
* intel_psr_disable - Disable PSR
* @intel_dp: Intel DP
* @old_crtc_state: old CRTC state
*
* This function needs to be called before disabling pipe.
*/
void intel_psr_disable(struct intel_dp *intel_dp,
const struct intel_crtc_state *old_crtc_state)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = intel_dig_port->base.base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
if (!old_crtc_state->has_psr)
return;
if (WARN_ON(!CAN_PSR(dev_priv)))
return;
mutex_lock(&dev_priv->psr.lock);
if (!dev_priv->psr.enabled) {
mutex_unlock(&dev_priv->psr.lock);
return;
}
dev_priv->psr.disable_source(intel_dp, old_crtc_state);
/* Disable PSR on Sink */
drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, 0);
dev_priv->psr.enabled = NULL;
mutex_unlock(&dev_priv->psr.lock);
cancel_delayed_work_sync(&dev_priv->psr.work);
}
static bool psr_wait_for_idle(struct drm_i915_private *dev_priv)
{
struct intel_dp *intel_dp;
i915_reg_t reg;
u32 mask;
int err;
intel_dp = dev_priv->psr.enabled;
if (!intel_dp)
return false;
if (dev_priv->psr.psr2_enabled) {
reg = EDP_PSR2_STATUS;
mask = EDP_PSR2_STATUS_STATE_MASK;
} else {
reg = EDP_PSR_STATUS;
mask = EDP_PSR_STATUS_STATE_MASK;
}
mutex_unlock(&dev_priv->psr.lock);
err = intel_wait_for_register(dev_priv, reg, mask, 0, 50);
if (err)
DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n");
/* After the unlocked wait, verify that PSR is still wanted! */
mutex_lock(&dev_priv->psr.lock);
return err == 0 && dev_priv->psr.enabled;
}
static void intel_psr_work(struct work_struct *work)
{
struct drm_i915_private *dev_priv =
container_of(work, typeof(*dev_priv), psr.work.work);
mutex_lock(&dev_priv->psr.lock);
/*
* We have to make sure PSR is ready for re-enable
* otherwise it keeps disabled until next full enable/disable cycle.
* PSR might take some time to get fully disabled
* and be ready for re-enable.
*/
if (!psr_wait_for_idle(dev_priv))
goto unlock;
/*
* The delayed work can race with an invalidate hence we need to
* recheck. Since psr_flush first clears this and then reschedules we
* won't ever miss a flush when bailing out here.
*/
if (dev_priv->psr.busy_frontbuffer_bits)
goto unlock;
intel_psr_activate(dev_priv->psr.enabled);
unlock:
mutex_unlock(&dev_priv->psr.lock);
}
static void intel_psr_exit(struct drm_i915_private *dev_priv)
{
u32 val;
if (!dev_priv->psr.active)
return;
if (dev_priv->psr.psr2_enabled) {
val = I915_READ(EDP_PSR2_CTL);
WARN_ON(!(val & EDP_PSR2_ENABLE));
I915_WRITE(EDP_PSR2_CTL, val & ~EDP_PSR2_ENABLE);
} else {
val = I915_READ(EDP_PSR_CTL);
WARN_ON(!(val & EDP_PSR_ENABLE));
I915_WRITE(EDP_PSR_CTL, val & ~EDP_PSR_ENABLE);
}
dev_priv->psr.active = false;
}
/**
* intel_psr_invalidate - Invalidade PSR
* @dev_priv: i915 device
* @frontbuffer_bits: frontbuffer plane tracking bits
* @origin: which operation caused the invalidate
*
* Since the hardware frontbuffer tracking has gaps we need to integrate
* with the software frontbuffer tracking. This function gets called every
* time frontbuffer rendering starts and a buffer gets dirtied. PSR must be
* disabled if the frontbuffer mask contains a buffer relevant to PSR.
*
* Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits."
*/
void intel_psr_invalidate(struct drm_i915_private *dev_priv,
unsigned frontbuffer_bits, enum fb_op_origin origin)
{
struct drm_crtc *crtc;
enum pipe pipe;
if (!CAN_PSR(dev_priv))
return;
if (origin == ORIGIN_FLIP)
return;
mutex_lock(&dev_priv->psr.lock);
if (!dev_priv->psr.enabled) {
mutex_unlock(&dev_priv->psr.lock);
return;
}
crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
pipe = to_intel_crtc(crtc)->pipe;
frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
if (frontbuffer_bits)
intel_psr_exit(dev_priv);
mutex_unlock(&dev_priv->psr.lock);
}
/**
* intel_psr_flush - Flush PSR
* @dev_priv: i915 device
* @frontbuffer_bits: frontbuffer plane tracking bits
* @origin: which operation caused the flush
*
* Since the hardware frontbuffer tracking has gaps we need to integrate
* with the software frontbuffer tracking. This function gets called every
* time frontbuffer rendering has completed and flushed out to memory. PSR
* can be enabled again if no other frontbuffer relevant to PSR is dirty.
*
* Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits.
*/
void intel_psr_flush(struct drm_i915_private *dev_priv,
unsigned frontbuffer_bits, enum fb_op_origin origin)
{
struct drm_crtc *crtc;
enum pipe pipe;
if (!CAN_PSR(dev_priv))
return;
if (origin == ORIGIN_FLIP)
return;
mutex_lock(&dev_priv->psr.lock);
if (!dev_priv->psr.enabled) {
mutex_unlock(&dev_priv->psr.lock);
return;
}
crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
pipe = to_intel_crtc(crtc)->pipe;
frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
/* By definition flush = invalidate + flush */
if (frontbuffer_bits) {
if (dev_priv->psr.psr2_enabled) {
intel_psr_exit(dev_priv);
} else {
/*
* Display WA #0884: all
* This documented WA for bxt can be safely applied
* broadly so we can force HW tracking to exit PSR
* instead of disabling and re-enabling.
* Workaround tells us to write 0 to CUR_SURFLIVE_A,
* but it makes more sense write to the current active
* pipe.
*/
I915_WRITE(CURSURFLIVE(pipe), 0);
}
}
if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
if (!work_busy(&dev_priv->psr.work.work))
schedule_delayed_work(&dev_priv->psr.work,
msecs_to_jiffies(100));
mutex_unlock(&dev_priv->psr.lock);
}
/**
* intel_psr_init - Init basic PSR work and mutex.
* @dev_priv: i915 device private
*
* This function is called only once at driver load to initialize basic
* PSR stuff.
*/
void intel_psr_init(struct drm_i915_private *dev_priv)
{
if (!HAS_PSR(dev_priv))
return;
dev_priv->psr_mmio_base = IS_HASWELL(dev_priv) ?
HSW_EDP_PSR_BASE : BDW_EDP_PSR_BASE;
if (!dev_priv->psr.sink_support)
return;
if (i915_modparams.enable_psr == -1) {
i915_modparams.enable_psr = dev_priv->vbt.psr.enable;
/* Per platform default: all disabled. */
i915_modparams.enable_psr = 0;
}
/* Set link_standby x link_off defaults */
if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
/* HSW and BDW require workarounds that we don't implement. */
dev_priv->psr.link_standby = false;
else
/* For new platforms let's respect VBT back again */
dev_priv->psr.link_standby = dev_priv->vbt.psr.full_link;
/* Override link_standby x link_off defaults */
if (i915_modparams.enable_psr == 2 && !dev_priv->psr.link_standby) {
DRM_DEBUG_KMS("PSR: Forcing link standby\n");
dev_priv->psr.link_standby = true;
}
if (i915_modparams.enable_psr == 3 && dev_priv->psr.link_standby) {
DRM_DEBUG_KMS("PSR: Forcing main link off\n");
dev_priv->psr.link_standby = false;
}
INIT_DELAYED_WORK(&dev_priv->psr.work, intel_psr_work);
mutex_init(&dev_priv->psr.lock);
dev_priv->psr.enable_source = hsw_psr_enable_source;
dev_priv->psr.disable_source = hsw_psr_disable;
dev_priv->psr.enable_sink = hsw_psr_enable_sink;
dev_priv->psr.activate = hsw_psr_activate;
dev_priv->psr.setup_vsc = hsw_psr_setup_vsc;
}
|