1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
|
// SPDX-License-Identifier: GPL-2.0-only OR MIT
/* Copyright (c) 2023 Imagination Technologies Ltd. */
#include <drm/drm_managed.h>
#include <drm/gpu_scheduler.h>
#include "pvr_cccb.h"
#include "pvr_context.h"
#include "pvr_device.h"
#include "pvr_drv.h"
#include "pvr_job.h"
#include "pvr_queue.h"
#include "pvr_vm.h"
#include "pvr_rogue_fwif_client.h"
#define MAX_DEADLINE_MS 30000
#define CTX_COMPUTE_CCCB_SIZE_LOG2 15
#define CTX_FRAG_CCCB_SIZE_LOG2 15
#define CTX_GEOM_CCCB_SIZE_LOG2 15
#define CTX_TRANSFER_CCCB_SIZE_LOG2 15
static int get_xfer_ctx_state_size(struct pvr_device *pvr_dev)
{
u32 num_isp_store_registers;
if (PVR_HAS_FEATURE(pvr_dev, xe_memory_hierarchy)) {
num_isp_store_registers = 1;
} else {
int err;
err = PVR_FEATURE_VALUE(pvr_dev, num_isp_ipp_pipes, &num_isp_store_registers);
if (WARN_ON(err))
return err;
}
return sizeof(struct rogue_fwif_frag_ctx_state) +
(num_isp_store_registers *
sizeof(((struct rogue_fwif_frag_ctx_state *)0)->frag_reg_isp_store[0]));
}
static int get_frag_ctx_state_size(struct pvr_device *pvr_dev)
{
u32 num_isp_store_registers;
int err;
if (PVR_HAS_FEATURE(pvr_dev, xe_memory_hierarchy)) {
err = PVR_FEATURE_VALUE(pvr_dev, num_raster_pipes, &num_isp_store_registers);
if (WARN_ON(err))
return err;
if (PVR_HAS_FEATURE(pvr_dev, gpu_multicore_support)) {
u32 xpu_max_slaves;
err = PVR_FEATURE_VALUE(pvr_dev, xpu_max_slaves, &xpu_max_slaves);
if (WARN_ON(err))
return err;
num_isp_store_registers *= (1 + xpu_max_slaves);
}
} else {
err = PVR_FEATURE_VALUE(pvr_dev, num_isp_ipp_pipes, &num_isp_store_registers);
if (WARN_ON(err))
return err;
}
return sizeof(struct rogue_fwif_frag_ctx_state) +
(num_isp_store_registers *
sizeof(((struct rogue_fwif_frag_ctx_state *)0)->frag_reg_isp_store[0]));
}
static int get_ctx_state_size(struct pvr_device *pvr_dev, enum drm_pvr_job_type type)
{
switch (type) {
case DRM_PVR_JOB_TYPE_GEOMETRY:
return sizeof(struct rogue_fwif_geom_ctx_state);
case DRM_PVR_JOB_TYPE_FRAGMENT:
return get_frag_ctx_state_size(pvr_dev);
case DRM_PVR_JOB_TYPE_COMPUTE:
return sizeof(struct rogue_fwif_compute_ctx_state);
case DRM_PVR_JOB_TYPE_TRANSFER_FRAG:
return get_xfer_ctx_state_size(pvr_dev);
}
WARN(1, "Invalid queue type");
return -EINVAL;
}
static u32 get_ctx_offset(enum drm_pvr_job_type type)
{
switch (type) {
case DRM_PVR_JOB_TYPE_GEOMETRY:
return offsetof(struct rogue_fwif_fwrendercontext, geom_context);
case DRM_PVR_JOB_TYPE_FRAGMENT:
return offsetof(struct rogue_fwif_fwrendercontext, frag_context);
case DRM_PVR_JOB_TYPE_COMPUTE:
return offsetof(struct rogue_fwif_fwcomputecontext, cdm_context);
case DRM_PVR_JOB_TYPE_TRANSFER_FRAG:
return offsetof(struct rogue_fwif_fwtransfercontext, tq_context);
}
return 0;
}
static const char *
pvr_queue_fence_get_driver_name(struct dma_fence *f)
{
return PVR_DRIVER_NAME;
}
static void pvr_queue_fence_release(struct dma_fence *f)
{
struct pvr_queue_fence *fence = container_of(f, struct pvr_queue_fence, base);
pvr_context_put(fence->queue->ctx);
dma_fence_free(f);
}
static const char *
pvr_queue_job_fence_get_timeline_name(struct dma_fence *f)
{
struct pvr_queue_fence *fence = container_of(f, struct pvr_queue_fence, base);
switch (fence->queue->type) {
case DRM_PVR_JOB_TYPE_GEOMETRY:
return "geometry";
case DRM_PVR_JOB_TYPE_FRAGMENT:
return "fragment";
case DRM_PVR_JOB_TYPE_COMPUTE:
return "compute";
case DRM_PVR_JOB_TYPE_TRANSFER_FRAG:
return "transfer";
}
WARN(1, "Invalid queue type");
return "invalid";
}
static const char *
pvr_queue_cccb_fence_get_timeline_name(struct dma_fence *f)
{
struct pvr_queue_fence *fence = container_of(f, struct pvr_queue_fence, base);
switch (fence->queue->type) {
case DRM_PVR_JOB_TYPE_GEOMETRY:
return "geometry-cccb";
case DRM_PVR_JOB_TYPE_FRAGMENT:
return "fragment-cccb";
case DRM_PVR_JOB_TYPE_COMPUTE:
return "compute-cccb";
case DRM_PVR_JOB_TYPE_TRANSFER_FRAG:
return "transfer-cccb";
}
WARN(1, "Invalid queue type");
return "invalid";
}
static const struct dma_fence_ops pvr_queue_job_fence_ops = {
.get_driver_name = pvr_queue_fence_get_driver_name,
.get_timeline_name = pvr_queue_job_fence_get_timeline_name,
.release = pvr_queue_fence_release,
};
/**
* to_pvr_queue_job_fence() - Return a pvr_queue_fence object if the fence is
* backed by a UFO.
* @f: The dma_fence to turn into a pvr_queue_fence.
*
* Return:
* * A non-NULL pvr_queue_fence object if the dma_fence is backed by a UFO, or
* * NULL otherwise.
*/
static struct pvr_queue_fence *
to_pvr_queue_job_fence(struct dma_fence *f)
{
struct drm_sched_fence *sched_fence = to_drm_sched_fence(f);
if (sched_fence)
f = sched_fence->parent;
if (f && f->ops == &pvr_queue_job_fence_ops)
return container_of(f, struct pvr_queue_fence, base);
return NULL;
}
static const struct dma_fence_ops pvr_queue_cccb_fence_ops = {
.get_driver_name = pvr_queue_fence_get_driver_name,
.get_timeline_name = pvr_queue_cccb_fence_get_timeline_name,
.release = pvr_queue_fence_release,
};
/**
* pvr_queue_fence_put() - Put wrapper for pvr_queue_fence objects.
* @f: The dma_fence object to put.
*
* If the pvr_queue_fence has been initialized, we call dma_fence_put(),
* otherwise we free the object with dma_fence_free(). This allows us
* to do the right thing before and after pvr_queue_fence_init() had been
* called.
*/
static void pvr_queue_fence_put(struct dma_fence *f)
{
if (!f)
return;
if (WARN_ON(f->ops &&
f->ops != &pvr_queue_cccb_fence_ops &&
f->ops != &pvr_queue_job_fence_ops))
return;
/* If the fence hasn't been initialized yet, free the object directly. */
if (f->ops)
dma_fence_put(f);
else
dma_fence_free(f);
}
/**
* pvr_queue_fence_alloc() - Allocate a pvr_queue_fence fence object
*
* Call this function to allocate job CCCB and done fences. This only
* allocates the objects. Initialization happens when the underlying
* dma_fence object is to be returned to drm_sched (in prepare_job() or
* run_job()).
*
* Return:
* * A valid pointer if the allocation succeeds, or
* * NULL if the allocation fails.
*/
static struct dma_fence *
pvr_queue_fence_alloc(void)
{
struct pvr_queue_fence *fence;
fence = kzalloc(sizeof(*fence), GFP_KERNEL);
if (!fence)
return NULL;
return &fence->base;
}
/**
* pvr_queue_fence_init() - Initializes a pvr_queue_fence object.
* @f: The fence to initialize
* @queue: The queue this fence belongs to.
* @fence_ops: The fence operations.
* @fence_ctx: The fence context.
*
* Wrapper around dma_fence_init() that takes care of initializing the
* pvr_queue_fence::queue field too.
*/
static void
pvr_queue_fence_init(struct dma_fence *f,
struct pvr_queue *queue,
const struct dma_fence_ops *fence_ops,
struct pvr_queue_fence_ctx *fence_ctx)
{
struct pvr_queue_fence *fence = container_of(f, struct pvr_queue_fence, base);
pvr_context_get(queue->ctx);
fence->queue = queue;
dma_fence_init(&fence->base, fence_ops,
&fence_ctx->lock, fence_ctx->id,
atomic_inc_return(&fence_ctx->seqno));
}
/**
* pvr_queue_cccb_fence_init() - Initializes a CCCB fence object.
* @fence: The fence to initialize.
* @queue: The queue this fence belongs to.
*
* Initializes a fence that can be used to wait for CCCB space.
*
* Should be called in the ::prepare_job() path, so the fence returned to
* drm_sched is valid.
*/
static void
pvr_queue_cccb_fence_init(struct dma_fence *fence, struct pvr_queue *queue)
{
pvr_queue_fence_init(fence, queue, &pvr_queue_cccb_fence_ops,
&queue->cccb_fence_ctx.base);
}
/**
* pvr_queue_job_fence_init() - Initializes a job done fence object.
* @fence: The fence to initialize.
* @queue: The queue this fence belongs to.
*
* Initializes a fence that will be signaled when the GPU is done executing
* a job.
*
* Should be called *before* the ::run_job() path, so the fence is initialised
* before being placed in the pending_list.
*/
static void
pvr_queue_job_fence_init(struct dma_fence *fence, struct pvr_queue *queue)
{
pvr_queue_fence_init(fence, queue, &pvr_queue_job_fence_ops,
&queue->job_fence_ctx);
}
/**
* pvr_queue_fence_ctx_init() - Queue fence context initialization.
* @fence_ctx: The context to initialize
*/
static void
pvr_queue_fence_ctx_init(struct pvr_queue_fence_ctx *fence_ctx)
{
spin_lock_init(&fence_ctx->lock);
fence_ctx->id = dma_fence_context_alloc(1);
atomic_set(&fence_ctx->seqno, 0);
}
static u32 ufo_cmds_size(u32 elem_count)
{
/* We can pass at most ROGUE_FWIF_CCB_CMD_MAX_UFOS per UFO-related command. */
u32 full_cmd_count = elem_count / ROGUE_FWIF_CCB_CMD_MAX_UFOS;
u32 remaining_elems = elem_count % ROGUE_FWIF_CCB_CMD_MAX_UFOS;
u32 size = full_cmd_count *
pvr_cccb_get_size_of_cmd_with_hdr(ROGUE_FWIF_CCB_CMD_MAX_UFOS *
sizeof(struct rogue_fwif_ufo));
if (remaining_elems) {
size += pvr_cccb_get_size_of_cmd_with_hdr(remaining_elems *
sizeof(struct rogue_fwif_ufo));
}
return size;
}
static u32 job_cmds_size(struct pvr_job *job, u32 ufo_wait_count)
{
/* One UFO cmd for the fence signaling, one UFO cmd per native fence native,
* and a command for the job itself.
*/
return ufo_cmds_size(1) + ufo_cmds_size(ufo_wait_count) +
pvr_cccb_get_size_of_cmd_with_hdr(job->cmd_len);
}
/**
* job_count_remaining_native_deps() - Count the number of non-signaled native dependencies.
* @job: Job to operate on.
*
* Returns: Number of non-signaled native deps remaining.
*/
static unsigned long job_count_remaining_native_deps(struct pvr_job *job)
{
unsigned long remaining_count = 0;
struct dma_fence *fence = NULL;
unsigned long index;
xa_for_each(&job->base.dependencies, index, fence) {
struct pvr_queue_fence *jfence;
jfence = to_pvr_queue_job_fence(fence);
if (!jfence)
continue;
if (!dma_fence_is_signaled(&jfence->base))
remaining_count++;
}
return remaining_count;
}
/**
* pvr_queue_get_job_cccb_fence() - Get the CCCB fence attached to a job.
* @queue: The queue this job will be submitted to.
* @job: The job to get the CCCB fence on.
*
* The CCCB fence is a synchronization primitive allowing us to delay job
* submission until there's enough space in the CCCB to submit the job.
*
* Return:
* * NULL if there's enough space in the CCCB to submit this job, or
* * A valid dma_fence object otherwise.
*/
static struct dma_fence *
pvr_queue_get_job_cccb_fence(struct pvr_queue *queue, struct pvr_job *job)
{
struct pvr_queue_fence *cccb_fence;
unsigned int native_deps_remaining;
/* If the fence is NULL, that means we already checked that we had
* enough space in the cccb for our job.
*/
if (!job->cccb_fence)
return NULL;
mutex_lock(&queue->cccb_fence_ctx.job_lock);
/* Count remaining native dependencies and check if the job fits in the CCCB. */
native_deps_remaining = job_count_remaining_native_deps(job);
if (pvr_cccb_cmdseq_fits(&queue->cccb, job_cmds_size(job, native_deps_remaining))) {
pvr_queue_fence_put(job->cccb_fence);
job->cccb_fence = NULL;
goto out_unlock;
}
/* There should be no job attached to the CCCB fence context:
* drm_sched_entity guarantees that jobs are submitted one at a time.
*/
if (WARN_ON(queue->cccb_fence_ctx.job))
pvr_job_put(queue->cccb_fence_ctx.job);
queue->cccb_fence_ctx.job = pvr_job_get(job);
/* Initialize the fence before returning it. */
cccb_fence = container_of(job->cccb_fence, struct pvr_queue_fence, base);
if (!WARN_ON(cccb_fence->queue))
pvr_queue_cccb_fence_init(job->cccb_fence, queue);
out_unlock:
mutex_unlock(&queue->cccb_fence_ctx.job_lock);
return dma_fence_get(job->cccb_fence);
}
/**
* pvr_queue_get_job_kccb_fence() - Get the KCCB fence attached to a job.
* @queue: The queue this job will be submitted to.
* @job: The job to get the KCCB fence on.
*
* The KCCB fence is a synchronization primitive allowing us to delay job
* submission until there's enough space in the KCCB to submit the job.
*
* Return:
* * NULL if there's enough space in the KCCB to submit this job, or
* * A valid dma_fence object otherwise.
*/
static struct dma_fence *
pvr_queue_get_job_kccb_fence(struct pvr_queue *queue, struct pvr_job *job)
{
struct pvr_device *pvr_dev = queue->ctx->pvr_dev;
struct dma_fence *kccb_fence = NULL;
/* If the fence is NULL, that means we already checked that we had
* enough space in the KCCB for our job.
*/
if (!job->kccb_fence)
return NULL;
if (!WARN_ON(job->kccb_fence->ops)) {
kccb_fence = pvr_kccb_reserve_slot(pvr_dev, job->kccb_fence);
job->kccb_fence = NULL;
}
return kccb_fence;
}
static struct dma_fence *
pvr_queue_get_paired_frag_job_dep(struct pvr_queue *queue, struct pvr_job *job)
{
struct pvr_job *frag_job = job->type == DRM_PVR_JOB_TYPE_GEOMETRY ?
job->paired_job : NULL;
struct dma_fence *f;
unsigned long index;
if (!frag_job)
return NULL;
xa_for_each(&frag_job->base.dependencies, index, f) {
/* Skip already signaled fences. */
if (dma_fence_is_signaled(f))
continue;
/* Skip our own fence. */
if (f == &job->base.s_fence->scheduled)
continue;
return dma_fence_get(f);
}
return frag_job->base.sched->ops->prepare_job(&frag_job->base, &queue->entity);
}
/**
* pvr_queue_prepare_job() - Return the next internal dependencies expressed as a dma_fence.
* @sched_job: The job to query the next internal dependency on
* @s_entity: The entity this job is queue on.
*
* After iterating over drm_sched_job::dependencies, drm_sched let the driver return
* its own internal dependencies. We use this function to return our internal dependencies.
*/
static struct dma_fence *
pvr_queue_prepare_job(struct drm_sched_job *sched_job,
struct drm_sched_entity *s_entity)
{
struct pvr_job *job = container_of(sched_job, struct pvr_job, base);
struct pvr_queue *queue = container_of(s_entity, struct pvr_queue, entity);
struct dma_fence *internal_dep = NULL;
/*
* Initialize the done_fence, so we can signal it. This must be done
* here because otherwise by the time of run_job() the job will end up
* in the pending list without a valid fence.
*/
if (job->type == DRM_PVR_JOB_TYPE_FRAGMENT && job->paired_job) {
/*
* This will be called on a paired fragment job after being
* submitted to firmware. We can tell if this is the case and
* bail early from whether run_job() has been called on the
* geometry job, which would issue a pm ref.
*/
if (job->paired_job->has_pm_ref)
return NULL;
/*
* In this case we need to use the job's own ctx to initialise
* the done_fence. The other steps are done in the ctx of the
* paired geometry job.
*/
pvr_queue_job_fence_init(job->done_fence,
job->ctx->queues.fragment);
} else {
pvr_queue_job_fence_init(job->done_fence, queue);
}
/* CCCB fence is used to make sure we have enough space in the CCCB to
* submit our commands.
*/
internal_dep = pvr_queue_get_job_cccb_fence(queue, job);
/* KCCB fence is used to make sure we have a KCCB slot to queue our
* CMD_KICK.
*/
if (!internal_dep)
internal_dep = pvr_queue_get_job_kccb_fence(queue, job);
/* Any extra internal dependency should be added here, using the following
* pattern:
*
* if (!internal_dep)
* internal_dep = pvr_queue_get_job_xxxx_fence(queue, job);
*/
/* The paired job fence should come last, when everything else is ready. */
if (!internal_dep)
internal_dep = pvr_queue_get_paired_frag_job_dep(queue, job);
return internal_dep;
}
/**
* pvr_queue_update_active_state_locked() - Update the queue active state.
* @queue: Queue to update the state on.
*
* Locked version of pvr_queue_update_active_state(). Must be called with
* pvr_device::queue::lock held.
*/
static void pvr_queue_update_active_state_locked(struct pvr_queue *queue)
{
struct pvr_device *pvr_dev = queue->ctx->pvr_dev;
lockdep_assert_held(&pvr_dev->queues.lock);
/* The queue is temporary out of any list when it's being reset,
* we don't want a call to pvr_queue_update_active_state_locked()
* to re-insert it behind our back.
*/
if (list_empty(&queue->node))
return;
if (!atomic_read(&queue->in_flight_job_count))
list_move_tail(&queue->node, &pvr_dev->queues.idle);
else
list_move_tail(&queue->node, &pvr_dev->queues.active);
}
/**
* pvr_queue_update_active_state() - Update the queue active state.
* @queue: Queue to update the state on.
*
* Active state is based on the in_flight_job_count value.
*
* Updating the active state implies moving the queue in or out of the
* active queue list, which also defines whether the queue is checked
* or not when a FW event is received.
*
* This function should be called any time a job is submitted or it done
* fence is signaled.
*/
static void pvr_queue_update_active_state(struct pvr_queue *queue)
{
struct pvr_device *pvr_dev = queue->ctx->pvr_dev;
mutex_lock(&pvr_dev->queues.lock);
pvr_queue_update_active_state_locked(queue);
mutex_unlock(&pvr_dev->queues.lock);
}
static void pvr_queue_submit_job_to_cccb(struct pvr_job *job)
{
struct pvr_queue *queue = container_of(job->base.sched, struct pvr_queue, scheduler);
struct rogue_fwif_ufo ufos[ROGUE_FWIF_CCB_CMD_MAX_UFOS];
struct pvr_cccb *cccb = &queue->cccb;
struct pvr_queue_fence *jfence;
struct dma_fence *fence;
unsigned long index;
u32 ufo_count = 0;
/* We need to add the queue to the active list before updating the CCCB,
* otherwise we might miss the FW event informing us that something
* happened on this queue.
*/
atomic_inc(&queue->in_flight_job_count);
pvr_queue_update_active_state(queue);
xa_for_each(&job->base.dependencies, index, fence) {
jfence = to_pvr_queue_job_fence(fence);
if (!jfence)
continue;
/* Skip the partial render fence, we will place it at the end. */
if (job->type == DRM_PVR_JOB_TYPE_FRAGMENT && job->paired_job &&
&job->paired_job->base.s_fence->scheduled == fence)
continue;
if (dma_fence_is_signaled(&jfence->base))
continue;
pvr_fw_object_get_fw_addr(jfence->queue->timeline_ufo.fw_obj,
&ufos[ufo_count].addr);
ufos[ufo_count++].value = jfence->base.seqno;
if (ufo_count == ARRAY_SIZE(ufos)) {
pvr_cccb_write_command_with_header(cccb, ROGUE_FWIF_CCB_CMD_TYPE_FENCE_PR,
sizeof(ufos), ufos, 0, 0);
ufo_count = 0;
}
}
/* Partial render fence goes last. */
if (job->type == DRM_PVR_JOB_TYPE_FRAGMENT && job->paired_job) {
jfence = to_pvr_queue_job_fence(job->paired_job->done_fence);
if (!WARN_ON(!jfence)) {
pvr_fw_object_get_fw_addr(jfence->queue->timeline_ufo.fw_obj,
&ufos[ufo_count].addr);
ufos[ufo_count++].value = job->paired_job->done_fence->seqno;
}
}
if (ufo_count) {
pvr_cccb_write_command_with_header(cccb, ROGUE_FWIF_CCB_CMD_TYPE_FENCE_PR,
sizeof(ufos[0]) * ufo_count, ufos, 0, 0);
}
if (job->type == DRM_PVR_JOB_TYPE_GEOMETRY && job->paired_job) {
struct rogue_fwif_cmd_geom *cmd = job->cmd;
/* Reference value for the partial render test is the current queue fence
* seqno minus one.
*/
pvr_fw_object_get_fw_addr(queue->timeline_ufo.fw_obj,
&cmd->partial_render_geom_frag_fence.addr);
cmd->partial_render_geom_frag_fence.value = job->done_fence->seqno - 1;
}
/* Submit job to FW */
pvr_cccb_write_command_with_header(cccb, job->fw_ccb_cmd_type, job->cmd_len, job->cmd,
job->id, job->id);
/* Signal the job fence. */
pvr_fw_object_get_fw_addr(queue->timeline_ufo.fw_obj, &ufos[0].addr);
ufos[0].value = job->done_fence->seqno;
pvr_cccb_write_command_with_header(cccb, ROGUE_FWIF_CCB_CMD_TYPE_UPDATE,
sizeof(ufos[0]), ufos, 0, 0);
}
/**
* pvr_queue_run_job() - Submit a job to the FW.
* @sched_job: The job to submit.
*
* This function is called when all non-native dependencies have been met and
* when the commands resulting from this job are guaranteed to fit in the CCCB.
*/
static struct dma_fence *pvr_queue_run_job(struct drm_sched_job *sched_job)
{
struct pvr_job *job = container_of(sched_job, struct pvr_job, base);
struct pvr_device *pvr_dev = job->pvr_dev;
int err;
/* The fragment job is issued along the geometry job when we use combined
* geom+frag kicks. When we get there, we should simply return the
* done_fence that's been initialized earlier.
*/
if (job->paired_job && job->type == DRM_PVR_JOB_TYPE_FRAGMENT &&
job->done_fence->ops) {
return dma_fence_get(job->done_fence);
}
/* The only kind of jobs that can be paired are geometry and fragment, and
* we bail out early if we see a fragment job that's paired with a geomtry
* job.
* Paired jobs must also target the same context and point to the same
* HWRT.
*/
if (WARN_ON(job->paired_job &&
(job->type != DRM_PVR_JOB_TYPE_GEOMETRY ||
job->paired_job->type != DRM_PVR_JOB_TYPE_FRAGMENT ||
job->hwrt != job->paired_job->hwrt ||
job->ctx != job->paired_job->ctx)))
return ERR_PTR(-EINVAL);
err = pvr_job_get_pm_ref(job);
if (WARN_ON(err))
return ERR_PTR(err);
if (job->paired_job) {
err = pvr_job_get_pm_ref(job->paired_job);
if (WARN_ON(err))
return ERR_PTR(err);
}
/* Submit our job to the CCCB */
pvr_queue_submit_job_to_cccb(job);
if (job->paired_job) {
struct pvr_job *geom_job = job;
struct pvr_job *frag_job = job->paired_job;
struct pvr_queue *geom_queue = job->ctx->queues.geometry;
struct pvr_queue *frag_queue = job->ctx->queues.fragment;
/* Submit the fragment job along the geometry job and send a combined kick. */
pvr_queue_submit_job_to_cccb(frag_job);
pvr_cccb_send_kccb_combined_kick(pvr_dev,
&geom_queue->cccb, &frag_queue->cccb,
pvr_context_get_fw_addr(geom_job->ctx) +
geom_queue->ctx_offset,
pvr_context_get_fw_addr(frag_job->ctx) +
frag_queue->ctx_offset,
job->hwrt,
frag_job->fw_ccb_cmd_type ==
ROGUE_FWIF_CCB_CMD_TYPE_FRAG_PR);
} else {
struct pvr_queue *queue = container_of(job->base.sched,
struct pvr_queue, scheduler);
pvr_cccb_send_kccb_kick(pvr_dev, &queue->cccb,
pvr_context_get_fw_addr(job->ctx) + queue->ctx_offset,
job->hwrt);
}
return dma_fence_get(job->done_fence);
}
static void pvr_queue_stop(struct pvr_queue *queue, struct pvr_job *bad_job)
{
drm_sched_stop(&queue->scheduler, bad_job ? &bad_job->base : NULL);
}
static void pvr_queue_start(struct pvr_queue *queue)
{
struct pvr_job *job;
/* Make sure we CPU-signal the UFO object, so other queues don't get
* blocked waiting on it.
*/
*queue->timeline_ufo.value = atomic_read(&queue->job_fence_ctx.seqno);
list_for_each_entry(job, &queue->scheduler.pending_list, base.list) {
if (dma_fence_is_signaled(job->done_fence)) {
/* Jobs might have completed after drm_sched_stop() was called.
* In that case, re-assign the parent field to the done_fence.
*/
WARN_ON(job->base.s_fence->parent);
job->base.s_fence->parent = dma_fence_get(job->done_fence);
} else {
/* If we had unfinished jobs, flag the entity as guilty so no
* new job can be submitted.
*/
atomic_set(&queue->ctx->faulty, 1);
}
}
drm_sched_start(&queue->scheduler);
}
/**
* pvr_queue_timedout_job() - Handle a job timeout event.
* @s_job: The job this timeout occurred on.
*
* FIXME: We don't do anything here to unblock the situation, we just stop+start
* the scheduler, and re-assign parent fences in the middle.
*
* Return:
* * DRM_GPU_SCHED_STAT_NOMINAL.
*/
static enum drm_gpu_sched_stat
pvr_queue_timedout_job(struct drm_sched_job *s_job)
{
struct drm_gpu_scheduler *sched = s_job->sched;
struct pvr_queue *queue = container_of(sched, struct pvr_queue, scheduler);
struct pvr_device *pvr_dev = queue->ctx->pvr_dev;
struct pvr_job *job;
u32 job_count = 0;
dev_err(sched->dev, "Job timeout\n");
/* Before we stop the scheduler, make sure the queue is out of any list, so
* any call to pvr_queue_update_active_state_locked() that might happen
* until the scheduler is really stopped doesn't end up re-inserting the
* queue in the active list. This would cause
* pvr_queue_signal_done_fences() and drm_sched_stop() to race with each
* other when accessing the pending_list, since drm_sched_stop() doesn't
* grab the job_list_lock when modifying the list (it's assuming the
* only other accessor is the scheduler, and it's safe to not grab the
* lock since it's stopped).
*/
mutex_lock(&pvr_dev->queues.lock);
list_del_init(&queue->node);
mutex_unlock(&pvr_dev->queues.lock);
drm_sched_stop(sched, s_job);
/* Re-assign job parent fences. */
list_for_each_entry(job, &sched->pending_list, base.list) {
job->base.s_fence->parent = dma_fence_get(job->done_fence);
job_count++;
}
WARN_ON(atomic_read(&queue->in_flight_job_count) != job_count);
/* Re-insert the queue in the proper list, and kick a queue processing
* operation if there were jobs pending.
*/
mutex_lock(&pvr_dev->queues.lock);
if (!job_count) {
list_move_tail(&queue->node, &pvr_dev->queues.idle);
} else {
atomic_set(&queue->in_flight_job_count, job_count);
list_move_tail(&queue->node, &pvr_dev->queues.active);
pvr_queue_process(queue);
}
mutex_unlock(&pvr_dev->queues.lock);
drm_sched_start(sched);
return DRM_GPU_SCHED_STAT_NOMINAL;
}
/**
* pvr_queue_free_job() - Release the reference the scheduler had on a job object.
* @sched_job: Job object to free.
*/
static void pvr_queue_free_job(struct drm_sched_job *sched_job)
{
struct pvr_job *job = container_of(sched_job, struct pvr_job, base);
drm_sched_job_cleanup(sched_job);
job->paired_job = NULL;
pvr_job_put(job);
}
static const struct drm_sched_backend_ops pvr_queue_sched_ops = {
.prepare_job = pvr_queue_prepare_job,
.run_job = pvr_queue_run_job,
.timedout_job = pvr_queue_timedout_job,
.free_job = pvr_queue_free_job,
};
/**
* pvr_queue_fence_is_ufo_backed() - Check if a dma_fence is backed by a UFO object
* @f: Fence to test.
*
* A UFO-backed fence is a fence that can be signaled or waited upon FW-side.
* pvr_job::done_fence objects are backed by the timeline UFO attached to the queue
* they are pushed to, but those fences are not directly exposed to the outside
* world, so we also need to check if the fence we're being passed is a
* drm_sched_fence that was coming from our driver.
*/
bool pvr_queue_fence_is_ufo_backed(struct dma_fence *f)
{
struct drm_sched_fence *sched_fence = f ? to_drm_sched_fence(f) : NULL;
if (sched_fence &&
sched_fence->sched->ops == &pvr_queue_sched_ops)
return true;
if (f && f->ops == &pvr_queue_job_fence_ops)
return true;
return false;
}
/**
* pvr_queue_signal_done_fences() - Signal done fences.
* @queue: Queue to check.
*
* Signal done fences of jobs whose seqno is less than the current value of
* the UFO object attached to the queue.
*/
static void
pvr_queue_signal_done_fences(struct pvr_queue *queue)
{
struct pvr_job *job, *tmp_job;
u32 cur_seqno;
spin_lock(&queue->scheduler.job_list_lock);
cur_seqno = *queue->timeline_ufo.value;
list_for_each_entry_safe(job, tmp_job, &queue->scheduler.pending_list, base.list) {
if ((int)(cur_seqno - lower_32_bits(job->done_fence->seqno)) < 0)
break;
if (!dma_fence_is_signaled(job->done_fence)) {
dma_fence_signal(job->done_fence);
pvr_job_release_pm_ref(job);
atomic_dec(&queue->in_flight_job_count);
}
}
spin_unlock(&queue->scheduler.job_list_lock);
}
/**
* pvr_queue_check_job_waiting_for_cccb_space() - Check if the job waiting for CCCB space
* can be unblocked
* pushed to the CCCB
* @queue: Queue to check
*
* If we have a job waiting for CCCB, and this job now fits in the CCCB, we signal
* its CCCB fence, which should kick drm_sched.
*/
static void
pvr_queue_check_job_waiting_for_cccb_space(struct pvr_queue *queue)
{
struct pvr_queue_fence *cccb_fence;
u32 native_deps_remaining;
struct pvr_job *job;
mutex_lock(&queue->cccb_fence_ctx.job_lock);
job = queue->cccb_fence_ctx.job;
if (!job)
goto out_unlock;
/* If we have a job attached to the CCCB fence context, its CCCB fence
* shouldn't be NULL.
*/
if (WARN_ON(!job->cccb_fence)) {
job = NULL;
goto out_unlock;
}
/* If we get there, CCCB fence has to be initialized. */
cccb_fence = container_of(job->cccb_fence, struct pvr_queue_fence, base);
if (WARN_ON(!cccb_fence->queue)) {
job = NULL;
goto out_unlock;
}
/* Evict signaled dependencies before checking for CCCB space.
* If the job fits, signal the CCCB fence, this should unblock
* the drm_sched_entity.
*/
native_deps_remaining = job_count_remaining_native_deps(job);
if (!pvr_cccb_cmdseq_fits(&queue->cccb, job_cmds_size(job, native_deps_remaining))) {
job = NULL;
goto out_unlock;
}
dma_fence_signal(job->cccb_fence);
pvr_queue_fence_put(job->cccb_fence);
job->cccb_fence = NULL;
queue->cccb_fence_ctx.job = NULL;
out_unlock:
mutex_unlock(&queue->cccb_fence_ctx.job_lock);
pvr_job_put(job);
}
/**
* pvr_queue_process() - Process events that happened on a queue.
* @queue: Queue to check
*
* Signal job fences and check if jobs waiting for CCCB space can be unblocked.
*/
void pvr_queue_process(struct pvr_queue *queue)
{
lockdep_assert_held(&queue->ctx->pvr_dev->queues.lock);
pvr_queue_check_job_waiting_for_cccb_space(queue);
pvr_queue_signal_done_fences(queue);
pvr_queue_update_active_state_locked(queue);
}
static u32 get_dm_type(struct pvr_queue *queue)
{
switch (queue->type) {
case DRM_PVR_JOB_TYPE_GEOMETRY:
return PVR_FWIF_DM_GEOM;
case DRM_PVR_JOB_TYPE_TRANSFER_FRAG:
case DRM_PVR_JOB_TYPE_FRAGMENT:
return PVR_FWIF_DM_FRAG;
case DRM_PVR_JOB_TYPE_COMPUTE:
return PVR_FWIF_DM_CDM;
}
return ~0;
}
/**
* init_fw_context() - Initializes the queue part of a FW context.
* @queue: Queue object to initialize the FW context for.
* @fw_ctx_map: The FW context CPU mapping.
*
* FW contexts are containing various states, one of them being a per-queue state
* that needs to be initialized for each queue being exposed by a context. This
* function takes care of that.
*/
static void init_fw_context(struct pvr_queue *queue, void *fw_ctx_map)
{
struct pvr_context *ctx = queue->ctx;
struct pvr_fw_object *fw_mem_ctx_obj = pvr_vm_get_fw_mem_context(ctx->vm_ctx);
struct rogue_fwif_fwcommoncontext *cctx_fw;
struct pvr_cccb *cccb = &queue->cccb;
cctx_fw = fw_ctx_map + queue->ctx_offset;
cctx_fw->ccbctl_fw_addr = cccb->ctrl_fw_addr;
cctx_fw->ccb_fw_addr = cccb->cccb_fw_addr;
cctx_fw->dm = get_dm_type(queue);
cctx_fw->priority = ctx->priority;
cctx_fw->priority_seq_num = 0;
cctx_fw->max_deadline_ms = MAX_DEADLINE_MS;
cctx_fw->pid = task_tgid_nr(current);
cctx_fw->server_common_context_id = ctx->ctx_id;
pvr_fw_object_get_fw_addr(fw_mem_ctx_obj, &cctx_fw->fw_mem_context_fw_addr);
pvr_fw_object_get_fw_addr(queue->reg_state_obj, &cctx_fw->context_state_addr);
}
/**
* pvr_queue_cleanup_fw_context() - Wait for the FW context to be idle and clean it up.
* @queue: Queue on FW context to clean up.
*
* Return:
* * 0 on success,
* * Any error returned by pvr_fw_structure_cleanup() otherwise.
*/
static int pvr_queue_cleanup_fw_context(struct pvr_queue *queue)
{
if (!queue->ctx->fw_obj)
return 0;
return pvr_fw_structure_cleanup(queue->ctx->pvr_dev,
ROGUE_FWIF_CLEANUP_FWCOMMONCONTEXT,
queue->ctx->fw_obj, queue->ctx_offset);
}
/**
* pvr_queue_job_init() - Initialize queue related fields in a pvr_job object.
* @job: The job to initialize.
*
* Bind the job to a queue and allocate memory to guarantee pvr_queue_job_arm()
* and pvr_queue_job_push() can't fail. We also make sure the context type is
* valid and the job can fit in the CCCB.
*
* Return:
* * 0 on success, or
* * An error code if something failed.
*/
int pvr_queue_job_init(struct pvr_job *job)
{
/* Fragment jobs need at least one native fence wait on the geometry job fence. */
u32 min_native_dep_count = job->type == DRM_PVR_JOB_TYPE_FRAGMENT ? 1 : 0;
struct pvr_queue *queue;
int err;
if (atomic_read(&job->ctx->faulty))
return -EIO;
queue = pvr_context_get_queue_for_job(job->ctx, job->type);
if (!queue)
return -EINVAL;
if (!pvr_cccb_cmdseq_can_fit(&queue->cccb, job_cmds_size(job, min_native_dep_count)))
return -E2BIG;
err = drm_sched_job_init(&job->base, &queue->entity, 1, THIS_MODULE);
if (err)
return err;
job->cccb_fence = pvr_queue_fence_alloc();
job->kccb_fence = pvr_kccb_fence_alloc();
job->done_fence = pvr_queue_fence_alloc();
if (!job->cccb_fence || !job->kccb_fence || !job->done_fence)
return -ENOMEM;
return 0;
}
/**
* pvr_queue_job_arm() - Arm a job object.
* @job: The job to arm.
*
* Initializes fences and return the drm_sched finished fence so it can
* be exposed to the outside world. Once this function is called, you should
* make sure the job is pushed using pvr_queue_job_push(), or guarantee that
* no one grabbed a reference to the returned fence. The latter can happen if
* we do multi-job submission, and something failed when creating/initializing
* a job. In that case, we know the fence didn't leave the driver, and we
* can thus guarantee nobody will wait on an dead fence object.
*
* Return:
* * A dma_fence object.
*/
struct dma_fence *pvr_queue_job_arm(struct pvr_job *job)
{
drm_sched_job_arm(&job->base);
return &job->base.s_fence->finished;
}
/**
* pvr_queue_job_cleanup() - Cleanup fence/scheduler related fields in the job object.
* @job: The job to cleanup.
*
* Should be called in the job release path.
*/
void pvr_queue_job_cleanup(struct pvr_job *job)
{
pvr_queue_fence_put(job->done_fence);
pvr_queue_fence_put(job->cccb_fence);
pvr_kccb_fence_put(job->kccb_fence);
if (job->base.s_fence)
drm_sched_job_cleanup(&job->base);
}
/**
* pvr_queue_job_push() - Push a job to its queue.
* @job: The job to push.
*
* Must be called after pvr_queue_job_init() and after all dependencies
* have been added to the job. This will effectively queue the job to
* the drm_sched_entity attached to the queue. We grab a reference on
* the job object, so the caller is free to drop its reference when it's
* done accessing the job object.
*/
void pvr_queue_job_push(struct pvr_job *job)
{
struct pvr_queue *queue = container_of(job->base.sched, struct pvr_queue, scheduler);
/* Keep track of the last queued job scheduled fence for combined submit. */
dma_fence_put(queue->last_queued_job_scheduled_fence);
queue->last_queued_job_scheduled_fence = dma_fence_get(&job->base.s_fence->scheduled);
pvr_job_get(job);
drm_sched_entity_push_job(&job->base);
}
static void reg_state_init(void *cpu_ptr, void *priv)
{
struct pvr_queue *queue = priv;
if (queue->type == DRM_PVR_JOB_TYPE_GEOMETRY) {
struct rogue_fwif_geom_ctx_state *geom_ctx_state_fw = cpu_ptr;
geom_ctx_state_fw->geom_core[0].geom_reg_vdm_call_stack_pointer_init =
queue->callstack_addr;
}
}
/**
* pvr_queue_create() - Create a queue object.
* @ctx: The context this queue will be attached to.
* @type: The type of jobs being pushed to this queue.
* @args: The arguments passed to the context creation function.
* @fw_ctx_map: CPU mapping of the FW context object.
*
* Create a queue object that will be used to queue and track jobs.
*
* Return:
* * A valid pointer to a pvr_queue object, or
* * An error pointer if the creation/initialization failed.
*/
struct pvr_queue *pvr_queue_create(struct pvr_context *ctx,
enum drm_pvr_job_type type,
struct drm_pvr_ioctl_create_context_args *args,
void *fw_ctx_map)
{
static const struct {
u32 cccb_size;
const char *name;
} props[] = {
[DRM_PVR_JOB_TYPE_GEOMETRY] = {
.cccb_size = CTX_GEOM_CCCB_SIZE_LOG2,
.name = "geometry",
},
[DRM_PVR_JOB_TYPE_FRAGMENT] = {
.cccb_size = CTX_FRAG_CCCB_SIZE_LOG2,
.name = "fragment"
},
[DRM_PVR_JOB_TYPE_COMPUTE] = {
.cccb_size = CTX_COMPUTE_CCCB_SIZE_LOG2,
.name = "compute"
},
[DRM_PVR_JOB_TYPE_TRANSFER_FRAG] = {
.cccb_size = CTX_TRANSFER_CCCB_SIZE_LOG2,
.name = "transfer_frag"
},
};
struct pvr_device *pvr_dev = ctx->pvr_dev;
struct drm_gpu_scheduler *sched;
struct pvr_queue *queue;
int ctx_state_size, err;
void *cpu_map;
if (WARN_ON(type >= sizeof(props)))
return ERR_PTR(-EINVAL);
switch (ctx->type) {
case DRM_PVR_CTX_TYPE_RENDER:
if (type != DRM_PVR_JOB_TYPE_GEOMETRY &&
type != DRM_PVR_JOB_TYPE_FRAGMENT)
return ERR_PTR(-EINVAL);
break;
case DRM_PVR_CTX_TYPE_COMPUTE:
if (type != DRM_PVR_JOB_TYPE_COMPUTE)
return ERR_PTR(-EINVAL);
break;
case DRM_PVR_CTX_TYPE_TRANSFER_FRAG:
if (type != DRM_PVR_JOB_TYPE_TRANSFER_FRAG)
return ERR_PTR(-EINVAL);
break;
default:
return ERR_PTR(-EINVAL);
}
ctx_state_size = get_ctx_state_size(pvr_dev, type);
if (ctx_state_size < 0)
return ERR_PTR(ctx_state_size);
queue = kzalloc(sizeof(*queue), GFP_KERNEL);
if (!queue)
return ERR_PTR(-ENOMEM);
queue->type = type;
queue->ctx_offset = get_ctx_offset(type);
queue->ctx = ctx;
queue->callstack_addr = args->callstack_addr;
sched = &queue->scheduler;
INIT_LIST_HEAD(&queue->node);
mutex_init(&queue->cccb_fence_ctx.job_lock);
pvr_queue_fence_ctx_init(&queue->cccb_fence_ctx.base);
pvr_queue_fence_ctx_init(&queue->job_fence_ctx);
err = pvr_cccb_init(pvr_dev, &queue->cccb, props[type].cccb_size, props[type].name);
if (err)
goto err_free_queue;
err = pvr_fw_object_create(pvr_dev, ctx_state_size,
PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
reg_state_init, queue, &queue->reg_state_obj);
if (err)
goto err_cccb_fini;
init_fw_context(queue, fw_ctx_map);
if (type != DRM_PVR_JOB_TYPE_GEOMETRY && type != DRM_PVR_JOB_TYPE_FRAGMENT &&
args->callstack_addr) {
err = -EINVAL;
goto err_release_reg_state;
}
cpu_map = pvr_fw_object_create_and_map(pvr_dev, sizeof(*queue->timeline_ufo.value),
PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
NULL, NULL, &queue->timeline_ufo.fw_obj);
if (IS_ERR(cpu_map)) {
err = PTR_ERR(cpu_map);
goto err_release_reg_state;
}
queue->timeline_ufo.value = cpu_map;
err = drm_sched_init(&queue->scheduler,
&pvr_queue_sched_ops,
pvr_dev->sched_wq, 1, 64 * 1024, 1,
msecs_to_jiffies(500),
pvr_dev->sched_wq, NULL, "pvr-queue",
pvr_dev->base.dev);
if (err)
goto err_release_ufo;
err = drm_sched_entity_init(&queue->entity,
DRM_SCHED_PRIORITY_KERNEL,
&sched, 1, &ctx->faulty);
if (err)
goto err_sched_fini;
mutex_lock(&pvr_dev->queues.lock);
list_add_tail(&queue->node, &pvr_dev->queues.idle);
mutex_unlock(&pvr_dev->queues.lock);
return queue;
err_sched_fini:
drm_sched_fini(&queue->scheduler);
err_release_ufo:
pvr_fw_object_unmap_and_destroy(queue->timeline_ufo.fw_obj);
err_release_reg_state:
pvr_fw_object_destroy(queue->reg_state_obj);
err_cccb_fini:
pvr_cccb_fini(&queue->cccb);
err_free_queue:
mutex_destroy(&queue->cccb_fence_ctx.job_lock);
kfree(queue);
return ERR_PTR(err);
}
void pvr_queue_device_pre_reset(struct pvr_device *pvr_dev)
{
struct pvr_queue *queue;
mutex_lock(&pvr_dev->queues.lock);
list_for_each_entry(queue, &pvr_dev->queues.idle, node)
pvr_queue_stop(queue, NULL);
list_for_each_entry(queue, &pvr_dev->queues.active, node)
pvr_queue_stop(queue, NULL);
mutex_unlock(&pvr_dev->queues.lock);
}
void pvr_queue_device_post_reset(struct pvr_device *pvr_dev)
{
struct pvr_queue *queue;
mutex_lock(&pvr_dev->queues.lock);
list_for_each_entry(queue, &pvr_dev->queues.active, node)
pvr_queue_start(queue);
list_for_each_entry(queue, &pvr_dev->queues.idle, node)
pvr_queue_start(queue);
mutex_unlock(&pvr_dev->queues.lock);
}
/**
* pvr_queue_kill() - Kill a queue.
* @queue: The queue to kill.
*
* Kill the queue so no new jobs can be pushed. Should be called when the
* context handle is destroyed. The queue object might last longer if jobs
* are still in flight and holding a reference to the context this queue
* belongs to.
*/
void pvr_queue_kill(struct pvr_queue *queue)
{
drm_sched_entity_destroy(&queue->entity);
dma_fence_put(queue->last_queued_job_scheduled_fence);
queue->last_queued_job_scheduled_fence = NULL;
}
/**
* pvr_queue_destroy() - Destroy a queue.
* @queue: The queue to destroy.
*
* Cleanup the queue and free the resources attached to it. Should be
* called from the context release function.
*/
void pvr_queue_destroy(struct pvr_queue *queue)
{
if (!queue)
return;
mutex_lock(&queue->ctx->pvr_dev->queues.lock);
list_del_init(&queue->node);
mutex_unlock(&queue->ctx->pvr_dev->queues.lock);
drm_sched_fini(&queue->scheduler);
drm_sched_entity_fini(&queue->entity);
if (WARN_ON(queue->last_queued_job_scheduled_fence))
dma_fence_put(queue->last_queued_job_scheduled_fence);
pvr_queue_cleanup_fw_context(queue);
pvr_fw_object_unmap_and_destroy(queue->timeline_ufo.fw_obj);
pvr_fw_object_destroy(queue->reg_state_obj);
pvr_cccb_fini(&queue->cccb);
mutex_destroy(&queue->cccb_fence_ctx.job_lock);
kfree(queue);
}
/**
* pvr_queue_device_init() - Device-level initialization of queue related fields.
* @pvr_dev: The device to initialize.
*
* Initializes all fields related to queue management in pvr_device.
*
* Return:
* * 0 on success, or
* * An error code on failure.
*/
int pvr_queue_device_init(struct pvr_device *pvr_dev)
{
int err;
INIT_LIST_HEAD(&pvr_dev->queues.active);
INIT_LIST_HEAD(&pvr_dev->queues.idle);
err = drmm_mutex_init(from_pvr_device(pvr_dev), &pvr_dev->queues.lock);
if (err)
return err;
pvr_dev->sched_wq = alloc_workqueue("powervr-sched", WQ_UNBOUND, 0);
if (!pvr_dev->sched_wq)
return -ENOMEM;
return 0;
}
/**
* pvr_queue_device_fini() - Device-level cleanup of queue related fields.
* @pvr_dev: The device to cleanup.
*
* Cleanup/free all queue-related resources attached to a pvr_device object.
*/
void pvr_queue_device_fini(struct pvr_device *pvr_dev)
{
destroy_workqueue(pvr_dev->sched_wq);
}
|