1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* AMD SFH Client Layer
* Copyright 2020-2021 Advanced Micro Devices, Inc.
* Authors: Nehal Bakulchandra Shah <Nehal-Bakulchandra.Shah@amd.com>
* Sandeep Singh <Sandeep.singh@amd.com>
* Basavaraj Natikar <Basavaraj.Natikar@amd.com>
*/
#include <linux/dma-mapping.h>
#include <linux/hid.h>
#include <linux/list.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/errno.h>
#include "hid_descriptor/amd_sfh_hid_desc.h"
#include "amd_sfh_pcie.h"
#include "amd_sfh_hid.h"
struct request_list {
struct hid_device *hid;
struct list_head list;
u8 report_id;
u8 sensor_idx;
u8 report_type;
u8 current_index;
};
static struct request_list req_list;
void amd_sfh_set_report(struct hid_device *hid, int report_id,
int report_type)
{
struct amdtp_hid_data *hid_data = hid->driver_data;
struct amdtp_cl_data *cli_data = hid_data->cli_data;
int i;
for (i = 0; i < cli_data->num_hid_devices; i++) {
if (cli_data->hid_sensor_hubs[i] == hid) {
cli_data->cur_hid_dev = i;
break;
}
}
amdtp_hid_wakeup(hid);
}
int amd_sfh_get_report(struct hid_device *hid, int report_id, int report_type)
{
struct amdtp_hid_data *hid_data = hid->driver_data;
struct amdtp_cl_data *cli_data = hid_data->cli_data;
int i;
for (i = 0; i < cli_data->num_hid_devices; i++) {
if (cli_data->hid_sensor_hubs[i] == hid) {
struct request_list *new = kzalloc(sizeof(*new), GFP_KERNEL);
if (!new)
return -ENOMEM;
new->current_index = i;
new->sensor_idx = cli_data->sensor_idx[i];
new->hid = hid;
new->report_type = report_type;
new->report_id = report_id;
cli_data->report_id[i] = report_id;
cli_data->request_done[i] = false;
list_add(&new->list, &req_list.list);
break;
}
}
schedule_delayed_work(&cli_data->work, 0);
return 0;
}
static void amd_sfh_work(struct work_struct *work)
{
struct amdtp_cl_data *cli_data = container_of(work, struct amdtp_cl_data, work.work);
struct amd_input_data *in_data = cli_data->in_data;
struct request_list *req_node;
u8 current_index, sensor_index;
u8 report_id, node_type;
u8 report_size = 0;
req_node = list_last_entry(&req_list.list, struct request_list, list);
list_del(&req_node->list);
current_index = req_node->current_index;
sensor_index = req_node->sensor_idx;
report_id = req_node->report_id;
node_type = req_node->report_type;
kfree(req_node);
if (node_type == HID_FEATURE_REPORT) {
report_size = get_feature_report(sensor_index, report_id,
cli_data->feature_report[current_index]);
if (report_size)
hid_input_report(cli_data->hid_sensor_hubs[current_index],
cli_data->report_type[current_index],
cli_data->feature_report[current_index], report_size, 0);
else
pr_err("AMDSFH: Invalid report size\n");
} else if (node_type == HID_INPUT_REPORT) {
report_size = get_input_report(current_index, sensor_index, report_id, in_data);
if (report_size)
hid_input_report(cli_data->hid_sensor_hubs[current_index],
cli_data->report_type[current_index],
in_data->input_report[current_index], report_size, 0);
else
pr_err("AMDSFH: Invalid report size\n");
}
cli_data->cur_hid_dev = current_index;
cli_data->sensor_requested_cnt[current_index] = 0;
amdtp_hid_wakeup(cli_data->hid_sensor_hubs[current_index]);
}
static void amd_sfh_work_buffer(struct work_struct *work)
{
struct amdtp_cl_data *cli_data = container_of(work, struct amdtp_cl_data, work_buffer.work);
struct amd_input_data *in_data = cli_data->in_data;
u8 report_size;
int i;
for (i = 0; i < cli_data->num_hid_devices; i++) {
if (cli_data->sensor_sts[i] == SENSOR_ENABLED) {
report_size = get_input_report
(i, cli_data->sensor_idx[i], cli_data->report_id[i], in_data);
hid_input_report(cli_data->hid_sensor_hubs[i], HID_INPUT_REPORT,
in_data->input_report[i], report_size, 0);
}
}
schedule_delayed_work(&cli_data->work_buffer, msecs_to_jiffies(AMD_SFH_IDLE_LOOP));
}
u32 amd_sfh_wait_for_response(struct amd_mp2_dev *mp2, u8 sid, u32 sensor_sts)
{
if (mp2->mp2_ops->response)
sensor_sts = mp2->mp2_ops->response(mp2, sid, sensor_sts);
return sensor_sts;
}
const char *get_sensor_name(int idx)
{
switch (idx) {
case accel_idx:
return "accelerometer";
case gyro_idx:
return "gyroscope";
case mag_idx:
return "magnetometer";
case als_idx:
return "ALS";
case HPD_IDX:
return "HPD";
default:
return "unknown sensor type";
}
}
int amd_sfh_hid_client_init(struct amd_mp2_dev *privdata)
{
struct amd_input_data *in_data = &privdata->in_data;
struct amdtp_cl_data *cl_data = privdata->cl_data;
struct amd_mp2_sensor_info info;
struct device *dev;
u32 feature_report_size;
u32 input_report_size;
int rc, i, status;
u8 cl_idx;
dev = &privdata->pdev->dev;
cl_data->num_hid_devices = amd_mp2_get_sensor_num(privdata, &cl_data->sensor_idx[0]);
INIT_DELAYED_WORK(&cl_data->work, amd_sfh_work);
INIT_DELAYED_WORK(&cl_data->work_buffer, amd_sfh_work_buffer);
INIT_LIST_HEAD(&req_list.list);
cl_data->in_data = in_data;
for (i = 0; i < cl_data->num_hid_devices; i++) {
in_data->sensor_virt_addr[i] = dma_alloc_coherent(dev, sizeof(int) * 8,
&cl_data->sensor_dma_addr[i],
GFP_KERNEL);
cl_data->sensor_sts[i] = SENSOR_DISABLED;
cl_data->sensor_requested_cnt[i] = 0;
cl_data->cur_hid_dev = i;
cl_idx = cl_data->sensor_idx[i];
cl_data->report_descr_sz[i] = get_descr_sz(cl_idx, descr_size);
if (!cl_data->report_descr_sz[i]) {
rc = -EINVAL;
goto cleanup;
}
feature_report_size = get_descr_sz(cl_idx, feature_size);
if (!feature_report_size) {
rc = -EINVAL;
goto cleanup;
}
input_report_size = get_descr_sz(cl_idx, input_size);
if (!input_report_size) {
rc = -EINVAL;
goto cleanup;
}
cl_data->feature_report[i] = devm_kzalloc(dev, feature_report_size, GFP_KERNEL);
if (!cl_data->feature_report[i]) {
rc = -ENOMEM;
goto cleanup;
}
in_data->input_report[i] = devm_kzalloc(dev, input_report_size, GFP_KERNEL);
if (!in_data->input_report[i]) {
rc = -ENOMEM;
goto cleanup;
}
info.period = AMD_SFH_IDLE_LOOP;
info.sensor_idx = cl_idx;
info.dma_address = cl_data->sensor_dma_addr[i];
cl_data->report_descr[i] =
devm_kzalloc(dev, cl_data->report_descr_sz[i], GFP_KERNEL);
if (!cl_data->report_descr[i]) {
rc = -ENOMEM;
goto cleanup;
}
rc = get_report_descriptor(cl_idx, cl_data->report_descr[i]);
if (rc)
return rc;
privdata->mp2_ops->start(privdata, info);
status = amd_sfh_wait_for_response
(privdata, cl_data->sensor_idx[i], SENSOR_ENABLED);
if (status == SENSOR_ENABLED) {
cl_data->sensor_sts[i] = SENSOR_ENABLED;
rc = amdtp_hid_probe(cl_data->cur_hid_dev, cl_data);
if (rc) {
privdata->mp2_ops->stop(privdata, cl_data->sensor_idx[i]);
status = amd_sfh_wait_for_response
(privdata, cl_data->sensor_idx[i], SENSOR_DISABLED);
if (status != SENSOR_ENABLED)
cl_data->sensor_sts[i] = SENSOR_DISABLED;
dev_dbg(dev, "sid 0x%x (%s) status 0x%x\n",
cl_data->sensor_idx[i],
get_sensor_name(cl_data->sensor_idx[i]),
cl_data->sensor_sts[i]);
goto cleanup;
}
}
dev_dbg(dev, "sid 0x%x (%s) status 0x%x\n",
cl_data->sensor_idx[i], get_sensor_name(cl_data->sensor_idx[i]),
cl_data->sensor_sts[i]);
}
if (privdata->mp2_ops->discovery_status &&
privdata->mp2_ops->discovery_status(privdata) == 0) {
amd_sfh_hid_client_deinit(privdata);
for (i = 0; i < cl_data->num_hid_devices; i++) {
devm_kfree(dev, cl_data->feature_report[i]);
devm_kfree(dev, in_data->input_report[i]);
devm_kfree(dev, cl_data->report_descr[i]);
}
dev_warn(dev, "Failed to discover, sensors not enabled\n");
return -EOPNOTSUPP;
}
schedule_delayed_work(&cl_data->work_buffer, msecs_to_jiffies(AMD_SFH_IDLE_LOOP));
return 0;
cleanup:
for (i = 0; i < cl_data->num_hid_devices; i++) {
if (in_data->sensor_virt_addr[i]) {
dma_free_coherent(&privdata->pdev->dev, 8 * sizeof(int),
in_data->sensor_virt_addr[i],
cl_data->sensor_dma_addr[i]);
}
devm_kfree(dev, cl_data->feature_report[i]);
devm_kfree(dev, in_data->input_report[i]);
devm_kfree(dev, cl_data->report_descr[i]);
}
return rc;
}
int amd_sfh_hid_client_deinit(struct amd_mp2_dev *privdata)
{
struct amdtp_cl_data *cl_data = privdata->cl_data;
struct amd_input_data *in_data = cl_data->in_data;
int i, status;
for (i = 0; i < cl_data->num_hid_devices; i++) {
if (cl_data->sensor_sts[i] == SENSOR_ENABLED) {
privdata->mp2_ops->stop(privdata, cl_data->sensor_idx[i]);
status = amd_sfh_wait_for_response
(privdata, cl_data->sensor_idx[i], SENSOR_DISABLED);
if (status != SENSOR_ENABLED)
cl_data->sensor_sts[i] = SENSOR_DISABLED;
dev_dbg(&privdata->pdev->dev, "stopping sid 0x%x (%s) status 0x%x\n",
cl_data->sensor_idx[i], get_sensor_name(cl_data->sensor_idx[i]),
cl_data->sensor_sts[i]);
}
}
cancel_delayed_work_sync(&cl_data->work);
cancel_delayed_work_sync(&cl_data->work_buffer);
amdtp_hid_remove(cl_data);
for (i = 0; i < cl_data->num_hid_devices; i++) {
if (in_data->sensor_virt_addr[i]) {
dma_free_coherent(&privdata->pdev->dev, 8 * sizeof(int),
in_data->sensor_virt_addr[i],
cl_data->sensor_dma_addr[i]);
}
}
return 0;
}
|