summaryrefslogtreecommitdiffstats
path: root/drivers/i2c/busses/i2c-bcm-iproc.c
blob: be8cd14f5ef6016d0eabed20d95798d1e210117b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
/*
 * Copyright (C) 2014 Broadcom Corporation
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation version 2.
 *
 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
 * kind, whether express or implied; without even the implied warranty
 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/delay.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/slab.h>

#define CFG_OFFSET                   0x00
#define CFG_RESET_SHIFT              31
#define CFG_EN_SHIFT                 30
#define CFG_SLAVE_ADDR_0_SHIFT       28
#define CFG_M_RETRY_CNT_SHIFT        16
#define CFG_M_RETRY_CNT_MASK         0x0f

#define TIM_CFG_OFFSET               0x04
#define TIM_CFG_MODE_400_SHIFT       31
#define TIM_RAND_SLAVE_STRETCH_SHIFT      24
#define TIM_RAND_SLAVE_STRETCH_MASK       0x7f
#define TIM_PERIODIC_SLAVE_STRETCH_SHIFT  16
#define TIM_PERIODIC_SLAVE_STRETCH_MASK   0x7f

#define S_CFG_SMBUS_ADDR_OFFSET           0x08
#define S_CFG_EN_NIC_SMB_ADDR3_SHIFT      31
#define S_CFG_NIC_SMB_ADDR3_SHIFT         24
#define S_CFG_NIC_SMB_ADDR3_MASK          0x7f
#define S_CFG_EN_NIC_SMB_ADDR2_SHIFT      23
#define S_CFG_NIC_SMB_ADDR2_SHIFT         16
#define S_CFG_NIC_SMB_ADDR2_MASK          0x7f
#define S_CFG_EN_NIC_SMB_ADDR1_SHIFT      15
#define S_CFG_NIC_SMB_ADDR1_SHIFT         8
#define S_CFG_NIC_SMB_ADDR1_MASK          0x7f
#define S_CFG_EN_NIC_SMB_ADDR0_SHIFT      7
#define S_CFG_NIC_SMB_ADDR0_SHIFT         0
#define S_CFG_NIC_SMB_ADDR0_MASK          0x7f

#define M_FIFO_CTRL_OFFSET           0x0c
#define M_FIFO_RX_FLUSH_SHIFT        31
#define M_FIFO_TX_FLUSH_SHIFT        30
#define M_FIFO_RX_CNT_SHIFT          16
#define M_FIFO_RX_CNT_MASK           0x7f
#define M_FIFO_RX_THLD_SHIFT         8
#define M_FIFO_RX_THLD_MASK          0x3f

#define S_FIFO_CTRL_OFFSET           0x10
#define S_FIFO_RX_FLUSH_SHIFT        31
#define S_FIFO_TX_FLUSH_SHIFT        30
#define S_FIFO_RX_CNT_SHIFT          16
#define S_FIFO_RX_CNT_MASK           0x7f
#define S_FIFO_RX_THLD_SHIFT         8
#define S_FIFO_RX_THLD_MASK          0x3f

#define M_CMD_OFFSET                 0x30
#define M_CMD_START_BUSY_SHIFT       31
#define M_CMD_STATUS_SHIFT           25
#define M_CMD_STATUS_MASK            0x07
#define M_CMD_STATUS_SUCCESS         0x0
#define M_CMD_STATUS_LOST_ARB        0x1
#define M_CMD_STATUS_NACK_ADDR       0x2
#define M_CMD_STATUS_NACK_DATA       0x3
#define M_CMD_STATUS_TIMEOUT         0x4
#define M_CMD_STATUS_FIFO_UNDERRUN   0x5
#define M_CMD_STATUS_RX_FIFO_FULL    0x6
#define M_CMD_PROTOCOL_SHIFT         9
#define M_CMD_PROTOCOL_MASK          0xf
#define M_CMD_PROTOCOL_BLK_WR        0x7
#define M_CMD_PROTOCOL_BLK_RD        0x8
#define M_CMD_PEC_SHIFT              8
#define M_CMD_RD_CNT_SHIFT           0
#define M_CMD_RD_CNT_MASK            0xff

#define S_CMD_OFFSET                 0x34
#define S_CMD_START_BUSY_SHIFT       31
#define S_CMD_STATUS_SHIFT           23
#define S_CMD_STATUS_MASK            0x07
#define S_CMD_STATUS_SUCCESS         0x0
#define S_CMD_STATUS_TIMEOUT         0x5

#define IE_OFFSET                    0x38
#define IE_M_RX_FIFO_FULL_SHIFT      31
#define IE_M_RX_THLD_SHIFT           30
#define IE_M_START_BUSY_SHIFT        28
#define IE_M_TX_UNDERRUN_SHIFT       27
#define IE_S_RX_FIFO_FULL_SHIFT      26
#define IE_S_RX_THLD_SHIFT           25
#define IE_S_RX_EVENT_SHIFT          24
#define IE_S_START_BUSY_SHIFT        23
#define IE_S_TX_UNDERRUN_SHIFT       22
#define IE_S_RD_EVENT_SHIFT          21

#define IS_OFFSET                    0x3c
#define IS_M_RX_FIFO_FULL_SHIFT      31
#define IS_M_RX_THLD_SHIFT           30
#define IS_M_START_BUSY_SHIFT        28
#define IS_M_TX_UNDERRUN_SHIFT       27
#define IS_S_RX_FIFO_FULL_SHIFT      26
#define IS_S_RX_THLD_SHIFT           25
#define IS_S_RX_EVENT_SHIFT          24
#define IS_S_START_BUSY_SHIFT        23
#define IS_S_TX_UNDERRUN_SHIFT       22
#define IS_S_RD_EVENT_SHIFT          21

#define M_TX_OFFSET                  0x40
#define M_TX_WR_STATUS_SHIFT         31
#define M_TX_DATA_SHIFT              0
#define M_TX_DATA_MASK               0xff

#define M_RX_OFFSET                  0x44
#define M_RX_STATUS_SHIFT            30
#define M_RX_STATUS_MASK             0x03
#define M_RX_PEC_ERR_SHIFT           29
#define M_RX_DATA_SHIFT              0
#define M_RX_DATA_MASK               0xff

#define S_TX_OFFSET                  0x48
#define S_TX_WR_STATUS_SHIFT         31
#define S_TX_DATA_SHIFT              0
#define S_TX_DATA_MASK               0xff

#define S_RX_OFFSET                  0x4c
#define S_RX_STATUS_SHIFT            30
#define S_RX_STATUS_MASK             0x03
#define S_RX_PEC_ERR_SHIFT           29
#define S_RX_DATA_SHIFT              0
#define S_RX_DATA_MASK               0xff

#define I2C_TIMEOUT_MSEC             50000
#define M_TX_RX_FIFO_SIZE            64
#define M_RX_FIFO_MAX_THLD_VALUE     (M_TX_RX_FIFO_SIZE - 1)

#define M_RX_MAX_READ_LEN            255
#define M_RX_FIFO_THLD_VALUE         50

#define IE_M_ALL_INTERRUPT_SHIFT     27
#define IE_M_ALL_INTERRUPT_MASK      0x1e

#define SLAVE_READ_WRITE_BIT_MASK    0x1
#define SLAVE_READ_WRITE_BIT_SHIFT   0x1
#define SLAVE_MAX_SIZE_TRANSACTION   64
#define SLAVE_CLOCK_STRETCH_TIME     25

#define IE_S_ALL_INTERRUPT_SHIFT     21
#define IE_S_ALL_INTERRUPT_MASK      0x3f

enum i2c_slave_read_status {
	I2C_SLAVE_RX_FIFO_EMPTY = 0,
	I2C_SLAVE_RX_START,
	I2C_SLAVE_RX_DATA,
	I2C_SLAVE_RX_END,
};

enum i2c_slave_xfer_dir {
	I2C_SLAVE_DIR_READ = 0,
	I2C_SLAVE_DIR_WRITE,
	I2C_SLAVE_DIR_NONE,
};

enum bus_speed_index {
	I2C_SPD_100K = 0,
	I2C_SPD_400K,
};

struct bcm_iproc_i2c_dev {
	struct device *device;
	int irq;

	void __iomem *base;

	struct i2c_adapter adapter;
	unsigned int bus_speed;

	struct completion done;
	int xfer_is_done;

	struct i2c_msg *msg;

	struct i2c_client *slave;
	enum i2c_slave_xfer_dir xfer_dir;

	/* bytes that have been transferred */
	unsigned int tx_bytes;
	/* bytes that have been read */
	unsigned int rx_bytes;
	unsigned int thld_bytes;
};

/*
 * Can be expanded in the future if more interrupt status bits are utilized
 */
#define ISR_MASK (BIT(IS_M_START_BUSY_SHIFT) | BIT(IS_M_TX_UNDERRUN_SHIFT)\
		| BIT(IS_M_RX_THLD_SHIFT))

#define ISR_MASK_SLAVE (BIT(IS_S_START_BUSY_SHIFT)\
		| BIT(IS_S_RX_EVENT_SHIFT) | BIT(IS_S_RD_EVENT_SHIFT))

static int bcm_iproc_i2c_reg_slave(struct i2c_client *slave);
static int bcm_iproc_i2c_unreg_slave(struct i2c_client *slave);
static void bcm_iproc_i2c_enable_disable(struct bcm_iproc_i2c_dev *iproc_i2c,
					 bool enable);

static void bcm_iproc_i2c_slave_init(
	struct bcm_iproc_i2c_dev *iproc_i2c, bool need_reset)
{
	u32 val;

	if (need_reset) {
		/* put controller in reset */
		val = readl(iproc_i2c->base + CFG_OFFSET);
		val |= BIT(CFG_RESET_SHIFT);
		writel(val, iproc_i2c->base + CFG_OFFSET);

		/* wait 100 usec per spec */
		udelay(100);

		/* bring controller out of reset */
		val &= ~(BIT(CFG_RESET_SHIFT));
		writel(val, iproc_i2c->base + CFG_OFFSET);
	}

	/* flush TX/RX FIFOs */
	val = (BIT(S_FIFO_RX_FLUSH_SHIFT) | BIT(S_FIFO_TX_FLUSH_SHIFT));
	writel(val, iproc_i2c->base + S_FIFO_CTRL_OFFSET);

	/* Maximum slave stretch time */
	val = readl(iproc_i2c->base + TIM_CFG_OFFSET);
	val &= ~(TIM_RAND_SLAVE_STRETCH_MASK << TIM_RAND_SLAVE_STRETCH_SHIFT);
	val |= (SLAVE_CLOCK_STRETCH_TIME << TIM_RAND_SLAVE_STRETCH_SHIFT);
	writel(val, iproc_i2c->base + TIM_CFG_OFFSET);

	/* Configure the slave address */
	val = readl(iproc_i2c->base + S_CFG_SMBUS_ADDR_OFFSET);
	val |= BIT(S_CFG_EN_NIC_SMB_ADDR3_SHIFT);
	val &= ~(S_CFG_NIC_SMB_ADDR3_MASK << S_CFG_NIC_SMB_ADDR3_SHIFT);
	val |= (iproc_i2c->slave->addr << S_CFG_NIC_SMB_ADDR3_SHIFT);
	writel(val, iproc_i2c->base + S_CFG_SMBUS_ADDR_OFFSET);

	/* clear all pending slave interrupts */
	writel(ISR_MASK_SLAVE, iproc_i2c->base + IS_OFFSET);

	/* Enable interrupt register for any READ event */
	val = BIT(IE_S_RD_EVENT_SHIFT);
	/* Enable interrupt register to indicate a valid byte in receive fifo */
	val |= BIT(IE_S_RX_EVENT_SHIFT);
	/* Enable interrupt register for the Slave BUSY command */
	val |= BIT(IE_S_START_BUSY_SHIFT);
	writel(val, iproc_i2c->base + IE_OFFSET);

	iproc_i2c->xfer_dir = I2C_SLAVE_DIR_NONE;
}

static void bcm_iproc_i2c_check_slave_status(
	struct bcm_iproc_i2c_dev *iproc_i2c)
{
	u32 val;

	val = readl(iproc_i2c->base + S_CMD_OFFSET);
	val = (val >> S_CMD_STATUS_SHIFT) & S_CMD_STATUS_MASK;

	if (val == S_CMD_STATUS_TIMEOUT) {
		dev_err(iproc_i2c->device, "slave random stretch time timeout\n");

		/* re-initialize i2c for recovery */
		bcm_iproc_i2c_enable_disable(iproc_i2c, false);
		bcm_iproc_i2c_slave_init(iproc_i2c, true);
		bcm_iproc_i2c_enable_disable(iproc_i2c, true);
	}
}

static bool bcm_iproc_i2c_slave_isr(struct bcm_iproc_i2c_dev *iproc_i2c,
				u32 status)
{
	u8 value;
	u32 val;
	u32 rd_status;
	u32 tmp;

	/* Start of transaction. check address and populate the direction */
	if (iproc_i2c->xfer_dir == I2C_SLAVE_DIR_NONE) {
		tmp = readl(iproc_i2c->base + S_RX_OFFSET);
		rd_status = (tmp >> S_RX_STATUS_SHIFT) & S_RX_STATUS_MASK;
		/* This condition checks whether the request is a new request */
		if (((rd_status == I2C_SLAVE_RX_START) &&
			(status & BIT(IS_S_RX_EVENT_SHIFT))) ||
			((rd_status == I2C_SLAVE_RX_END) &&
			(status & BIT(IS_S_RD_EVENT_SHIFT)))) {

			/* Last bit is W/R bit.
			 * If 1 then its a read request(by master).
			 */
			iproc_i2c->xfer_dir = tmp & SLAVE_READ_WRITE_BIT_MASK;
			if (iproc_i2c->xfer_dir == I2C_SLAVE_DIR_WRITE)
				i2c_slave_event(iproc_i2c->slave,
					I2C_SLAVE_READ_REQUESTED, &value);
			else
				i2c_slave_event(iproc_i2c->slave,
					I2C_SLAVE_WRITE_REQUESTED, &value);
		}
	}

	/* read request from master */
	if ((status & BIT(IS_S_RD_EVENT_SHIFT)) &&
		(iproc_i2c->xfer_dir == I2C_SLAVE_DIR_WRITE)) {
		i2c_slave_event(iproc_i2c->slave,
			I2C_SLAVE_READ_PROCESSED, &value);
		writel(value, iproc_i2c->base + S_TX_OFFSET);

		val = BIT(S_CMD_START_BUSY_SHIFT);
		writel(val, iproc_i2c->base + S_CMD_OFFSET);
	}

	/* write request from master */
	if ((status & BIT(IS_S_RX_EVENT_SHIFT)) &&
		(iproc_i2c->xfer_dir == I2C_SLAVE_DIR_READ)) {
		val = readl(iproc_i2c->base + S_RX_OFFSET);
		/* Its a write request by Master to Slave.
		 * We read data present in receive FIFO
		 */
		value = (u8)((val >> S_RX_DATA_SHIFT) & S_RX_DATA_MASK);
		i2c_slave_event(iproc_i2c->slave,
			I2C_SLAVE_WRITE_RECEIVED, &value);

		/* check the status for the last byte of the transaction */
		rd_status = (val >> S_RX_STATUS_SHIFT) & S_RX_STATUS_MASK;
		if (rd_status == I2C_SLAVE_RX_END)
			iproc_i2c->xfer_dir = I2C_SLAVE_DIR_NONE;

		dev_dbg(iproc_i2c->device, "\nread value = 0x%x\n", value);
	}

	/* Stop */
	if (status & BIT(IS_S_START_BUSY_SHIFT)) {
		i2c_slave_event(iproc_i2c->slave, I2C_SLAVE_STOP, &value);
		iproc_i2c->xfer_dir = I2C_SLAVE_DIR_NONE;
	}

	/* clear interrupt status */
	writel(status, iproc_i2c->base + IS_OFFSET);

	bcm_iproc_i2c_check_slave_status(iproc_i2c);
	return true;
}

static void bcm_iproc_i2c_read_valid_bytes(struct bcm_iproc_i2c_dev *iproc_i2c)
{
	struct i2c_msg *msg = iproc_i2c->msg;

	/* Read valid data from RX FIFO */
	while (iproc_i2c->rx_bytes < msg->len) {
		if (!((readl(iproc_i2c->base + M_FIFO_CTRL_OFFSET) >> M_FIFO_RX_CNT_SHIFT)
		      & M_FIFO_RX_CNT_MASK))
			break;

		msg->buf[iproc_i2c->rx_bytes] =
			(readl(iproc_i2c->base + M_RX_OFFSET) >>
			M_RX_DATA_SHIFT) & M_RX_DATA_MASK;
		iproc_i2c->rx_bytes++;
	}
}

static void bcm_iproc_i2c_send(struct bcm_iproc_i2c_dev *iproc_i2c)
{
	struct i2c_msg *msg = iproc_i2c->msg;
	unsigned int tx_bytes = msg->len - iproc_i2c->tx_bytes;
	unsigned int i;
	u32 val;

	/* can only fill up to the FIFO size */
	tx_bytes = min_t(unsigned int, tx_bytes, M_TX_RX_FIFO_SIZE);
	for (i = 0; i < tx_bytes; i++) {
		/* start from where we left over */
		unsigned int idx = iproc_i2c->tx_bytes + i;

		val = msg->buf[idx];

		/* mark the last byte */
		if (idx == msg->len - 1) {
			val |= BIT(M_TX_WR_STATUS_SHIFT);

			if (iproc_i2c->irq) {
				u32 tmp;

				/*
				 * Since this is the last byte, we should now
				 * disable TX FIFO underrun interrupt
				 */
				tmp = readl(iproc_i2c->base + IE_OFFSET);
				tmp &= ~BIT(IE_M_TX_UNDERRUN_SHIFT);
				writel(tmp, iproc_i2c->base + IE_OFFSET);
			}
		}

		/* load data into TX FIFO */
		writel(val, iproc_i2c->base + M_TX_OFFSET);
	}

	/* update number of transferred bytes */
	iproc_i2c->tx_bytes += tx_bytes;
}

static void bcm_iproc_i2c_read(struct bcm_iproc_i2c_dev *iproc_i2c)
{
	struct i2c_msg *msg = iproc_i2c->msg;
	u32 bytes_left, val;

	bcm_iproc_i2c_read_valid_bytes(iproc_i2c);
	bytes_left = msg->len - iproc_i2c->rx_bytes;
	if (bytes_left == 0) {
		if (iproc_i2c->irq) {
			/* finished reading all data, disable rx thld event */
			val = readl(iproc_i2c->base + IE_OFFSET);
			val &= ~BIT(IS_M_RX_THLD_SHIFT);
			writel(val, iproc_i2c->base + IE_OFFSET);
		}
	} else if (bytes_left < iproc_i2c->thld_bytes) {
		/* set bytes left as threshold */
		val = readl(iproc_i2c->base + M_FIFO_CTRL_OFFSET);
		val &= ~(M_FIFO_RX_THLD_MASK << M_FIFO_RX_THLD_SHIFT);
		val |= (bytes_left << M_FIFO_RX_THLD_SHIFT);
		writel(val, iproc_i2c->base + M_FIFO_CTRL_OFFSET);
		iproc_i2c->thld_bytes = bytes_left;
	}
	/*
	 * bytes_left >= iproc_i2c->thld_bytes,
	 * hence no need to change the THRESHOLD SET.
	 * It will remain as iproc_i2c->thld_bytes itself
	 */
}

static void bcm_iproc_i2c_process_m_event(struct bcm_iproc_i2c_dev *iproc_i2c,
					  u32 status)
{
	/* TX FIFO is empty and we have more data to send */
	if (status & BIT(IS_M_TX_UNDERRUN_SHIFT))
		bcm_iproc_i2c_send(iproc_i2c);

	/* RX FIFO threshold is reached and data needs to be read out */
	if (status & BIT(IS_M_RX_THLD_SHIFT))
		bcm_iproc_i2c_read(iproc_i2c);

	/* transfer is done */
	if (status & BIT(IS_M_START_BUSY_SHIFT)) {
		iproc_i2c->xfer_is_done = 1;
		if (iproc_i2c->irq)
			complete(&iproc_i2c->done);
	}
}

static irqreturn_t bcm_iproc_i2c_isr(int irq, void *data)
{
	struct bcm_iproc_i2c_dev *iproc_i2c = data;
	u32 status = readl(iproc_i2c->base + IS_OFFSET);
	bool ret;
	u32 sl_status = status & ISR_MASK_SLAVE;

	if (sl_status) {
		ret = bcm_iproc_i2c_slave_isr(iproc_i2c, sl_status);
		if (ret)
			return IRQ_HANDLED;
		else
			return IRQ_NONE;
	}

	status &= ISR_MASK;
	if (!status)
		return IRQ_NONE;

	/* process all master based events */
	bcm_iproc_i2c_process_m_event(iproc_i2c, status);
	writel(status, iproc_i2c->base + IS_OFFSET);

	return IRQ_HANDLED;
}

static int bcm_iproc_i2c_init(struct bcm_iproc_i2c_dev *iproc_i2c)
{
	u32 val;

	/* put controller in reset */
	val = readl(iproc_i2c->base + CFG_OFFSET);
	val |= BIT(CFG_RESET_SHIFT);
	val &= ~(BIT(CFG_EN_SHIFT));
	writel(val, iproc_i2c->base + CFG_OFFSET);

	/* wait 100 usec per spec */
	udelay(100);

	/* bring controller out of reset */
	val &= ~(BIT(CFG_RESET_SHIFT));
	writel(val, iproc_i2c->base + CFG_OFFSET);

	/* flush TX/RX FIFOs and set RX FIFO threshold to zero */
	val = (BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT));
	writel(val, iproc_i2c->base + M_FIFO_CTRL_OFFSET);
	/* disable all interrupts */
	val = readl(iproc_i2c->base + IE_OFFSET);
	val &= ~(IE_M_ALL_INTERRUPT_MASK <<
			IE_M_ALL_INTERRUPT_SHIFT);
	writel(val, iproc_i2c->base + IE_OFFSET);

	/* clear all pending interrupts */
	writel(0xffffffff, iproc_i2c->base + IS_OFFSET);

	return 0;
}

static void bcm_iproc_i2c_enable_disable(struct bcm_iproc_i2c_dev *iproc_i2c,
					 bool enable)
{
	u32 val;

	val = readl(iproc_i2c->base + CFG_OFFSET);
	if (enable)
		val |= BIT(CFG_EN_SHIFT);
	else
		val &= ~BIT(CFG_EN_SHIFT);
	writel(val, iproc_i2c->base + CFG_OFFSET);
}

static int bcm_iproc_i2c_check_status(struct bcm_iproc_i2c_dev *iproc_i2c,
				      struct i2c_msg *msg)
{
	u32 val;

	val = readl(iproc_i2c->base + M_CMD_OFFSET);
	val = (val >> M_CMD_STATUS_SHIFT) & M_CMD_STATUS_MASK;

	switch (val) {
	case M_CMD_STATUS_SUCCESS:
		return 0;

	case M_CMD_STATUS_LOST_ARB:
		dev_dbg(iproc_i2c->device, "lost bus arbitration\n");
		return -EAGAIN;

	case M_CMD_STATUS_NACK_ADDR:
		dev_dbg(iproc_i2c->device, "NAK addr:0x%02x\n", msg->addr);
		return -ENXIO;

	case M_CMD_STATUS_NACK_DATA:
		dev_dbg(iproc_i2c->device, "NAK data\n");
		return -ENXIO;

	case M_CMD_STATUS_TIMEOUT:
		dev_dbg(iproc_i2c->device, "bus timeout\n");
		return -ETIMEDOUT;

	case M_CMD_STATUS_FIFO_UNDERRUN:
		dev_dbg(iproc_i2c->device, "FIFO under-run\n");
		return -ENXIO;

	case M_CMD_STATUS_RX_FIFO_FULL:
		dev_dbg(iproc_i2c->device, "RX FIFO full\n");
		return -ETIMEDOUT;

	default:
		dev_dbg(iproc_i2c->device, "unknown error code=%d\n", val);

		/* re-initialize i2c for recovery */
		bcm_iproc_i2c_enable_disable(iproc_i2c, false);
		bcm_iproc_i2c_init(iproc_i2c);
		bcm_iproc_i2c_enable_disable(iproc_i2c, true);

		return -EIO;
	}
}

static int bcm_iproc_i2c_xfer_wait(struct bcm_iproc_i2c_dev *iproc_i2c,
				   struct i2c_msg *msg,
				   u32 cmd)
{
	unsigned long time_left = msecs_to_jiffies(I2C_TIMEOUT_MSEC);
	u32 val, status;
	int ret;

	writel(cmd, iproc_i2c->base + M_CMD_OFFSET);

	if (iproc_i2c->irq) {
		time_left = wait_for_completion_timeout(&iproc_i2c->done,
							time_left);
		/* disable all interrupts */
		writel(0, iproc_i2c->base + IE_OFFSET);
		/* read it back to flush the write */
		readl(iproc_i2c->base + IE_OFFSET);
		/* make sure the interrupt handler isn't running */
		synchronize_irq(iproc_i2c->irq);

	} else { /* polling mode */
		unsigned long timeout = jiffies + time_left;

		do {
			status = readl(iproc_i2c->base + IS_OFFSET) & ISR_MASK;
			bcm_iproc_i2c_process_m_event(iproc_i2c, status);
			writel(status, iproc_i2c->base + IS_OFFSET);

			if (time_after(jiffies, timeout)) {
				time_left = 0;
				break;
			}

			cpu_relax();
			cond_resched();
		} while (!iproc_i2c->xfer_is_done);
	}

	if (!time_left && !iproc_i2c->xfer_is_done) {
		dev_err(iproc_i2c->device, "transaction timed out\n");

		/* flush both TX/RX FIFOs */
		val = BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT);
		writel(val, iproc_i2c->base + M_FIFO_CTRL_OFFSET);
		return -ETIMEDOUT;
	}

	ret = bcm_iproc_i2c_check_status(iproc_i2c, msg);
	if (ret) {
		/* flush both TX/RX FIFOs */
		val = BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT);
		writel(val, iproc_i2c->base + M_FIFO_CTRL_OFFSET);
		return ret;
	}

	return 0;
}

static int bcm_iproc_i2c_xfer_single_msg(struct bcm_iproc_i2c_dev *iproc_i2c,
					 struct i2c_msg *msg)
{
	int i;
	u8 addr;
	u32 val, tmp, val_intr_en;
	unsigned int tx_bytes;

	/* check if bus is busy */
	if (!!(readl(iproc_i2c->base + M_CMD_OFFSET) &
	       BIT(M_CMD_START_BUSY_SHIFT))) {
		dev_warn(iproc_i2c->device, "bus is busy\n");
		return -EBUSY;
	}

	iproc_i2c->msg = msg;

	/* format and load slave address into the TX FIFO */
	addr = i2c_8bit_addr_from_msg(msg);
	writel(addr, iproc_i2c->base + M_TX_OFFSET);

	/*
	 * For a write transaction, load data into the TX FIFO. Only allow
	 * loading up to TX FIFO size - 1 bytes of data since the first byte
	 * has been used up by the slave address
	 */
	tx_bytes = min_t(unsigned int, msg->len, M_TX_RX_FIFO_SIZE - 1);
	if (!(msg->flags & I2C_M_RD)) {
		for (i = 0; i < tx_bytes; i++) {
			val = msg->buf[i];

			/* mark the last byte */
			if (i == msg->len - 1)
				val |= 1 << M_TX_WR_STATUS_SHIFT;

			writel(val, iproc_i2c->base + M_TX_OFFSET);
		}
		iproc_i2c->tx_bytes = tx_bytes;
	}

	/* mark as incomplete before starting the transaction */
	if (iproc_i2c->irq)
		reinit_completion(&iproc_i2c->done);

	iproc_i2c->xfer_is_done = 0;

	/*
	 * Enable the "start busy" interrupt, which will be triggered after the
	 * transaction is done, i.e., the internal start_busy bit, transitions
	 * from 1 to 0.
	 */
	val_intr_en = BIT(IE_M_START_BUSY_SHIFT);

	/*
	 * If TX data size is larger than the TX FIFO, need to enable TX
	 * underrun interrupt, which will be triggerred when the TX FIFO is
	 * empty. When that happens we can then pump more data into the FIFO
	 */
	if (!(msg->flags & I2C_M_RD) &&
	    msg->len > iproc_i2c->tx_bytes)
		val_intr_en |= BIT(IE_M_TX_UNDERRUN_SHIFT);

	/*
	 * Now we can activate the transfer. For a read operation, specify the
	 * number of bytes to read
	 */
	val = BIT(M_CMD_START_BUSY_SHIFT);
	if (msg->flags & I2C_M_RD) {
		iproc_i2c->rx_bytes = 0;
		if (msg->len > M_RX_FIFO_MAX_THLD_VALUE)
			iproc_i2c->thld_bytes = M_RX_FIFO_THLD_VALUE;
		else
			iproc_i2c->thld_bytes = msg->len;

		/* set threshold value */
		tmp = readl(iproc_i2c->base + M_FIFO_CTRL_OFFSET);
		tmp &= ~(M_FIFO_RX_THLD_MASK << M_FIFO_RX_THLD_SHIFT);
		tmp |= iproc_i2c->thld_bytes << M_FIFO_RX_THLD_SHIFT;
		writel(tmp, iproc_i2c->base + M_FIFO_CTRL_OFFSET);

		/* enable the RX threshold interrupt */
		val_intr_en |= BIT(IE_M_RX_THLD_SHIFT);

		val |= (M_CMD_PROTOCOL_BLK_RD << M_CMD_PROTOCOL_SHIFT) |
		       (msg->len << M_CMD_RD_CNT_SHIFT);
	} else {
		val |= (M_CMD_PROTOCOL_BLK_WR << M_CMD_PROTOCOL_SHIFT);
	}

	if (iproc_i2c->irq)
		writel(val_intr_en, iproc_i2c->base + IE_OFFSET);

	return bcm_iproc_i2c_xfer_wait(iproc_i2c, msg, val);
}

static int bcm_iproc_i2c_xfer(struct i2c_adapter *adapter,
			      struct i2c_msg msgs[], int num)
{
	struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(adapter);
	int ret, i;

	/* go through all messages */
	for (i = 0; i < num; i++) {
		ret = bcm_iproc_i2c_xfer_single_msg(iproc_i2c, &msgs[i]);
		if (ret) {
			dev_dbg(iproc_i2c->device, "xfer failed\n");
			return ret;
		}
	}

	return num;
}

static uint32_t bcm_iproc_i2c_functionality(struct i2c_adapter *adap)
{
	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_SLAVE;
}

static const struct i2c_algorithm bcm_iproc_algo = {
	.master_xfer = bcm_iproc_i2c_xfer,
	.functionality = bcm_iproc_i2c_functionality,
	.reg_slave = bcm_iproc_i2c_reg_slave,
	.unreg_slave = bcm_iproc_i2c_unreg_slave,
};

static struct i2c_adapter_quirks bcm_iproc_i2c_quirks = {
	.max_read_len = M_RX_MAX_READ_LEN,
};

static int bcm_iproc_i2c_cfg_speed(struct bcm_iproc_i2c_dev *iproc_i2c)
{
	unsigned int bus_speed;
	u32 val;
	int ret = of_property_read_u32(iproc_i2c->device->of_node,
				       "clock-frequency", &bus_speed);
	if (ret < 0) {
		dev_info(iproc_i2c->device,
			"unable to interpret clock-frequency DT property\n");
		bus_speed = 100000;
	}

	if (bus_speed < 100000) {
		dev_err(iproc_i2c->device, "%d Hz bus speed not supported\n",
			bus_speed);
		dev_err(iproc_i2c->device,
			"valid speeds are 100khz and 400khz\n");
		return -EINVAL;
	} else if (bus_speed < 400000) {
		bus_speed = 100000;
	} else {
		bus_speed = 400000;
	}

	iproc_i2c->bus_speed = bus_speed;
	val = readl(iproc_i2c->base + TIM_CFG_OFFSET);
	val &= ~(1 << TIM_CFG_MODE_400_SHIFT);
	val |= (bus_speed == 400000) << TIM_CFG_MODE_400_SHIFT;
	writel(val, iproc_i2c->base + TIM_CFG_OFFSET);

	dev_info(iproc_i2c->device, "bus set to %u Hz\n", bus_speed);

	return 0;
}

static int bcm_iproc_i2c_probe(struct platform_device *pdev)
{
	int irq, ret = 0;
	struct bcm_iproc_i2c_dev *iproc_i2c;
	struct i2c_adapter *adap;
	struct resource *res;

	iproc_i2c = devm_kzalloc(&pdev->dev, sizeof(*iproc_i2c),
				 GFP_KERNEL);
	if (!iproc_i2c)
		return -ENOMEM;

	platform_set_drvdata(pdev, iproc_i2c);
	iproc_i2c->device = &pdev->dev;
	init_completion(&iproc_i2c->done);

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	iproc_i2c->base = devm_ioremap_resource(iproc_i2c->device, res);
	if (IS_ERR(iproc_i2c->base))
		return PTR_ERR(iproc_i2c->base);

	ret = bcm_iproc_i2c_init(iproc_i2c);
	if (ret)
		return ret;

	ret = bcm_iproc_i2c_cfg_speed(iproc_i2c);
	if (ret)
		return ret;

	irq = platform_get_irq(pdev, 0);
	if (irq > 0) {
		ret = devm_request_irq(iproc_i2c->device, irq,
				       bcm_iproc_i2c_isr, 0, pdev->name,
				       iproc_i2c);
		if (ret < 0) {
			dev_err(iproc_i2c->device,
				"unable to request irq %i\n", irq);
			return ret;
		}

		iproc_i2c->irq = irq;
	} else {
		dev_warn(iproc_i2c->device,
			 "no irq resource, falling back to poll mode\n");
	}

	bcm_iproc_i2c_enable_disable(iproc_i2c, true);

	adap = &iproc_i2c->adapter;
	i2c_set_adapdata(adap, iproc_i2c);
	strlcpy(adap->name, "Broadcom iProc I2C adapter", sizeof(adap->name));
	adap->algo = &bcm_iproc_algo;
	adap->quirks = &bcm_iproc_i2c_quirks;
	adap->dev.parent = &pdev->dev;
	adap->dev.of_node = pdev->dev.of_node;

	return i2c_add_adapter(adap);
}

static int bcm_iproc_i2c_remove(struct platform_device *pdev)
{
	struct bcm_iproc_i2c_dev *iproc_i2c = platform_get_drvdata(pdev);

	if (iproc_i2c->irq) {
		/*
		 * Make sure there's no pending interrupt when we remove the
		 * adapter
		 */
		writel(0, iproc_i2c->base + IE_OFFSET);
		readl(iproc_i2c->base + IE_OFFSET);
		synchronize_irq(iproc_i2c->irq);
	}

	i2c_del_adapter(&iproc_i2c->adapter);
	bcm_iproc_i2c_enable_disable(iproc_i2c, false);

	return 0;
}

#ifdef CONFIG_PM_SLEEP

static int bcm_iproc_i2c_suspend(struct device *dev)
{
	struct bcm_iproc_i2c_dev *iproc_i2c = dev_get_drvdata(dev);

	if (iproc_i2c->irq) {
		/*
		 * Make sure there's no pending interrupt when we go into
		 * suspend
		 */
		writel(0, iproc_i2c->base + IE_OFFSET);
		readl(iproc_i2c->base + IE_OFFSET);
		synchronize_irq(iproc_i2c->irq);
	}

	/* now disable the controller */
	bcm_iproc_i2c_enable_disable(iproc_i2c, false);

	return 0;
}

static int bcm_iproc_i2c_resume(struct device *dev)
{
	struct bcm_iproc_i2c_dev *iproc_i2c = dev_get_drvdata(dev);
	int ret;
	u32 val;

	/*
	 * Power domain could have been shut off completely in system deep
	 * sleep, so re-initialize the block here
	 */
	ret = bcm_iproc_i2c_init(iproc_i2c);
	if (ret)
		return ret;

	/* configure to the desired bus speed */
	val = readl(iproc_i2c->base + TIM_CFG_OFFSET);
	val &= ~(1 << TIM_CFG_MODE_400_SHIFT);
	val |= (iproc_i2c->bus_speed == 400000) << TIM_CFG_MODE_400_SHIFT;
	writel(val, iproc_i2c->base + TIM_CFG_OFFSET);

	bcm_iproc_i2c_enable_disable(iproc_i2c, true);

	return 0;
}

static const struct dev_pm_ops bcm_iproc_i2c_pm_ops = {
	.suspend_late = &bcm_iproc_i2c_suspend,
	.resume_early = &bcm_iproc_i2c_resume
};

#define BCM_IPROC_I2C_PM_OPS (&bcm_iproc_i2c_pm_ops)
#else
#define BCM_IPROC_I2C_PM_OPS NULL
#endif /* CONFIG_PM_SLEEP */


static int bcm_iproc_i2c_reg_slave(struct i2c_client *slave)
{
	struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(slave->adapter);

	if (iproc_i2c->slave)
		return -EBUSY;

	if (slave->flags & I2C_CLIENT_TEN)
		return -EAFNOSUPPORT;

	iproc_i2c->slave = slave;
	bcm_iproc_i2c_slave_init(iproc_i2c, false);
	return 0;
}

static int bcm_iproc_i2c_unreg_slave(struct i2c_client *slave)
{
	u32 tmp;
	struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(slave->adapter);

	if (!iproc_i2c->slave)
		return -EINVAL;

	iproc_i2c->slave = NULL;

	/* disable all slave interrupts */
	tmp = readl(iproc_i2c->base + IE_OFFSET);
	tmp &= ~(IE_S_ALL_INTERRUPT_MASK <<
			IE_S_ALL_INTERRUPT_SHIFT);
	writel(tmp, iproc_i2c->base + IE_OFFSET);

	/* Erase the slave address programmed */
	tmp = readl(iproc_i2c->base + S_CFG_SMBUS_ADDR_OFFSET);
	tmp &= ~BIT(S_CFG_EN_NIC_SMB_ADDR3_SHIFT);
	writel(tmp, iproc_i2c->base + S_CFG_SMBUS_ADDR_OFFSET);

	return 0;
}

static const struct of_device_id bcm_iproc_i2c_of_match[] = {
	{ .compatible = "brcm,iproc-i2c" },
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, bcm_iproc_i2c_of_match);

static struct platform_driver bcm_iproc_i2c_driver = {
	.driver = {
		.name = "bcm-iproc-i2c",
		.of_match_table = bcm_iproc_i2c_of_match,
		.pm = BCM_IPROC_I2C_PM_OPS,
	},
	.probe = bcm_iproc_i2c_probe,
	.remove = bcm_iproc_i2c_remove,
};
module_platform_driver(bcm_iproc_i2c_driver);

MODULE_AUTHOR("Ray Jui <rjui@broadcom.com>");
MODULE_DESCRIPTION("Broadcom iProc I2C Driver");
MODULE_LICENSE("GPL v2");