summaryrefslogtreecommitdiffstats
path: root/drivers/i2c/busses/i2c-stm32f4.c
blob: 48e26928436905c5a05311cebf2a2b2625b19cbb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
// SPDX-License-Identifier: GPL-2.0
/*
 * Driver for STMicroelectronics STM32 I2C controller
 *
 * This I2C controller is described in the STM32F429/439 Soc reference manual.
 * Please see below a link to the documentation:
 * http://www.st.com/resource/en/reference_manual/DM00031020.pdf
 *
 * Copyright (C) M'boumba Cedric Madianga 2016
 * Copyright (C) STMicroelectronics 2017
 * Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com>
 *
 * This driver is based on i2c-st.c
 *
 */

#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/reset.h>

#include "i2c-stm32.h"

/* STM32F4 I2C offset registers */
#define STM32F4_I2C_CR1			0x00
#define STM32F4_I2C_CR2			0x04
#define STM32F4_I2C_DR			0x10
#define STM32F4_I2C_SR1			0x14
#define STM32F4_I2C_SR2			0x18
#define STM32F4_I2C_CCR			0x1C
#define STM32F4_I2C_TRISE		0x20
#define STM32F4_I2C_FLTR		0x24

/* STM32F4 I2C control 1*/
#define STM32F4_I2C_CR1_POS		BIT(11)
#define STM32F4_I2C_CR1_ACK		BIT(10)
#define STM32F4_I2C_CR1_STOP		BIT(9)
#define STM32F4_I2C_CR1_START		BIT(8)
#define STM32F4_I2C_CR1_PE		BIT(0)

/* STM32F4 I2C control 2 */
#define STM32F4_I2C_CR2_FREQ_MASK	GENMASK(5, 0)
#define STM32F4_I2C_CR2_FREQ(n)		((n) & STM32F4_I2C_CR2_FREQ_MASK)
#define STM32F4_I2C_CR2_ITBUFEN		BIT(10)
#define STM32F4_I2C_CR2_ITEVTEN		BIT(9)
#define STM32F4_I2C_CR2_ITERREN		BIT(8)
#define STM32F4_I2C_CR2_IRQ_MASK	(STM32F4_I2C_CR2_ITBUFEN | \
					 STM32F4_I2C_CR2_ITEVTEN | \
					 STM32F4_I2C_CR2_ITERREN)

/* STM32F4 I2C Status 1 */
#define STM32F4_I2C_SR1_AF		BIT(10)
#define STM32F4_I2C_SR1_ARLO		BIT(9)
#define STM32F4_I2C_SR1_BERR		BIT(8)
#define STM32F4_I2C_SR1_TXE		BIT(7)
#define STM32F4_I2C_SR1_RXNE		BIT(6)
#define STM32F4_I2C_SR1_BTF		BIT(2)
#define STM32F4_I2C_SR1_ADDR		BIT(1)
#define STM32F4_I2C_SR1_SB		BIT(0)
#define STM32F4_I2C_SR1_ITEVTEN_MASK	(STM32F4_I2C_SR1_BTF | \
					 STM32F4_I2C_SR1_ADDR | \
					 STM32F4_I2C_SR1_SB)
#define STM32F4_I2C_SR1_ITBUFEN_MASK	(STM32F4_I2C_SR1_TXE | \
					 STM32F4_I2C_SR1_RXNE)
#define STM32F4_I2C_SR1_ITERREN_MASK	(STM32F4_I2C_SR1_AF | \
					 STM32F4_I2C_SR1_ARLO | \
					 STM32F4_I2C_SR1_BERR)

/* STM32F4 I2C Status 2 */
#define STM32F4_I2C_SR2_BUSY		BIT(1)

/* STM32F4 I2C Control Clock */
#define STM32F4_I2C_CCR_CCR_MASK	GENMASK(11, 0)
#define STM32F4_I2C_CCR_CCR(n)		((n) & STM32F4_I2C_CCR_CCR_MASK)
#define STM32F4_I2C_CCR_FS		BIT(15)
#define STM32F4_I2C_CCR_DUTY		BIT(14)

/* STM32F4 I2C Trise */
#define STM32F4_I2C_TRISE_VALUE_MASK	GENMASK(5, 0)
#define STM32F4_I2C_TRISE_VALUE(n)	((n) & STM32F4_I2C_TRISE_VALUE_MASK)

#define STM32F4_I2C_MIN_STANDARD_FREQ	2U
#define STM32F4_I2C_MIN_FAST_FREQ	6U
#define STM32F4_I2C_MAX_FREQ		46U
#define HZ_TO_MHZ			1000000

/**
 * struct stm32f4_i2c_msg - client specific data
 * @addr: 8-bit slave addr, including r/w bit
 * @count: number of bytes to be transferred
 * @buf: data buffer
 * @result: result of the transfer
 * @stop: last I2C msg to be sent, i.e. STOP to be generated
 */
struct stm32f4_i2c_msg {
	u8 addr;
	u32 count;
	u8 *buf;
	int result;
	bool stop;
};

/**
 * struct stm32f4_i2c_dev - private data of the controller
 * @adap: I2C adapter for this controller
 * @dev: device for this controller
 * @base: virtual memory area
 * @complete: completion of I2C message
 * @clk: hw i2c clock
 * @speed: I2C clock frequency of the controller. Standard or Fast are supported
 * @parent_rate: I2C clock parent rate in MHz
 * @msg: I2C transfer information
 */
struct stm32f4_i2c_dev {
	struct i2c_adapter adap;
	struct device *dev;
	void __iomem *base;
	struct completion complete;
	struct clk *clk;
	int speed;
	int parent_rate;
	struct stm32f4_i2c_msg msg;
};

static inline void stm32f4_i2c_set_bits(void __iomem *reg, u32 mask)
{
	writel_relaxed(readl_relaxed(reg) | mask, reg);
}

static inline void stm32f4_i2c_clr_bits(void __iomem *reg, u32 mask)
{
	writel_relaxed(readl_relaxed(reg) & ~mask, reg);
}

static void stm32f4_i2c_disable_irq(struct stm32f4_i2c_dev *i2c_dev)
{
	void __iomem *reg = i2c_dev->base + STM32F4_I2C_CR2;

	stm32f4_i2c_clr_bits(reg, STM32F4_I2C_CR2_IRQ_MASK);
}

static int stm32f4_i2c_set_periph_clk_freq(struct stm32f4_i2c_dev *i2c_dev)
{
	u32 freq;
	u32 cr2 = 0;

	i2c_dev->parent_rate = clk_get_rate(i2c_dev->clk);
	freq = DIV_ROUND_UP(i2c_dev->parent_rate, HZ_TO_MHZ);

	if (i2c_dev->speed == STM32_I2C_SPEED_STANDARD) {
		/*
		 * To reach 100 kHz, the parent clk frequency should be between
		 * a minimum value of 2 MHz and a maximum value of 46 MHz due
		 * to hardware limitation
		 */
		if (freq < STM32F4_I2C_MIN_STANDARD_FREQ ||
		    freq > STM32F4_I2C_MAX_FREQ) {
			dev_err(i2c_dev->dev,
				"bad parent clk freq for standard mode\n");
			return -EINVAL;
		}
	} else {
		/*
		 * To be as close as possible to 400 kHz, the parent clk
		 * frequency should be between a minimum value of 6 MHz and a
		 * maximum value of 46 MHz due to hardware limitation
		 */
		if (freq < STM32F4_I2C_MIN_FAST_FREQ ||
		    freq > STM32F4_I2C_MAX_FREQ) {
			dev_err(i2c_dev->dev,
				"bad parent clk freq for fast mode\n");
			return -EINVAL;
		}
	}

	cr2 |= STM32F4_I2C_CR2_FREQ(freq);
	writel_relaxed(cr2, i2c_dev->base + STM32F4_I2C_CR2);

	return 0;
}

static void stm32f4_i2c_set_rise_time(struct stm32f4_i2c_dev *i2c_dev)
{
	u32 freq = DIV_ROUND_UP(i2c_dev->parent_rate, HZ_TO_MHZ);
	u32 trise;

	/*
	 * These bits must be programmed with the maximum SCL rise time given in
	 * the I2C bus specification, incremented by 1.
	 *
	 * In standard mode, the maximum allowed SCL rise time is 1000 ns.
	 * If, in the I2C_CR2 register, the value of FREQ[5:0] bits is equal to
	 * 0x08 so period = 125 ns therefore the TRISE[5:0] bits must be
	 * programmed with 0x9. (1000 ns / 125 ns + 1)
	 * So, for I2C standard mode TRISE = FREQ[5:0] + 1
	 *
	 * In fast mode, the maximum allowed SCL rise time is 300 ns.
	 * If, in the I2C_CR2 register, the value of FREQ[5:0] bits is equal to
	 * 0x08 so period = 125 ns therefore the TRISE[5:0] bits must be
	 * programmed with 0x3. (300 ns / 125 ns + 1)
	 * So, for I2C fast mode TRISE = FREQ[5:0] * 300 / 1000 + 1
	 *
	 * Function stm32f4_i2c_set_periph_clk_freq made sure that parent rate
	 * is not higher than 46 MHz . As a result trise is at most 4 bits wide
	 * and so fits into the TRISE bits [5:0].
	 */
	if (i2c_dev->speed == STM32_I2C_SPEED_STANDARD)
		trise = freq + 1;
	else
		trise = freq * 3 / 10 + 1;

	writel_relaxed(STM32F4_I2C_TRISE_VALUE(trise),
		       i2c_dev->base + STM32F4_I2C_TRISE);
}

static void stm32f4_i2c_set_speed_mode(struct stm32f4_i2c_dev *i2c_dev)
{
	u32 val;
	u32 ccr = 0;

	if (i2c_dev->speed == STM32_I2C_SPEED_STANDARD) {
		/*
		 * In standard mode:
		 * t_scl_high = t_scl_low = CCR * I2C parent clk period
		 * So to reach 100 kHz, we have:
		 * CCR = I2C parent rate / (100 kHz * 2)
		 *
		 * For example with parent rate = 2 MHz:
		 * CCR = 2000000 / (100000 * 2) = 10
		 * t_scl_high = t_scl_low = 10 * (1 / 2000000) = 5000 ns
		 * t_scl_high + t_scl_low = 10000 ns so 100 kHz is reached
		 *
		 * Function stm32f4_i2c_set_periph_clk_freq made sure that
		 * parent rate is not higher than 46 MHz . As a result val
		 * is at most 8 bits wide and so fits into the CCR bits [11:0].
		 */
		val = i2c_dev->parent_rate / (I2C_MAX_STANDARD_MODE_FREQ * 2);
	} else {
		/*
		 * In fast mode, we compute CCR with duty = 0 as with low
		 * frequencies we are not able to reach 400 kHz.
		 * In that case:
		 * t_scl_high = CCR * I2C parent clk period
		 * t_scl_low = 2 * CCR * I2C parent clk period
		 * So, CCR = I2C parent rate / (400 kHz * 3)
		 *
		 * For example with parent rate = 6 MHz:
		 * CCR = 6000000 / (400000 * 3) = 5
		 * t_scl_high = 5 * (1 / 6000000) = 833 ns > 600 ns
		 * t_scl_low = 2 * 5 * (1 / 6000000) = 1667 ns > 1300 ns
		 * t_scl_high + t_scl_low = 2500 ns so 400 kHz is reached
		 *
		 * Function stm32f4_i2c_set_periph_clk_freq made sure that
		 * parent rate is not higher than 46 MHz . As a result val
		 * is at most 6 bits wide and so fits into the CCR bits [11:0].
		 */
		val = DIV_ROUND_UP(i2c_dev->parent_rate, I2C_MAX_FAST_MODE_FREQ * 3);

		/* Select Fast mode */
		ccr |= STM32F4_I2C_CCR_FS;
	}

	ccr |= STM32F4_I2C_CCR_CCR(val);
	writel_relaxed(ccr, i2c_dev->base + STM32F4_I2C_CCR);
}

/**
 * stm32f4_i2c_hw_config() - Prepare I2C block
 * @i2c_dev: Controller's private data
 */
static int stm32f4_i2c_hw_config(struct stm32f4_i2c_dev *i2c_dev)
{
	int ret;

	ret = stm32f4_i2c_set_periph_clk_freq(i2c_dev);
	if (ret)
		return ret;

	stm32f4_i2c_set_rise_time(i2c_dev);

	stm32f4_i2c_set_speed_mode(i2c_dev);

	/* Enable I2C */
	writel_relaxed(STM32F4_I2C_CR1_PE, i2c_dev->base + STM32F4_I2C_CR1);

	return 0;
}

static int stm32f4_i2c_wait_free_bus(struct stm32f4_i2c_dev *i2c_dev)
{
	u32 status;
	int ret;

	ret = readl_relaxed_poll_timeout(i2c_dev->base + STM32F4_I2C_SR2,
					 status,
					 !(status & STM32F4_I2C_SR2_BUSY),
					 10, 1000);
	if (ret) {
		dev_dbg(i2c_dev->dev, "bus not free\n");
		ret = -EBUSY;
	}

	return ret;
}

/**
 * stm32f4_i2c_write_ byte() - Write a byte in the data register
 * @i2c_dev: Controller's private data
 * @byte: Data to write in the register
 */
static void stm32f4_i2c_write_byte(struct stm32f4_i2c_dev *i2c_dev, u8 byte)
{
	writel_relaxed(byte, i2c_dev->base + STM32F4_I2C_DR);
}

/**
 * stm32f4_i2c_write_msg() - Fill the data register in write mode
 * @i2c_dev: Controller's private data
 *
 * This function fills the data register with I2C transfer buffer
 */
static void stm32f4_i2c_write_msg(struct stm32f4_i2c_dev *i2c_dev)
{
	struct stm32f4_i2c_msg *msg = &i2c_dev->msg;

	stm32f4_i2c_write_byte(i2c_dev, *msg->buf++);
	msg->count--;
}

static void stm32f4_i2c_read_msg(struct stm32f4_i2c_dev *i2c_dev)
{
	struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
	u32 rbuf;

	rbuf = readl_relaxed(i2c_dev->base + STM32F4_I2C_DR);
	*msg->buf++ = rbuf;
	msg->count--;
}

static void stm32f4_i2c_terminate_xfer(struct stm32f4_i2c_dev *i2c_dev)
{
	struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
	void __iomem *reg;

	stm32f4_i2c_disable_irq(i2c_dev);

	reg = i2c_dev->base + STM32F4_I2C_CR1;
	if (msg->stop)
		stm32f4_i2c_set_bits(reg, STM32F4_I2C_CR1_STOP);
	else
		stm32f4_i2c_set_bits(reg, STM32F4_I2C_CR1_START);

	complete(&i2c_dev->complete);
}

/**
 * stm32f4_i2c_handle_write() - Handle FIFO empty interrupt in case of write
 * @i2c_dev: Controller's private data
 */
static void stm32f4_i2c_handle_write(struct stm32f4_i2c_dev *i2c_dev)
{
	struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
	void __iomem *reg = i2c_dev->base + STM32F4_I2C_CR2;

	if (msg->count) {
		stm32f4_i2c_write_msg(i2c_dev);
		if (!msg->count) {
			/*
			 * Disable buffer interrupts for RX not empty and TX
			 * empty events
			 */
			stm32f4_i2c_clr_bits(reg, STM32F4_I2C_CR2_ITBUFEN);
		}
	} else {
		stm32f4_i2c_terminate_xfer(i2c_dev);
	}
}

/**
 * stm32f4_i2c_handle_read() - Handle FIFO empty interrupt in case of read
 * @i2c_dev: Controller's private data
 *
 * This function is called when a new data is received in data register
 */
static void stm32f4_i2c_handle_read(struct stm32f4_i2c_dev *i2c_dev)
{
	struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
	void __iomem *reg = i2c_dev->base + STM32F4_I2C_CR2;

	switch (msg->count) {
	case 1:
		stm32f4_i2c_disable_irq(i2c_dev);
		stm32f4_i2c_read_msg(i2c_dev);
		complete(&i2c_dev->complete);
		break;
	/*
	 * For 2-byte reception, 3-byte reception and for Data N-2, N-1 and N
	 * for N-byte reception with N > 3, we do not have to read the data
	 * register when RX not empty event occurs as we have to wait for byte
	 * transferred finished event before reading data.
	 * So, here we just disable buffer interrupt in order to avoid another
	 * system preemption due to RX not empty event.
	 */
	case 2:
	case 3:
		stm32f4_i2c_clr_bits(reg, STM32F4_I2C_CR2_ITBUFEN);
		break;
	/*
	 * For N byte reception with N > 3 we directly read data register
	 * until N-2 data.
	 */
	default:
		stm32f4_i2c_read_msg(i2c_dev);
	}
}

/**
 * stm32f4_i2c_handle_rx_done() - Handle byte transfer finished interrupt
 * in case of read
 * @i2c_dev: Controller's private data
 *
 * This function is called when a new data is received in the shift register
 * but data register has not been read yet.
 */
static void stm32f4_i2c_handle_rx_done(struct stm32f4_i2c_dev *i2c_dev)
{
	struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
	void __iomem *reg;
	u32 mask;
	int i;

	switch (msg->count) {
	case 2:
		/*
		 * In order to correctly send the Stop or Repeated Start
		 * condition on the I2C bus, the STOP/START bit has to be set
		 * before reading the last two bytes (data N-1 and N).
		 * After that, we could read the last two bytes, disable
		 * remaining interrupts and notify the end of xfer to the
		 * client
		 */
		reg = i2c_dev->base + STM32F4_I2C_CR1;
		if (msg->stop)
			stm32f4_i2c_set_bits(reg, STM32F4_I2C_CR1_STOP);
		else
			stm32f4_i2c_set_bits(reg, STM32F4_I2C_CR1_START);

		for (i = 2; i > 0; i--)
			stm32f4_i2c_read_msg(i2c_dev);

		reg = i2c_dev->base + STM32F4_I2C_CR2;
		mask = STM32F4_I2C_CR2_ITEVTEN | STM32F4_I2C_CR2_ITERREN;
		stm32f4_i2c_clr_bits(reg, mask);

		complete(&i2c_dev->complete);
		break;
	case 3:
		/*
		 * In order to correctly generate the NACK pulse after the last
		 * received data byte, we have to enable NACK before reading N-2
		 * data
		 */
		reg = i2c_dev->base + STM32F4_I2C_CR1;
		stm32f4_i2c_clr_bits(reg, STM32F4_I2C_CR1_ACK);
		stm32f4_i2c_read_msg(i2c_dev);
		break;
	default:
		stm32f4_i2c_read_msg(i2c_dev);
	}
}

/**
 * stm32f4_i2c_handle_rx_addr() - Handle address matched interrupt in case of
 * master receiver
 * @i2c_dev: Controller's private data
 */
static void stm32f4_i2c_handle_rx_addr(struct stm32f4_i2c_dev *i2c_dev)
{
	struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
	u32 cr1;

	switch (msg->count) {
	case 0:
		stm32f4_i2c_terminate_xfer(i2c_dev);

		/* Clear ADDR flag */
		readl_relaxed(i2c_dev->base + STM32F4_I2C_SR2);
		break;
	case 1:
		/*
		 * Single byte reception:
		 * Enable NACK and reset POS (Acknowledge position).
		 * Then, clear ADDR flag and set STOP or RepSTART.
		 * In that way, the NACK and STOP or RepStart pulses will be
		 * sent as soon as the byte will be received in shift register
		 */
		cr1 = readl_relaxed(i2c_dev->base + STM32F4_I2C_CR1);
		cr1 &= ~(STM32F4_I2C_CR1_ACK | STM32F4_I2C_CR1_POS);
		writel_relaxed(cr1, i2c_dev->base + STM32F4_I2C_CR1);

		readl_relaxed(i2c_dev->base + STM32F4_I2C_SR2);

		if (msg->stop)
			cr1 |= STM32F4_I2C_CR1_STOP;
		else
			cr1 |= STM32F4_I2C_CR1_START;
		writel_relaxed(cr1, i2c_dev->base + STM32F4_I2C_CR1);
		break;
	case 2:
		/*
		 * 2-byte reception:
		 * Enable NACK, set POS (NACK position) and clear ADDR flag.
		 * In that way, NACK will be sent for the next byte which will
		 * be received in the shift register instead of the current
		 * one.
		 */
		cr1 = readl_relaxed(i2c_dev->base + STM32F4_I2C_CR1);
		cr1 &= ~STM32F4_I2C_CR1_ACK;
		cr1 |= STM32F4_I2C_CR1_POS;
		writel_relaxed(cr1, i2c_dev->base + STM32F4_I2C_CR1);

		readl_relaxed(i2c_dev->base + STM32F4_I2C_SR2);
		break;

	default:
		/*
		 * N-byte reception:
		 * Enable ACK, reset POS (ACK postion) and clear ADDR flag.
		 * In that way, ACK will be sent as soon as the current byte
		 * will be received in the shift register
		 */
		cr1 = readl_relaxed(i2c_dev->base + STM32F4_I2C_CR1);
		cr1 |= STM32F4_I2C_CR1_ACK;
		cr1 &= ~STM32F4_I2C_CR1_POS;
		writel_relaxed(cr1, i2c_dev->base + STM32F4_I2C_CR1);

		readl_relaxed(i2c_dev->base + STM32F4_I2C_SR2);
		break;
	}
}

/**
 * stm32f4_i2c_isr_event() - Interrupt routine for I2C bus event
 * @irq: interrupt number
 * @data: Controller's private data
 */
static irqreturn_t stm32f4_i2c_isr_event(int irq, void *data)
{
	struct stm32f4_i2c_dev *i2c_dev = data;
	struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
	u32 possible_status = STM32F4_I2C_SR1_ITEVTEN_MASK;
	u32 status, ien, event, cr2;

	cr2 = readl_relaxed(i2c_dev->base + STM32F4_I2C_CR2);
	ien = cr2 & STM32F4_I2C_CR2_IRQ_MASK;

	/* Update possible_status if buffer interrupt is enabled */
	if (ien & STM32F4_I2C_CR2_ITBUFEN)
		possible_status |= STM32F4_I2C_SR1_ITBUFEN_MASK;

	status = readl_relaxed(i2c_dev->base + STM32F4_I2C_SR1);
	event = status & possible_status;
	if (!event) {
		dev_dbg(i2c_dev->dev,
			"spurious evt irq (status=0x%08x, ien=0x%08x)\n",
			status, ien);
		return IRQ_NONE;
	}

	/* Start condition generated */
	if (event & STM32F4_I2C_SR1_SB)
		stm32f4_i2c_write_byte(i2c_dev, msg->addr);

	/* I2C Address sent */
	if (event & STM32F4_I2C_SR1_ADDR) {
		if (msg->addr & I2C_M_RD)
			stm32f4_i2c_handle_rx_addr(i2c_dev);
		else
			readl_relaxed(i2c_dev->base + STM32F4_I2C_SR2);

		/*
		 * Enable buffer interrupts for RX not empty and TX empty
		 * events
		 */
		cr2 |= STM32F4_I2C_CR2_ITBUFEN;
		writel_relaxed(cr2, i2c_dev->base + STM32F4_I2C_CR2);
	}

	/* TX empty */
	if ((event & STM32F4_I2C_SR1_TXE) && !(msg->addr & I2C_M_RD))
		stm32f4_i2c_handle_write(i2c_dev);

	/* RX not empty */
	if ((event & STM32F4_I2C_SR1_RXNE) && (msg->addr & I2C_M_RD))
		stm32f4_i2c_handle_read(i2c_dev);

	/*
	 * The BTF (Byte Transfer finished) event occurs when:
	 * - in reception : a new byte is received in the shift register
	 * but the previous byte has not been read yet from data register
	 * - in transmission: a new byte should be sent but the data register
	 * has not been written yet
	 */
	if (event & STM32F4_I2C_SR1_BTF) {
		if (msg->addr & I2C_M_RD)
			stm32f4_i2c_handle_rx_done(i2c_dev);
		else
			stm32f4_i2c_handle_write(i2c_dev);
	}

	return IRQ_HANDLED;
}

/**
 * stm32f4_i2c_isr_error() - Interrupt routine for I2C bus error
 * @irq: interrupt number
 * @data: Controller's private data
 */
static irqreturn_t stm32f4_i2c_isr_error(int irq, void *data)
{
	struct stm32f4_i2c_dev *i2c_dev = data;
	struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
	void __iomem *reg;
	u32 status;

	status = readl_relaxed(i2c_dev->base + STM32F4_I2C_SR1);

	/* Arbitration lost */
	if (status & STM32F4_I2C_SR1_ARLO) {
		status &= ~STM32F4_I2C_SR1_ARLO;
		writel_relaxed(status, i2c_dev->base + STM32F4_I2C_SR1);
		msg->result = -EAGAIN;
	}

	/*
	 * Acknowledge failure:
	 * In master transmitter mode a Stop must be generated by software
	 */
	if (status & STM32F4_I2C_SR1_AF) {
		if (!(msg->addr & I2C_M_RD)) {
			reg = i2c_dev->base + STM32F4_I2C_CR1;
			stm32f4_i2c_set_bits(reg, STM32F4_I2C_CR1_STOP);
		}
		status &= ~STM32F4_I2C_SR1_AF;
		writel_relaxed(status, i2c_dev->base + STM32F4_I2C_SR1);
		msg->result = -EIO;
	}

	/* Bus error */
	if (status & STM32F4_I2C_SR1_BERR) {
		status &= ~STM32F4_I2C_SR1_BERR;
		writel_relaxed(status, i2c_dev->base + STM32F4_I2C_SR1);
		msg->result = -EIO;
	}

	stm32f4_i2c_disable_irq(i2c_dev);
	complete(&i2c_dev->complete);

	return IRQ_HANDLED;
}

/**
 * stm32f4_i2c_xfer_msg() - Transfer a single I2C message
 * @i2c_dev: Controller's private data
 * @msg: I2C message to transfer
 * @is_first: first message of the sequence
 * @is_last: last message of the sequence
 */
static int stm32f4_i2c_xfer_msg(struct stm32f4_i2c_dev *i2c_dev,
				struct i2c_msg *msg, bool is_first,
				bool is_last)
{
	struct stm32f4_i2c_msg *f4_msg = &i2c_dev->msg;
	void __iomem *reg = i2c_dev->base + STM32F4_I2C_CR1;
	unsigned long timeout;
	u32 mask;
	int ret;

	f4_msg->addr = i2c_8bit_addr_from_msg(msg);
	f4_msg->buf = msg->buf;
	f4_msg->count = msg->len;
	f4_msg->result = 0;
	f4_msg->stop = is_last;

	reinit_completion(&i2c_dev->complete);

	/* Enable events and errors interrupts */
	mask = STM32F4_I2C_CR2_ITEVTEN | STM32F4_I2C_CR2_ITERREN;
	stm32f4_i2c_set_bits(i2c_dev->base + STM32F4_I2C_CR2, mask);

	if (is_first) {
		ret = stm32f4_i2c_wait_free_bus(i2c_dev);
		if (ret)
			return ret;

		/* START generation */
		stm32f4_i2c_set_bits(reg, STM32F4_I2C_CR1_START);
	}

	timeout = wait_for_completion_timeout(&i2c_dev->complete,
					      i2c_dev->adap.timeout);
	ret = f4_msg->result;

	if (!timeout)
		ret = -ETIMEDOUT;

	return ret;
}

/**
 * stm32f4_i2c_xfer() - Transfer combined I2C message
 * @i2c_adap: Adapter pointer to the controller
 * @msgs: Pointer to data to be written.
 * @num: Number of messages to be executed
 */
static int stm32f4_i2c_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msgs[],
			    int num)
{
	struct stm32f4_i2c_dev *i2c_dev = i2c_get_adapdata(i2c_adap);
	int ret, i;

	ret = clk_enable(i2c_dev->clk);
	if (ret) {
		dev_err(i2c_dev->dev, "Failed to enable clock\n");
		return ret;
	}

	for (i = 0; i < num && !ret; i++)
		ret = stm32f4_i2c_xfer_msg(i2c_dev, &msgs[i], i == 0,
					   i == num - 1);

	clk_disable(i2c_dev->clk);

	return (ret < 0) ? ret : num;
}

static u32 stm32f4_i2c_func(struct i2c_adapter *adap)
{
	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
}

static const struct i2c_algorithm stm32f4_i2c_algo = {
	.master_xfer = stm32f4_i2c_xfer,
	.functionality = stm32f4_i2c_func,
};

static int stm32f4_i2c_probe(struct platform_device *pdev)
{
	struct device_node *np = pdev->dev.of_node;
	struct stm32f4_i2c_dev *i2c_dev;
	struct resource *res;
	u32 irq_event, irq_error, clk_rate;
	struct i2c_adapter *adap;
	struct reset_control *rst;
	int ret;

	i2c_dev = devm_kzalloc(&pdev->dev, sizeof(*i2c_dev), GFP_KERNEL);
	if (!i2c_dev)
		return -ENOMEM;

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	i2c_dev->base = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(i2c_dev->base))
		return PTR_ERR(i2c_dev->base);

	irq_event = irq_of_parse_and_map(np, 0);
	if (!irq_event) {
		dev_err(&pdev->dev, "IRQ event missing or invalid\n");
		return -EINVAL;
	}

	irq_error = irq_of_parse_and_map(np, 1);
	if (!irq_error) {
		dev_err(&pdev->dev, "IRQ error missing or invalid\n");
		return -EINVAL;
	}

	i2c_dev->clk = devm_clk_get(&pdev->dev, NULL);
	if (IS_ERR(i2c_dev->clk)) {
		dev_err(&pdev->dev, "Error: Missing controller clock\n");
		return PTR_ERR(i2c_dev->clk);
	}
	ret = clk_prepare_enable(i2c_dev->clk);
	if (ret) {
		dev_err(i2c_dev->dev, "Failed to prepare_enable clock\n");
		return ret;
	}

	rst = devm_reset_control_get_exclusive(&pdev->dev, NULL);
	if (IS_ERR(rst)) {
		ret = PTR_ERR(rst);
		if (ret != -EPROBE_DEFER)
			dev_err(&pdev->dev, "Error: Missing reset ctrl\n");

		goto clk_free;
	}
	reset_control_assert(rst);
	udelay(2);
	reset_control_deassert(rst);

	i2c_dev->speed = STM32_I2C_SPEED_STANDARD;
	ret = of_property_read_u32(np, "clock-frequency", &clk_rate);
	if (!ret && clk_rate >= I2C_MAX_FAST_MODE_FREQ)
		i2c_dev->speed = STM32_I2C_SPEED_FAST;

	i2c_dev->dev = &pdev->dev;

	ret = devm_request_irq(&pdev->dev, irq_event, stm32f4_i2c_isr_event, 0,
			       pdev->name, i2c_dev);
	if (ret) {
		dev_err(&pdev->dev, "Failed to request irq event %i\n",
			irq_event);
		goto clk_free;
	}

	ret = devm_request_irq(&pdev->dev, irq_error, stm32f4_i2c_isr_error, 0,
			       pdev->name, i2c_dev);
	if (ret) {
		dev_err(&pdev->dev, "Failed to request irq error %i\n",
			irq_error);
		goto clk_free;
	}

	ret = stm32f4_i2c_hw_config(i2c_dev);
	if (ret)
		goto clk_free;

	adap = &i2c_dev->adap;
	i2c_set_adapdata(adap, i2c_dev);
	snprintf(adap->name, sizeof(adap->name), "STM32 I2C(%pa)", &res->start);
	adap->owner = THIS_MODULE;
	adap->timeout = 2 * HZ;
	adap->retries = 0;
	adap->algo = &stm32f4_i2c_algo;
	adap->dev.parent = &pdev->dev;
	adap->dev.of_node = pdev->dev.of_node;

	init_completion(&i2c_dev->complete);

	ret = i2c_add_adapter(adap);
	if (ret)
		goto clk_free;

	platform_set_drvdata(pdev, i2c_dev);

	clk_disable(i2c_dev->clk);

	dev_info(i2c_dev->dev, "STM32F4 I2C driver registered\n");

	return 0;

clk_free:
	clk_disable_unprepare(i2c_dev->clk);
	return ret;
}

static int stm32f4_i2c_remove(struct platform_device *pdev)
{
	struct stm32f4_i2c_dev *i2c_dev = platform_get_drvdata(pdev);

	i2c_del_adapter(&i2c_dev->adap);

	clk_unprepare(i2c_dev->clk);

	return 0;
}

static const struct of_device_id stm32f4_i2c_match[] = {
	{ .compatible = "st,stm32f4-i2c", },
	{},
};
MODULE_DEVICE_TABLE(of, stm32f4_i2c_match);

static struct platform_driver stm32f4_i2c_driver = {
	.driver = {
		.name = "stm32f4-i2c",
		.of_match_table = stm32f4_i2c_match,
	},
	.probe = stm32f4_i2c_probe,
	.remove = stm32f4_i2c_remove,
};

module_platform_driver(stm32f4_i2c_driver);

MODULE_AUTHOR("M'boumba Cedric Madianga <cedric.madianga@gmail.com>");
MODULE_DESCRIPTION("STMicroelectronics STM32F4 I2C driver");
MODULE_LICENSE("GPL v2");