summaryrefslogtreecommitdiffstats
path: root/drivers/iio/adc/stm32-dfsdm-adc.c
blob: df264e042bd88d2100a594eda26b7cf0c5ecceb8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
// SPDX-License-Identifier: GPL-2.0
/*
 * This file is the ADC part of the STM32 DFSDM driver
 *
 * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
 * Author: Arnaud Pouliquen <arnaud.pouliquen@st.com>.
 */

#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/iio/buffer.h>
#include <linux/iio/hw-consumer.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/slab.h>

#include "stm32-dfsdm.h"

#define DFSDM_DMA_BUFFER_SIZE (4 * PAGE_SIZE)

/* Conversion timeout */
#define DFSDM_TIMEOUT_US 100000
#define DFSDM_TIMEOUT (msecs_to_jiffies(DFSDM_TIMEOUT_US / 1000))

/* Oversampling attribute default */
#define DFSDM_DEFAULT_OVERSAMPLING  100

/* Oversampling max values */
#define DFSDM_MAX_INT_OVERSAMPLING 256
#define DFSDM_MAX_FL_OVERSAMPLING 1024

/* Max sample resolutions */
#define DFSDM_MAX_RES BIT(31)
#define DFSDM_DATA_RES BIT(23)

enum sd_converter_type {
	DFSDM_AUDIO,
	DFSDM_IIO,
};

struct stm32_dfsdm_dev_data {
	int type;
	int (*init)(struct iio_dev *indio_dev);
	unsigned int num_channels;
	const struct regmap_config *regmap_cfg;
};

struct stm32_dfsdm_adc {
	struct stm32_dfsdm *dfsdm;
	const struct stm32_dfsdm_dev_data *dev_data;
	unsigned int fl_id;
	unsigned int ch_id;

	/* ADC specific */
	unsigned int oversamp;
	struct iio_hw_consumer *hwc;
	struct completion completion;
	u32 *buffer;

	/* Audio specific */
	unsigned int spi_freq;  /* SPI bus clock frequency */
	unsigned int sample_freq; /* Sample frequency after filter decimation */
	int (*cb)(const void *data, size_t size, void *cb_priv);
	void *cb_priv;

	/* DMA */
	u8 *rx_buf;
	unsigned int bufi; /* Buffer current position */
	unsigned int buf_sz; /* Buffer size */
	struct dma_chan	*dma_chan;
	dma_addr_t dma_buf;
};

struct stm32_dfsdm_str2field {
	const char	*name;
	unsigned int	val;
};

/* DFSDM channel serial interface type */
static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_type[] = {
	{ "SPI_R", 0 }, /* SPI with data on rising edge */
	{ "SPI_F", 1 }, /* SPI with data on falling edge */
	{ "MANCH_R", 2 }, /* Manchester codec, rising edge = logic 0 */
	{ "MANCH_F", 3 }, /* Manchester codec, falling edge = logic 1 */
	{},
};

/* DFSDM channel clock source */
static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_src[] = {
	/* External SPI clock (CLKIN x) */
	{ "CLKIN", DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL },
	/* Internal SPI clock (CLKOUT) */
	{ "CLKOUT", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL },
	/* Internal SPI clock divided by 2 (falling edge) */
	{ "CLKOUT_F", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING },
	/* Internal SPI clock divided by 2 (falling edge) */
	{ "CLKOUT_R", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING },
	{},
};

static int stm32_dfsdm_str2val(const char *str,
			       const struct stm32_dfsdm_str2field *list)
{
	const struct stm32_dfsdm_str2field *p = list;

	for (p = list; p && p->name; p++)
		if (!strcmp(p->name, str))
			return p->val;

	return -EINVAL;
}

static int stm32_dfsdm_set_osrs(struct stm32_dfsdm_filter *fl,
				unsigned int fast, unsigned int oversamp)
{
	unsigned int i, d, fosr, iosr;
	u64 res;
	s64 delta;
	unsigned int m = 1;	/* multiplication factor */
	unsigned int p = fl->ford;	/* filter order (ford) */

	pr_debug("%s: Requested oversampling: %d\n",  __func__, oversamp);
	/*
	 * This function tries to compute filter oversampling and integrator
	 * oversampling, base on oversampling ratio requested by user.
	 *
	 * Decimation d depends on the filter order and the oversampling ratios.
	 * ford: filter order
	 * fosr: filter over sampling ratio
	 * iosr: integrator over sampling ratio
	 */
	if (fl->ford == DFSDM_FASTSINC_ORDER) {
		m = 2;
		p = 2;
	}

	/*
	 * Look for filter and integrator oversampling ratios which allows
	 * to reach 24 bits data output resolution.
	 * Leave as soon as if exact resolution if reached.
	 * Otherwise the higher resolution below 32 bits is kept.
	 */
	for (fosr = 1; fosr <= DFSDM_MAX_FL_OVERSAMPLING; fosr++) {
		for (iosr = 1; iosr <= DFSDM_MAX_INT_OVERSAMPLING; iosr++) {
			if (fast)
				d = fosr * iosr;
			else if (fl->ford == DFSDM_FASTSINC_ORDER)
				d = fosr * (iosr + 3) + 2;
			else
				d = fosr * (iosr - 1 + p) + p;

			if (d > oversamp)
				break;
			else if (d != oversamp)
				continue;
			/*
			 * Check resolution (limited to signed 32 bits)
			 *   res <= 2^31
			 * Sincx filters:
			 *   res = m * fosr^p x iosr (with m=1, p=ford)
			 * FastSinc filter
			 *   res = m * fosr^p x iosr (with m=2, p=2)
			 */
			res = fosr;
			for (i = p - 1; i > 0; i--) {
				res = res * (u64)fosr;
				if (res > DFSDM_MAX_RES)
					break;
			}
			if (res > DFSDM_MAX_RES)
				continue;
			res = res * (u64)m * (u64)iosr;
			if (res > DFSDM_MAX_RES)
				continue;

			delta = res - DFSDM_DATA_RES;

			if (res >= fl->res) {
				fl->res = res;
				fl->fosr = fosr;
				fl->iosr = iosr;
				fl->fast = fast;
				pr_debug("%s: fosr = %d, iosr = %d\n",
					 __func__, fl->fosr, fl->iosr);
			}

			if (!delta)
				return 0;
		}
	}

	if (!fl->fosr)
		return -EINVAL;

	return 0;
}

static int stm32_dfsdm_start_channel(struct stm32_dfsdm *dfsdm,
				     unsigned int ch_id)
{
	return regmap_update_bits(dfsdm->regmap, DFSDM_CHCFGR1(ch_id),
				  DFSDM_CHCFGR1_CHEN_MASK,
				  DFSDM_CHCFGR1_CHEN(1));
}

static void stm32_dfsdm_stop_channel(struct stm32_dfsdm *dfsdm,
				     unsigned int ch_id)
{
	regmap_update_bits(dfsdm->regmap, DFSDM_CHCFGR1(ch_id),
			   DFSDM_CHCFGR1_CHEN_MASK, DFSDM_CHCFGR1_CHEN(0));
}

static int stm32_dfsdm_chan_configure(struct stm32_dfsdm *dfsdm,
				      struct stm32_dfsdm_channel *ch)
{
	unsigned int id = ch->id;
	struct regmap *regmap = dfsdm->regmap;
	int ret;

	ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
				 DFSDM_CHCFGR1_SITP_MASK,
				 DFSDM_CHCFGR1_SITP(ch->type));
	if (ret < 0)
		return ret;
	ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
				 DFSDM_CHCFGR1_SPICKSEL_MASK,
				 DFSDM_CHCFGR1_SPICKSEL(ch->src));
	if (ret < 0)
		return ret;
	return regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
				  DFSDM_CHCFGR1_CHINSEL_MASK,
				  DFSDM_CHCFGR1_CHINSEL(ch->alt_si));
}

static int stm32_dfsdm_start_filter(struct stm32_dfsdm *dfsdm,
				    unsigned int fl_id)
{
	int ret;

	/* Enable filter */
	ret = regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
				 DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(1));
	if (ret < 0)
		return ret;

	/* Start conversion */
	return regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
				  DFSDM_CR1_RSWSTART_MASK,
				  DFSDM_CR1_RSWSTART(1));
}

static void stm32_dfsdm_stop_filter(struct stm32_dfsdm *dfsdm,
				    unsigned int fl_id)
{
	/* Disable conversion */
	regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
			   DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(0));
}

static int stm32_dfsdm_filter_configure(struct stm32_dfsdm *dfsdm,
					unsigned int fl_id, unsigned int ch_id)
{
	struct regmap *regmap = dfsdm->regmap;
	struct stm32_dfsdm_filter *fl = &dfsdm->fl_list[fl_id];
	int ret;

	/* Average integrator oversampling */
	ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_IOSR_MASK,
				 DFSDM_FCR_IOSR(fl->iosr - 1));
	if (ret)
		return ret;

	/* Filter order and Oversampling */
	ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FOSR_MASK,
				 DFSDM_FCR_FOSR(fl->fosr - 1));
	if (ret)
		return ret;

	ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FORD_MASK,
				 DFSDM_FCR_FORD(fl->ford));
	if (ret)
		return ret;

	/* No scan mode supported for the moment */
	ret = regmap_update_bits(regmap, DFSDM_CR1(fl_id), DFSDM_CR1_RCH_MASK,
				 DFSDM_CR1_RCH(ch_id));
	if (ret)
		return ret;

	return regmap_update_bits(regmap, DFSDM_CR1(fl_id),
				  DFSDM_CR1_RSYNC_MASK,
				  DFSDM_CR1_RSYNC(fl->sync_mode));
}

static int stm32_dfsdm_channel_parse_of(struct stm32_dfsdm *dfsdm,
					struct iio_dev *indio_dev,
					struct iio_chan_spec *ch)
{
	struct stm32_dfsdm_channel *df_ch;
	const char *of_str;
	int chan_idx = ch->scan_index;
	int ret, val;

	ret = of_property_read_u32_index(indio_dev->dev.of_node,
					 "st,adc-channels", chan_idx,
					 &ch->channel);
	if (ret < 0) {
		dev_err(&indio_dev->dev,
			" Error parsing 'st,adc-channels' for idx %d\n",
			chan_idx);
		return ret;
	}
	if (ch->channel >= dfsdm->num_chs) {
		dev_err(&indio_dev->dev,
			" Error bad channel number %d (max = %d)\n",
			ch->channel, dfsdm->num_chs);
		return -EINVAL;
	}

	ret = of_property_read_string_index(indio_dev->dev.of_node,
					    "st,adc-channel-names", chan_idx,
					    &ch->datasheet_name);
	if (ret < 0) {
		dev_err(&indio_dev->dev,
			" Error parsing 'st,adc-channel-names' for idx %d\n",
			chan_idx);
		return ret;
	}

	df_ch =  &dfsdm->ch_list[ch->channel];
	df_ch->id = ch->channel;

	ret = of_property_read_string_index(indio_dev->dev.of_node,
					    "st,adc-channel-types", chan_idx,
					    &of_str);
	if (!ret) {
		val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_type);
		if (val < 0)
			return val;
	} else {
		val = 0;
	}
	df_ch->type = val;

	ret = of_property_read_string_index(indio_dev->dev.of_node,
					    "st,adc-channel-clk-src", chan_idx,
					    &of_str);
	if (!ret) {
		val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_src);
		if (val < 0)
			return val;
	} else {
		val = 0;
	}
	df_ch->src = val;

	ret = of_property_read_u32_index(indio_dev->dev.of_node,
					 "st,adc-alt-channel", chan_idx,
					 &df_ch->alt_si);
	if (ret < 0)
		df_ch->alt_si = 0;

	return 0;
}

static ssize_t dfsdm_adc_audio_get_spiclk(struct iio_dev *indio_dev,
					  uintptr_t priv,
					  const struct iio_chan_spec *chan,
					  char *buf)
{
	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);

	return snprintf(buf, PAGE_SIZE, "%d\n", adc->spi_freq);
}

static ssize_t dfsdm_adc_audio_set_spiclk(struct iio_dev *indio_dev,
					  uintptr_t priv,
					  const struct iio_chan_spec *chan,
					  const char *buf, size_t len)
{
	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
	struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
	struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[adc->ch_id];
	unsigned int sample_freq = adc->sample_freq;
	unsigned int spi_freq;
	int ret;

	dev_err(&indio_dev->dev, "enter %s\n", __func__);
	/* If DFSDM is master on SPI, SPI freq can not be updated */
	if (ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
		return -EPERM;

	ret = kstrtoint(buf, 0, &spi_freq);
	if (ret)
		return ret;

	if (!spi_freq)
		return -EINVAL;

	if (sample_freq) {
		if (spi_freq % sample_freq)
			dev_warn(&indio_dev->dev,
				 "Sampling rate not accurate (%d)\n",
				 spi_freq / (spi_freq / sample_freq));

		ret = stm32_dfsdm_set_osrs(fl, 0, (spi_freq / sample_freq));
		if (ret < 0) {
			dev_err(&indio_dev->dev,
				"No filter parameters that match!\n");
			return ret;
		}
	}
	adc->spi_freq = spi_freq;

	return len;
}

static int stm32_dfsdm_start_conv(struct stm32_dfsdm_adc *adc, bool dma)
{
	struct regmap *regmap = adc->dfsdm->regmap;
	int ret;
	unsigned int dma_en = 0, cont_en = 0;

	ret = stm32_dfsdm_start_channel(adc->dfsdm, adc->ch_id);
	if (ret < 0)
		return ret;

	ret = stm32_dfsdm_filter_configure(adc->dfsdm, adc->fl_id,
					   adc->ch_id);
	if (ret < 0)
		goto stop_channels;

	if (dma) {
		/* Enable DMA transfer*/
		dma_en =  DFSDM_CR1_RDMAEN(1);
		/* Enable conversion triggered by SPI clock*/
		cont_en = DFSDM_CR1_RCONT(1);
	}
	/* Enable DMA transfer*/
	ret = regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
				 DFSDM_CR1_RDMAEN_MASK, dma_en);
	if (ret < 0)
		goto stop_channels;

	/* Enable conversion triggered by SPI clock*/
	ret = regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
				 DFSDM_CR1_RCONT_MASK, cont_en);
	if (ret < 0)
		goto stop_channels;

	ret = stm32_dfsdm_start_filter(adc->dfsdm, adc->fl_id);
	if (ret < 0)
		goto stop_channels;

	return 0;

stop_channels:
	regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
			   DFSDM_CR1_RDMAEN_MASK, 0);

	regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
			   DFSDM_CR1_RCONT_MASK, 0);
	stm32_dfsdm_stop_channel(adc->dfsdm, adc->fl_id);

	return ret;
}

static void stm32_dfsdm_stop_conv(struct stm32_dfsdm_adc *adc)
{
	struct regmap *regmap = adc->dfsdm->regmap;

	stm32_dfsdm_stop_filter(adc->dfsdm, adc->fl_id);

	/* Clean conversion options */
	regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
			   DFSDM_CR1_RDMAEN_MASK, 0);

	regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
			   DFSDM_CR1_RCONT_MASK, 0);

	stm32_dfsdm_stop_channel(adc->dfsdm, adc->ch_id);
}

static int stm32_dfsdm_set_watermark(struct iio_dev *indio_dev,
				     unsigned int val)
{
	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
	unsigned int watermark = DFSDM_DMA_BUFFER_SIZE / 2;

	/*
	 * DMA cyclic transfers are used, buffer is split into two periods.
	 * There should be :
	 * - always one buffer (period) DMA is working on
	 * - one buffer (period) driver pushed to ASoC side.
	 */
	watermark = min(watermark, val * (unsigned int)(sizeof(u32)));
	adc->buf_sz = watermark * 2;

	return 0;
}

static unsigned int stm32_dfsdm_adc_dma_residue(struct stm32_dfsdm_adc *adc)
{
	struct dma_tx_state state;
	enum dma_status status;

	status = dmaengine_tx_status(adc->dma_chan,
				     adc->dma_chan->cookie,
				     &state);
	if (status == DMA_IN_PROGRESS) {
		/* Residue is size in bytes from end of buffer */
		unsigned int i = adc->buf_sz - state.residue;
		unsigned int size;

		/* Return available bytes */
		if (i >= adc->bufi)
			size = i - adc->bufi;
		else
			size = adc->buf_sz + i - adc->bufi;

		return size;
	}

	return 0;
}

static void stm32_dfsdm_audio_dma_buffer_done(void *data)
{
	struct iio_dev *indio_dev = data;
	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
	int available = stm32_dfsdm_adc_dma_residue(adc);
	size_t old_pos;

	/*
	 * FIXME: In Kernel interface does not support cyclic DMA buffer,and
	 * offers only an interface to push data samples per samples.
	 * For this reason IIO buffer interface is not used and interface is
	 * bypassed using a private callback registered by ASoC.
	 * This should be a temporary solution waiting a cyclic DMA engine
	 * support in IIO.
	 */

	dev_dbg(&indio_dev->dev, "%s: pos = %d, available = %d\n", __func__,
		adc->bufi, available);
	old_pos = adc->bufi;

	while (available >= indio_dev->scan_bytes) {
		u32 *buffer = (u32 *)&adc->rx_buf[adc->bufi];

		/* Mask 8 LSB that contains the channel ID */
		*buffer = (*buffer & 0xFFFFFF00) << 8;
		available -= indio_dev->scan_bytes;
		adc->bufi += indio_dev->scan_bytes;
		if (adc->bufi >= adc->buf_sz) {
			if (adc->cb)
				adc->cb(&adc->rx_buf[old_pos],
					 adc->buf_sz - old_pos, adc->cb_priv);
			adc->bufi = 0;
			old_pos = 0;
		}
	}
	if (adc->cb)
		adc->cb(&adc->rx_buf[old_pos], adc->bufi - old_pos,
			adc->cb_priv);
}

static int stm32_dfsdm_adc_dma_start(struct iio_dev *indio_dev)
{
	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
	struct dma_async_tx_descriptor *desc;
	dma_cookie_t cookie;
	int ret;

	if (!adc->dma_chan)
		return -EINVAL;

	dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__,
		adc->buf_sz, adc->buf_sz / 2);

	/* Prepare a DMA cyclic transaction */
	desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
					 adc->dma_buf,
					 adc->buf_sz, adc->buf_sz / 2,
					 DMA_DEV_TO_MEM,
					 DMA_PREP_INTERRUPT);
	if (!desc)
		return -EBUSY;

	desc->callback = stm32_dfsdm_audio_dma_buffer_done;
	desc->callback_param = indio_dev;

	cookie = dmaengine_submit(desc);
	ret = dma_submit_error(cookie);
	if (ret) {
		dmaengine_terminate_all(adc->dma_chan);
		return ret;
	}

	/* Issue pending DMA requests */
	dma_async_issue_pending(adc->dma_chan);

	return 0;
}

static int stm32_dfsdm_postenable(struct iio_dev *indio_dev)
{
	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
	int ret;

	/* Reset adc buffer index */
	adc->bufi = 0;

	ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
	if (ret < 0)
		return ret;

	ret = stm32_dfsdm_start_conv(adc, true);
	if (ret) {
		dev_err(&indio_dev->dev, "Can't start conversion\n");
		goto stop_dfsdm;
	}

	if (adc->dma_chan) {
		ret = stm32_dfsdm_adc_dma_start(indio_dev);
		if (ret) {
			dev_err(&indio_dev->dev, "Can't start DMA\n");
			goto err_stop_conv;
		}
	}

	return 0;

err_stop_conv:
	stm32_dfsdm_stop_conv(adc);
stop_dfsdm:
	stm32_dfsdm_stop_dfsdm(adc->dfsdm);

	return ret;
}

static int stm32_dfsdm_predisable(struct iio_dev *indio_dev)
{
	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);

	if (adc->dma_chan)
		dmaengine_terminate_all(adc->dma_chan);

	stm32_dfsdm_stop_conv(adc);

	stm32_dfsdm_stop_dfsdm(adc->dfsdm);

	return 0;
}

static const struct iio_buffer_setup_ops stm32_dfsdm_buffer_setup_ops = {
	.postenable = &stm32_dfsdm_postenable,
	.predisable = &stm32_dfsdm_predisable,
};

/**
 * stm32_dfsdm_get_buff_cb() - register a callback that will be called when
 *                             DMA transfer period is achieved.
 *
 * @iio_dev: Handle to IIO device.
 * @cb: Pointer to callback function:
 *      - data: pointer to data buffer
 *      - size: size in byte of the data buffer
 *      - private: pointer to consumer private structure.
 * @private: Pointer to consumer private structure.
 */
int stm32_dfsdm_get_buff_cb(struct iio_dev *iio_dev,
			    int (*cb)(const void *data, size_t size,
				      void *private),
			    void *private)
{
	struct stm32_dfsdm_adc *adc;

	if (!iio_dev)
		return -EINVAL;
	adc = iio_priv(iio_dev);

	adc->cb = cb;
	adc->cb_priv = private;

	return 0;
}
EXPORT_SYMBOL_GPL(stm32_dfsdm_get_buff_cb);

/**
 * stm32_dfsdm_release_buff_cb - unregister buffer callback
 *
 * @iio_dev: Handle to IIO device.
 */
int stm32_dfsdm_release_buff_cb(struct iio_dev *iio_dev)
{
	struct stm32_dfsdm_adc *adc;

	if (!iio_dev)
		return -EINVAL;
	adc = iio_priv(iio_dev);

	adc->cb = NULL;
	adc->cb_priv = NULL;

	return 0;
}
EXPORT_SYMBOL_GPL(stm32_dfsdm_release_buff_cb);

static int stm32_dfsdm_single_conv(struct iio_dev *indio_dev,
				   const struct iio_chan_spec *chan, int *res)
{
	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
	long timeout;
	int ret;

	reinit_completion(&adc->completion);

	adc->buffer = res;

	ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
	if (ret < 0)
		return ret;

	ret = regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
				 DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(1));
	if (ret < 0)
		goto stop_dfsdm;

	ret = stm32_dfsdm_start_conv(adc, false);
	if (ret < 0) {
		regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
				   DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
		goto stop_dfsdm;
	}

	timeout = wait_for_completion_interruptible_timeout(&adc->completion,
							    DFSDM_TIMEOUT);

	/* Mask IRQ for regular conversion achievement*/
	regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
			   DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));

	if (timeout == 0)
		ret = -ETIMEDOUT;
	else if (timeout < 0)
		ret = timeout;
	else
		ret = IIO_VAL_INT;

	stm32_dfsdm_stop_conv(adc);

stop_dfsdm:
	stm32_dfsdm_stop_dfsdm(adc->dfsdm);

	return ret;
}

static int stm32_dfsdm_write_raw(struct iio_dev *indio_dev,
				 struct iio_chan_spec const *chan,
				 int val, int val2, long mask)
{
	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
	struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
	struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[adc->ch_id];
	unsigned int spi_freq = adc->spi_freq;
	int ret = -EINVAL;

	switch (mask) {
	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
		ret = stm32_dfsdm_set_osrs(fl, 0, val);
		if (!ret)
			adc->oversamp = val;

		return ret;

	case IIO_CHAN_INFO_SAMP_FREQ:
		if (!val)
			return -EINVAL;
		if (ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
			spi_freq = adc->dfsdm->spi_master_freq;

		if (spi_freq % val)
			dev_warn(&indio_dev->dev,
				 "Sampling rate not accurate (%d)\n",
				 spi_freq / (spi_freq / val));

		ret = stm32_dfsdm_set_osrs(fl, 0, (spi_freq / val));
		if (ret < 0) {
			dev_err(&indio_dev->dev,
				"Not able to find parameter that match!\n");
			return ret;
		}
		adc->sample_freq = val;

		return 0;
	}

	return -EINVAL;
}

static int stm32_dfsdm_read_raw(struct iio_dev *indio_dev,
				struct iio_chan_spec const *chan, int *val,
				int *val2, long mask)
{
	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
	int ret;

	switch (mask) {
	case IIO_CHAN_INFO_RAW:
		ret = iio_hw_consumer_enable(adc->hwc);
		if (ret < 0) {
			dev_err(&indio_dev->dev,
				"%s: IIO enable failed (channel %d)\n",
				__func__, chan->channel);
			return ret;
		}
		ret = stm32_dfsdm_single_conv(indio_dev, chan, val);
		iio_hw_consumer_disable(adc->hwc);
		if (ret < 0) {
			dev_err(&indio_dev->dev,
				"%s: Conversion failed (channel %d)\n",
				__func__, chan->channel);
			return ret;
		}
		return IIO_VAL_INT;

	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
		*val = adc->oversamp;

		return IIO_VAL_INT;

	case IIO_CHAN_INFO_SAMP_FREQ:
		*val = adc->sample_freq;

		return IIO_VAL_INT;
	}

	return -EINVAL;
}

static const struct iio_info stm32_dfsdm_info_audio = {
	.hwfifo_set_watermark = stm32_dfsdm_set_watermark,
	.read_raw = stm32_dfsdm_read_raw,
	.write_raw = stm32_dfsdm_write_raw,
};

static const struct iio_info stm32_dfsdm_info_adc = {
	.read_raw = stm32_dfsdm_read_raw,
	.write_raw = stm32_dfsdm_write_raw,
};

static irqreturn_t stm32_dfsdm_irq(int irq, void *arg)
{
	struct stm32_dfsdm_adc *adc = arg;
	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
	struct regmap *regmap = adc->dfsdm->regmap;
	unsigned int status, int_en;

	regmap_read(regmap, DFSDM_ISR(adc->fl_id), &status);
	regmap_read(regmap, DFSDM_CR2(adc->fl_id), &int_en);

	if (status & DFSDM_ISR_REOCF_MASK) {
		/* Read the data register clean the IRQ status */
		regmap_read(regmap, DFSDM_RDATAR(adc->fl_id), adc->buffer);
		complete(&adc->completion);
	}

	if (status & DFSDM_ISR_ROVRF_MASK) {
		if (int_en & DFSDM_CR2_ROVRIE_MASK)
			dev_warn(&indio_dev->dev, "Overrun detected\n");
		regmap_update_bits(regmap, DFSDM_ICR(adc->fl_id),
				   DFSDM_ICR_CLRROVRF_MASK,
				   DFSDM_ICR_CLRROVRF_MASK);
	}

	return IRQ_HANDLED;
}

/*
 * Define external info for SPI Frequency and audio sampling rate that can be
 * configured by ASoC driver through consumer.h API
 */
static const struct iio_chan_spec_ext_info dfsdm_adc_audio_ext_info[] = {
	/* spi_clk_freq : clock freq on SPI/manchester bus used by channel */
	{
		.name = "spi_clk_freq",
		.shared = IIO_SHARED_BY_TYPE,
		.read = dfsdm_adc_audio_get_spiclk,
		.write = dfsdm_adc_audio_set_spiclk,
	},
	{},
};

static void stm32_dfsdm_dma_release(struct iio_dev *indio_dev)
{
	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);

	if (adc->dma_chan) {
		dma_free_coherent(adc->dma_chan->device->dev,
				  DFSDM_DMA_BUFFER_SIZE,
				  adc->rx_buf, adc->dma_buf);
		dma_release_channel(adc->dma_chan);
	}
}

static int stm32_dfsdm_dma_request(struct iio_dev *indio_dev)
{
	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
	struct dma_slave_config config = {
		.src_addr = (dma_addr_t)adc->dfsdm->phys_base +
			DFSDM_RDATAR(adc->fl_id),
		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
	};
	int ret;

	adc->dma_chan = dma_request_slave_channel(&indio_dev->dev, "rx");
	if (!adc->dma_chan)
		return -EINVAL;

	adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
					 DFSDM_DMA_BUFFER_SIZE,
					 &adc->dma_buf, GFP_KERNEL);
	if (!adc->rx_buf) {
		ret = -ENOMEM;
		goto err_release;
	}

	ret = dmaengine_slave_config(adc->dma_chan, &config);
	if (ret)
		goto err_free;

	return 0;

err_free:
	dma_free_coherent(adc->dma_chan->device->dev, DFSDM_DMA_BUFFER_SIZE,
			  adc->rx_buf, adc->dma_buf);
err_release:
	dma_release_channel(adc->dma_chan);

	return ret;
}

static int stm32_dfsdm_adc_chan_init_one(struct iio_dev *indio_dev,
					 struct iio_chan_spec *ch)
{
	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
	int ret;

	ret = stm32_dfsdm_channel_parse_of(adc->dfsdm, indio_dev, ch);
	if (ret < 0)
		return ret;

	ch->type = IIO_VOLTAGE;
	ch->indexed = 1;

	/*
	 * IIO_CHAN_INFO_RAW: used to compute regular conversion
	 * IIO_CHAN_INFO_OVERSAMPLING_RATIO: used to set oversampling
	 */
	ch->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
	ch->info_mask_shared_by_all = BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO);

	if (adc->dev_data->type == DFSDM_AUDIO) {
		ch->scan_type.sign = 's';
		ch->ext_info = dfsdm_adc_audio_ext_info;
	} else {
		ch->scan_type.sign = 'u';
	}
	ch->scan_type.realbits = 24;
	ch->scan_type.storagebits = 32;
	adc->ch_id = ch->channel;

	return stm32_dfsdm_chan_configure(adc->dfsdm,
					  &adc->dfsdm->ch_list[ch->channel]);
}

static int stm32_dfsdm_audio_init(struct iio_dev *indio_dev)
{
	struct iio_chan_spec *ch;
	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
	struct stm32_dfsdm_channel *d_ch;
	int ret;

	indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
	indio_dev->setup_ops = &stm32_dfsdm_buffer_setup_ops;

	ch = devm_kzalloc(&indio_dev->dev, sizeof(*ch), GFP_KERNEL);
	if (!ch)
		return -ENOMEM;

	ch->scan_index = 0;

	ret = stm32_dfsdm_adc_chan_init_one(indio_dev, ch);
	if (ret < 0) {
		dev_err(&indio_dev->dev, "Channels init failed\n");
		return ret;
	}
	ch->info_mask_separate = BIT(IIO_CHAN_INFO_SAMP_FREQ);

	d_ch = &adc->dfsdm->ch_list[adc->ch_id];
	if (d_ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
		adc->spi_freq = adc->dfsdm->spi_master_freq;

	indio_dev->num_channels = 1;
	indio_dev->channels = ch;

	return stm32_dfsdm_dma_request(indio_dev);
}

static int stm32_dfsdm_adc_init(struct iio_dev *indio_dev)
{
	struct iio_chan_spec *ch;
	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
	int num_ch;
	int ret, chan_idx;

	adc->oversamp = DFSDM_DEFAULT_OVERSAMPLING;
	ret = stm32_dfsdm_set_osrs(&adc->dfsdm->fl_list[adc->fl_id], 0,
				   adc->oversamp);
	if (ret < 0)
		return ret;

	num_ch = of_property_count_u32_elems(indio_dev->dev.of_node,
					     "st,adc-channels");
	if (num_ch < 0 || num_ch > adc->dfsdm->num_chs) {
		dev_err(&indio_dev->dev, "Bad st,adc-channels\n");
		return num_ch < 0 ? num_ch : -EINVAL;
	}

	/* Bind to SD modulator IIO device */
	adc->hwc = devm_iio_hw_consumer_alloc(&indio_dev->dev);
	if (IS_ERR(adc->hwc))
		return -EPROBE_DEFER;

	ch = devm_kcalloc(&indio_dev->dev, num_ch, sizeof(*ch),
			  GFP_KERNEL);
	if (!ch)
		return -ENOMEM;

	for (chan_idx = 0; chan_idx < num_ch; chan_idx++) {
		ch->scan_index = chan_idx;
		ret = stm32_dfsdm_adc_chan_init_one(indio_dev, ch);
		if (ret < 0) {
			dev_err(&indio_dev->dev, "Channels init failed\n");
			return ret;
		}
	}

	indio_dev->num_channels = num_ch;
	indio_dev->channels = ch;

	init_completion(&adc->completion);

	return 0;
}

static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_adc_data = {
	.type = DFSDM_IIO,
	.init = stm32_dfsdm_adc_init,
};

static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_audio_data = {
	.type = DFSDM_AUDIO,
	.init = stm32_dfsdm_audio_init,
};

static const struct of_device_id stm32_dfsdm_adc_match[] = {
	{
		.compatible = "st,stm32-dfsdm-adc",
		.data = &stm32h7_dfsdm_adc_data,
	},
	{
		.compatible = "st,stm32-dfsdm-dmic",
		.data = &stm32h7_dfsdm_audio_data,
	},
	{}
};

static int stm32_dfsdm_adc_probe(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct stm32_dfsdm_adc *adc;
	struct device_node *np = dev->of_node;
	const struct stm32_dfsdm_dev_data *dev_data;
	struct iio_dev *iio;
	char *name;
	int ret, irq, val;

	dev_data = of_device_get_match_data(dev);
	iio = devm_iio_device_alloc(dev, sizeof(*adc));
	if (!iio) {
		dev_err(dev, "%s: Failed to allocate IIO\n", __func__);
		return -ENOMEM;
	}

	adc = iio_priv(iio);
	adc->dfsdm = dev_get_drvdata(dev->parent);

	iio->dev.parent = dev;
	iio->dev.of_node = np;
	iio->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_SOFTWARE;

	platform_set_drvdata(pdev, adc);

	ret = of_property_read_u32(dev->of_node, "reg", &adc->fl_id);
	if (ret != 0) {
		dev_err(dev, "Missing reg property\n");
		return -EINVAL;
	}

	name = devm_kzalloc(dev, sizeof("dfsdm-adc0"), GFP_KERNEL);
	if (!name)
		return -ENOMEM;
	if (dev_data->type == DFSDM_AUDIO) {
		iio->info = &stm32_dfsdm_info_audio;
		snprintf(name, sizeof("dfsdm-pdm0"), "dfsdm-pdm%d", adc->fl_id);
	} else {
		iio->info = &stm32_dfsdm_info_adc;
		snprintf(name, sizeof("dfsdm-adc0"), "dfsdm-adc%d", adc->fl_id);
	}
	iio->name = name;

	/*
	 * In a first step IRQs generated for channels are not treated.
	 * So IRQ associated to filter instance 0 is dedicated to the Filter 0.
	 */
	irq = platform_get_irq(pdev, 0);
	ret = devm_request_irq(dev, irq, stm32_dfsdm_irq,
			       0, pdev->name, adc);
	if (ret < 0) {
		dev_err(dev, "Failed to request IRQ\n");
		return ret;
	}

	ret = of_property_read_u32(dev->of_node, "st,filter-order", &val);
	if (ret < 0) {
		dev_err(dev, "Failed to set filter order\n");
		return ret;
	}

	adc->dfsdm->fl_list[adc->fl_id].ford = val;

	ret = of_property_read_u32(dev->of_node, "st,filter0-sync", &val);
	if (!ret)
		adc->dfsdm->fl_list[adc->fl_id].sync_mode = val;

	adc->dev_data = dev_data;
	ret = dev_data->init(iio);
	if (ret < 0)
		return ret;

	ret = iio_device_register(iio);
	if (ret < 0)
		goto err_cleanup;

	if (dev_data->type == DFSDM_AUDIO) {
		ret = of_platform_populate(np, NULL, NULL, dev);
		if (ret < 0) {
			dev_err(dev, "Failed to find an audio DAI\n");
			goto err_unregister;
		}
	}

	return 0;

err_unregister:
	iio_device_unregister(iio);
err_cleanup:
	stm32_dfsdm_dma_release(iio);

	return ret;
}

static int stm32_dfsdm_adc_remove(struct platform_device *pdev)
{
	struct stm32_dfsdm_adc *adc = platform_get_drvdata(pdev);
	struct iio_dev *indio_dev = iio_priv_to_dev(adc);

	if (adc->dev_data->type == DFSDM_AUDIO)
		of_platform_depopulate(&pdev->dev);
	iio_device_unregister(indio_dev);
	stm32_dfsdm_dma_release(indio_dev);

	return 0;
}

static struct platform_driver stm32_dfsdm_adc_driver = {
	.driver = {
		.name = "stm32-dfsdm-adc",
		.of_match_table = stm32_dfsdm_adc_match,
	},
	.probe = stm32_dfsdm_adc_probe,
	.remove = stm32_dfsdm_adc_remove,
};
module_platform_driver(stm32_dfsdm_adc_driver);

MODULE_DESCRIPTION("STM32 sigma delta ADC");
MODULE_AUTHOR("Arnaud Pouliquen <arnaud.pouliquen@st.com>");
MODULE_LICENSE("GPL v2");