summaryrefslogtreecommitdiffstats
path: root/drivers/iio/buffer/industrialio-buffer-dma.c
blob: a74bd9c0587c7fa7a669f174336a614a06277ebb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Copyright 2013-2015 Analog Devices Inc.
 *  Author: Lars-Peter Clausen <lars@metafoo.de>
 */

#include <linux/slab.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/workqueue.h>
#include <linux/mutex.h>
#include <linux/sched.h>
#include <linux/poll.h>
#include <linux/iio/buffer.h>
#include <linux/iio/buffer_impl.h>
#include <linux/iio/buffer-dma.h>
#include <linux/dma-mapping.h>
#include <linux/sizes.h>

/*
 * For DMA buffers the storage is sub-divided into so called blocks. Each block
 * has its own memory buffer. The size of the block is the granularity at which
 * memory is exchanged between the hardware and the application. Increasing the
 * basic unit of data exchange from one sample to one block decreases the
 * management overhead that is associated with each sample. E.g. if we say the
 * management overhead for one exchange is x and the unit of exchange is one
 * sample the overhead will be x for each sample. Whereas when using a block
 * which contains n samples the overhead per sample is reduced to x/n. This
 * allows to achieve much higher samplerates than what can be sustained with
 * the one sample approach.
 *
 * Blocks are exchanged between the DMA controller and the application via the
 * means of two queues. The incoming queue and the outgoing queue. Blocks on the
 * incoming queue are waiting for the DMA controller to pick them up and fill
 * them with data. Block on the outgoing queue have been filled with data and
 * are waiting for the application to dequeue them and read the data.
 *
 * A block can be in one of the following states:
 *  * Owned by the application. In this state the application can read data from
 *    the block.
 *  * On the incoming list: Blocks on the incoming list are queued up to be
 *    processed by the DMA controller.
 *  * Owned by the DMA controller: The DMA controller is processing the block
 *    and filling it with data.
 *  * On the outgoing list: Blocks on the outgoing list have been successfully
 *    processed by the DMA controller and contain data. They can be dequeued by
 *    the application.
 *  * Dead: A block that is dead has been marked as to be freed. It might still
 *    be owned by either the application or the DMA controller at the moment.
 *    But once they are done processing it instead of going to either the
 *    incoming or outgoing queue the block will be freed.
 *
 * In addition to this blocks are reference counted and the memory associated
 * with both the block structure as well as the storage memory for the block
 * will be freed when the last reference to the block is dropped. This means a
 * block must not be accessed without holding a reference.
 *
 * The iio_dma_buffer implementation provides a generic infrastructure for
 * managing the blocks.
 *
 * A driver for a specific piece of hardware that has DMA capabilities need to
 * implement the submit() callback from the iio_dma_buffer_ops structure. This
 * callback is supposed to initiate the DMA transfer copying data from the
 * converter to the memory region of the block. Once the DMA transfer has been
 * completed the driver must call iio_dma_buffer_block_done() for the completed
 * block.
 *
 * Prior to this it must set the bytes_used field of the block contains
 * the actual number of bytes in the buffer. Typically this will be equal to the
 * size of the block, but if the DMA hardware has certain alignment requirements
 * for the transfer length it might choose to use less than the full size. In
 * either case it is expected that bytes_used is a multiple of the bytes per
 * datum, i.e. the block must not contain partial samples.
 *
 * The driver must call iio_dma_buffer_block_done() for each block it has
 * received through its submit_block() callback, even if it does not actually
 * perform a DMA transfer for the block, e.g. because the buffer was disabled
 * before the block transfer was started. In this case it should set bytes_used
 * to 0.
 *
 * In addition it is recommended that a driver implements the abort() callback.
 * It will be called when the buffer is disabled and can be used to cancel
 * pending and stop active transfers.
 *
 * The specific driver implementation should use the default callback
 * implementations provided by this module for the iio_buffer_access_funcs
 * struct. It may overload some callbacks with custom variants if the hardware
 * has special requirements that are not handled by the generic functions. If a
 * driver chooses to overload a callback it has to ensure that the generic
 * callback is called from within the custom callback.
 */

static void iio_buffer_block_release(struct kref *kref)
{
	struct iio_dma_buffer_block *block = container_of(kref,
		struct iio_dma_buffer_block, kref);

	WARN_ON(block->state != IIO_BLOCK_STATE_DEAD);

	dma_free_coherent(block->queue->dev, PAGE_ALIGN(block->size),
					block->vaddr, block->phys_addr);

	iio_buffer_put(&block->queue->buffer);
	kfree(block);
}

static void iio_buffer_block_get(struct iio_dma_buffer_block *block)
{
	kref_get(&block->kref);
}

static void iio_buffer_block_put(struct iio_dma_buffer_block *block)
{
	kref_put(&block->kref, iio_buffer_block_release);
}

/*
 * dma_free_coherent can sleep, hence we need to take some special care to be
 * able to drop a reference from an atomic context.
 */
static LIST_HEAD(iio_dma_buffer_dead_blocks);
static DEFINE_SPINLOCK(iio_dma_buffer_dead_blocks_lock);

static void iio_dma_buffer_cleanup_worker(struct work_struct *work)
{
	struct iio_dma_buffer_block *block, *_block;
	LIST_HEAD(block_list);

	spin_lock_irq(&iio_dma_buffer_dead_blocks_lock);
	list_splice_tail_init(&iio_dma_buffer_dead_blocks, &block_list);
	spin_unlock_irq(&iio_dma_buffer_dead_blocks_lock);

	list_for_each_entry_safe(block, _block, &block_list, head)
		iio_buffer_block_release(&block->kref);
}
static DECLARE_WORK(iio_dma_buffer_cleanup_work, iio_dma_buffer_cleanup_worker);

static void iio_buffer_block_release_atomic(struct kref *kref)
{
	struct iio_dma_buffer_block *block;
	unsigned long flags;

	block = container_of(kref, struct iio_dma_buffer_block, kref);

	spin_lock_irqsave(&iio_dma_buffer_dead_blocks_lock, flags);
	list_add_tail(&block->head, &iio_dma_buffer_dead_blocks);
	spin_unlock_irqrestore(&iio_dma_buffer_dead_blocks_lock, flags);

	schedule_work(&iio_dma_buffer_cleanup_work);
}

/*
 * Version of iio_buffer_block_put() that can be called from atomic context
 */
static void iio_buffer_block_put_atomic(struct iio_dma_buffer_block *block)
{
	kref_put(&block->kref, iio_buffer_block_release_atomic);
}

static struct iio_dma_buffer_queue *iio_buffer_to_queue(struct iio_buffer *buf)
{
	return container_of(buf, struct iio_dma_buffer_queue, buffer);
}

static struct iio_dma_buffer_block *iio_dma_buffer_alloc_block(
	struct iio_dma_buffer_queue *queue, size_t size)
{
	struct iio_dma_buffer_block *block;

	block = kzalloc(sizeof(*block), GFP_KERNEL);
	if (!block)
		return NULL;

	block->vaddr = dma_alloc_coherent(queue->dev, PAGE_ALIGN(size),
		&block->phys_addr, GFP_KERNEL);
	if (!block->vaddr) {
		kfree(block);
		return NULL;
	}

	block->size = size;
	block->state = IIO_BLOCK_STATE_DEQUEUED;
	block->queue = queue;
	INIT_LIST_HEAD(&block->head);
	kref_init(&block->kref);

	iio_buffer_get(&queue->buffer);

	return block;
}

static void _iio_dma_buffer_block_done(struct iio_dma_buffer_block *block)
{
	struct iio_dma_buffer_queue *queue = block->queue;

	/*
	 * The buffer has already been freed by the application, just drop the
	 * reference.
	 */
	if (block->state != IIO_BLOCK_STATE_DEAD) {
		block->state = IIO_BLOCK_STATE_DONE;
		list_add_tail(&block->head, &queue->outgoing);
	}
}

/**
 * iio_dma_buffer_block_done() - Indicate that a block has been completed
 * @block: The completed block
 *
 * Should be called when the DMA controller has finished handling the block to
 * pass back ownership of the block to the queue.
 */
void iio_dma_buffer_block_done(struct iio_dma_buffer_block *block)
{
	struct iio_dma_buffer_queue *queue = block->queue;
	unsigned long flags;

	spin_lock_irqsave(&queue->list_lock, flags);
	_iio_dma_buffer_block_done(block);
	spin_unlock_irqrestore(&queue->list_lock, flags);

	iio_buffer_block_put_atomic(block);
	wake_up_interruptible_poll(&queue->buffer.pollq, EPOLLIN | EPOLLRDNORM);
}
EXPORT_SYMBOL_GPL(iio_dma_buffer_block_done);

/**
 * iio_dma_buffer_block_list_abort() - Indicate that a list block has been
 *   aborted
 * @queue: Queue for which to complete blocks.
 * @list: List of aborted blocks. All blocks in this list must be from @queue.
 *
 * Typically called from the abort() callback after the DMA controller has been
 * stopped. This will set bytes_used to 0 for each block in the list and then
 * hand the blocks back to the queue.
 */
void iio_dma_buffer_block_list_abort(struct iio_dma_buffer_queue *queue,
	struct list_head *list)
{
	struct iio_dma_buffer_block *block, *_block;
	unsigned long flags;

	spin_lock_irqsave(&queue->list_lock, flags);
	list_for_each_entry_safe(block, _block, list, head) {
		list_del(&block->head);
		block->bytes_used = 0;
		_iio_dma_buffer_block_done(block);
		iio_buffer_block_put_atomic(block);
	}
	spin_unlock_irqrestore(&queue->list_lock, flags);

	wake_up_interruptible_poll(&queue->buffer.pollq, EPOLLIN | EPOLLRDNORM);
}
EXPORT_SYMBOL_GPL(iio_dma_buffer_block_list_abort);

static bool iio_dma_block_reusable(struct iio_dma_buffer_block *block)
{
	/*
	 * If the core owns the block it can be re-used. This should be the
	 * default case when enabling the buffer, unless the DMA controller does
	 * not support abort and has not given back the block yet.
	 */
	switch (block->state) {
	case IIO_BLOCK_STATE_DEQUEUED:
	case IIO_BLOCK_STATE_QUEUED:
	case IIO_BLOCK_STATE_DONE:
		return true;
	default:
		return false;
	}
}

/**
 * iio_dma_buffer_request_update() - DMA buffer request_update callback
 * @buffer: The buffer which to request an update
 *
 * Should be used as the iio_dma_buffer_request_update() callback for
 * iio_buffer_access_ops struct for DMA buffers.
 */
int iio_dma_buffer_request_update(struct iio_buffer *buffer)
{
	struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer);
	struct iio_dma_buffer_block *block;
	bool try_reuse = false;
	size_t size;
	int ret = 0;
	int i;

	/*
	 * Split the buffer into two even parts. This is used as a double
	 * buffering scheme with usually one block at a time being used by the
	 * DMA and the other one by the application.
	 */
	size = DIV_ROUND_UP(queue->buffer.bytes_per_datum *
		queue->buffer.length, 2);

	mutex_lock(&queue->lock);

	/* Allocations are page aligned */
	if (PAGE_ALIGN(queue->fileio.block_size) == PAGE_ALIGN(size))
		try_reuse = true;

	queue->fileio.block_size = size;
	queue->fileio.active_block = NULL;

	spin_lock_irq(&queue->list_lock);
	for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) {
		block = queue->fileio.blocks[i];

		/* If we can't re-use it free it */
		if (block && (!iio_dma_block_reusable(block) || !try_reuse))
			block->state = IIO_BLOCK_STATE_DEAD;
	}

	/*
	 * At this point all blocks are either owned by the core or marked as
	 * dead. This means we can reset the lists without having to fear
	 * corrution.
	 */
	INIT_LIST_HEAD(&queue->outgoing);
	spin_unlock_irq(&queue->list_lock);

	INIT_LIST_HEAD(&queue->incoming);

	for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) {
		if (queue->fileio.blocks[i]) {
			block = queue->fileio.blocks[i];
			if (block->state == IIO_BLOCK_STATE_DEAD) {
				/* Could not reuse it */
				iio_buffer_block_put(block);
				block = NULL;
			} else {
				block->size = size;
			}
		} else {
			block = NULL;
		}

		if (!block) {
			block = iio_dma_buffer_alloc_block(queue, size);
			if (!block) {
				ret = -ENOMEM;
				goto out_unlock;
			}
			queue->fileio.blocks[i] = block;
		}

		block->state = IIO_BLOCK_STATE_QUEUED;
		list_add_tail(&block->head, &queue->incoming);
	}

out_unlock:
	mutex_unlock(&queue->lock);

	return ret;
}
EXPORT_SYMBOL_GPL(iio_dma_buffer_request_update);

static void iio_dma_buffer_submit_block(struct iio_dma_buffer_queue *queue,
	struct iio_dma_buffer_block *block)
{
	int ret;

	/*
	 * If the hardware has already been removed we put the block into
	 * limbo. It will neither be on the incoming nor outgoing list, nor will
	 * it ever complete. It will just wait to be freed eventually.
	 */
	if (!queue->ops)
		return;

	block->state = IIO_BLOCK_STATE_ACTIVE;
	iio_buffer_block_get(block);
	ret = queue->ops->submit(queue, block);
	if (ret) {
		/*
		 * This is a bit of a problem and there is not much we can do
		 * other then wait for the buffer to be disabled and re-enabled
		 * and try again. But it should not really happen unless we run
		 * out of memory or something similar.
		 *
		 * TODO: Implement support in the IIO core to allow buffers to
		 * notify consumers that something went wrong and the buffer
		 * should be disabled.
		 */
		iio_buffer_block_put(block);
	}
}

/**
 * iio_dma_buffer_enable() - Enable DMA buffer
 * @buffer: IIO buffer to enable
 * @indio_dev: IIO device the buffer is attached to
 *
 * Needs to be called when the device that the buffer is attached to starts
 * sampling. Typically should be the iio_buffer_access_ops enable callback.
 *
 * This will allocate the DMA buffers and start the DMA transfers.
 */
int iio_dma_buffer_enable(struct iio_buffer *buffer,
	struct iio_dev *indio_dev)
{
	struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer);
	struct iio_dma_buffer_block *block, *_block;

	mutex_lock(&queue->lock);
	queue->active = true;
	list_for_each_entry_safe(block, _block, &queue->incoming, head) {
		list_del(&block->head);
		iio_dma_buffer_submit_block(queue, block);
	}
	mutex_unlock(&queue->lock);

	return 0;
}
EXPORT_SYMBOL_GPL(iio_dma_buffer_enable);

/**
 * iio_dma_buffer_disable() - Disable DMA buffer
 * @buffer: IIO DMA buffer to disable
 * @indio_dev: IIO device the buffer is attached to
 *
 * Needs to be called when the device that the buffer is attached to stops
 * sampling. Typically should be the iio_buffer_access_ops disable callback.
 */
int iio_dma_buffer_disable(struct iio_buffer *buffer,
	struct iio_dev *indio_dev)
{
	struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer);

	mutex_lock(&queue->lock);
	queue->active = false;

	if (queue->ops && queue->ops->abort)
		queue->ops->abort(queue);
	mutex_unlock(&queue->lock);

	return 0;
}
EXPORT_SYMBOL_GPL(iio_dma_buffer_disable);

static void iio_dma_buffer_enqueue(struct iio_dma_buffer_queue *queue,
	struct iio_dma_buffer_block *block)
{
	if (block->state == IIO_BLOCK_STATE_DEAD) {
		iio_buffer_block_put(block);
	} else if (queue->active) {
		iio_dma_buffer_submit_block(queue, block);
	} else {
		block->state = IIO_BLOCK_STATE_QUEUED;
		list_add_tail(&block->head, &queue->incoming);
	}
}

static struct iio_dma_buffer_block *iio_dma_buffer_dequeue(
	struct iio_dma_buffer_queue *queue)
{
	struct iio_dma_buffer_block *block;

	spin_lock_irq(&queue->list_lock);
	block = list_first_entry_or_null(&queue->outgoing, struct
		iio_dma_buffer_block, head);
	if (block != NULL) {
		list_del(&block->head);
		block->state = IIO_BLOCK_STATE_DEQUEUED;
	}
	spin_unlock_irq(&queue->list_lock);

	return block;
}

/**
 * iio_dma_buffer_read() - DMA buffer read callback
 * @buffer: Buffer to read form
 * @n: Number of bytes to read
 * @user_buffer: Userspace buffer to copy the data to
 *
 * Should be used as the read callback for iio_buffer_access_ops
 * struct for DMA buffers.
 */
int iio_dma_buffer_read(struct iio_buffer *buffer, size_t n,
	char __user *user_buffer)
{
	struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer);
	struct iio_dma_buffer_block *block;
	int ret;

	if (n < buffer->bytes_per_datum)
		return -EINVAL;

	mutex_lock(&queue->lock);

	if (!queue->fileio.active_block) {
		block = iio_dma_buffer_dequeue(queue);
		if (block == NULL) {
			ret = 0;
			goto out_unlock;
		}
		queue->fileio.pos = 0;
		queue->fileio.active_block = block;
	} else {
		block = queue->fileio.active_block;
	}

	n = rounddown(n, buffer->bytes_per_datum);
	if (n > block->bytes_used - queue->fileio.pos)
		n = block->bytes_used - queue->fileio.pos;

	if (copy_to_user(user_buffer, block->vaddr + queue->fileio.pos, n)) {
		ret = -EFAULT;
		goto out_unlock;
	}

	queue->fileio.pos += n;

	if (queue->fileio.pos == block->bytes_used) {
		queue->fileio.active_block = NULL;
		iio_dma_buffer_enqueue(queue, block);
	}

	ret = n;

out_unlock:
	mutex_unlock(&queue->lock);

	return ret;
}
EXPORT_SYMBOL_GPL(iio_dma_buffer_read);

/**
 * iio_dma_buffer_data_available() - DMA buffer data_available callback
 * @buf: Buffer to check for data availability
 *
 * Should be used as the data_available callback for iio_buffer_access_ops
 * struct for DMA buffers.
 */
size_t iio_dma_buffer_data_available(struct iio_buffer *buf)
{
	struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buf);
	struct iio_dma_buffer_block *block;
	size_t data_available = 0;

	/*
	 * For counting the available bytes we'll use the size of the block not
	 * the number of actual bytes available in the block. Otherwise it is
	 * possible that we end up with a value that is lower than the watermark
	 * but won't increase since all blocks are in use.
	 */

	mutex_lock(&queue->lock);
	if (queue->fileio.active_block)
		data_available += queue->fileio.active_block->size;

	spin_lock_irq(&queue->list_lock);
	list_for_each_entry(block, &queue->outgoing, head)
		data_available += block->size;
	spin_unlock_irq(&queue->list_lock);
	mutex_unlock(&queue->lock);

	return data_available;
}
EXPORT_SYMBOL_GPL(iio_dma_buffer_data_available);

/**
 * iio_dma_buffer_set_bytes_per_datum() - DMA buffer set_bytes_per_datum callback
 * @buffer: Buffer to set the bytes-per-datum for
 * @bpd: The new bytes-per-datum value
 *
 * Should be used as the set_bytes_per_datum callback for iio_buffer_access_ops
 * struct for DMA buffers.
 */
int iio_dma_buffer_set_bytes_per_datum(struct iio_buffer *buffer, size_t bpd)
{
	buffer->bytes_per_datum = bpd;

	return 0;
}
EXPORT_SYMBOL_GPL(iio_dma_buffer_set_bytes_per_datum);

/**
 * iio_dma_buffer_set_length - DMA buffer set_length callback
 * @buffer: Buffer to set the length for
 * @length: The new buffer length
 *
 * Should be used as the set_length callback for iio_buffer_access_ops
 * struct for DMA buffers.
 */
int iio_dma_buffer_set_length(struct iio_buffer *buffer, unsigned int length)
{
	/* Avoid an invalid state */
	if (length < 2)
		length = 2;
	buffer->length = length;
	buffer->watermark = length / 2;

	return 0;
}
EXPORT_SYMBOL_GPL(iio_dma_buffer_set_length);

/**
 * iio_dma_buffer_init() - Initialize DMA buffer queue
 * @queue: Buffer to initialize
 * @dev: DMA device
 * @ops: DMA buffer queue callback operations
 *
 * The DMA device will be used by the queue to do DMA memory allocations. So it
 * should refer to the device that will perform the DMA to ensure that
 * allocations are done from a memory region that can be accessed by the device.
 */
int iio_dma_buffer_init(struct iio_dma_buffer_queue *queue,
	struct device *dev, const struct iio_dma_buffer_ops *ops)
{
	iio_buffer_init(&queue->buffer);
	queue->buffer.length = PAGE_SIZE;
	queue->buffer.watermark = queue->buffer.length / 2;
	queue->dev = dev;
	queue->ops = ops;

	INIT_LIST_HEAD(&queue->incoming);
	INIT_LIST_HEAD(&queue->outgoing);

	mutex_init(&queue->lock);
	spin_lock_init(&queue->list_lock);

	return 0;
}
EXPORT_SYMBOL_GPL(iio_dma_buffer_init);

/**
 * iio_dma_buffer_exit() - Cleanup DMA buffer queue
 * @queue: Buffer to cleanup
 *
 * After this function has completed it is safe to free any resources that are
 * associated with the buffer and are accessed inside the callback operations.
 */
void iio_dma_buffer_exit(struct iio_dma_buffer_queue *queue)
{
	unsigned int i;

	mutex_lock(&queue->lock);

	spin_lock_irq(&queue->list_lock);
	for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) {
		if (!queue->fileio.blocks[i])
			continue;
		queue->fileio.blocks[i]->state = IIO_BLOCK_STATE_DEAD;
	}
	INIT_LIST_HEAD(&queue->outgoing);
	spin_unlock_irq(&queue->list_lock);

	INIT_LIST_HEAD(&queue->incoming);

	for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) {
		if (!queue->fileio.blocks[i])
			continue;
		iio_buffer_block_put(queue->fileio.blocks[i]);
		queue->fileio.blocks[i] = NULL;
	}
	queue->fileio.active_block = NULL;
	queue->ops = NULL;

	mutex_unlock(&queue->lock);
}
EXPORT_SYMBOL_GPL(iio_dma_buffer_exit);

/**
 * iio_dma_buffer_release() - Release final buffer resources
 * @queue: Buffer to release
 *
 * Frees resources that can't yet be freed in iio_dma_buffer_exit(). Should be
 * called in the buffers release callback implementation right before freeing
 * the memory associated with the buffer.
 */
void iio_dma_buffer_release(struct iio_dma_buffer_queue *queue)
{
	mutex_destroy(&queue->lock);
}
EXPORT_SYMBOL_GPL(iio_dma_buffer_release);

MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
MODULE_DESCRIPTION("DMA buffer for the IIO framework");
MODULE_LICENSE("GPL v2");