1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
|
// SPDX-License-Identifier: GPL-2.0
/*
* Sensirion SPS30 particulate matter sensor driver
*
* Copyright (c) Tomasz Duszynski <tduszyns@gmail.com>
*
* I2C slave address: 0x69
*
* TODO:
* - support for turning on fan cleaning
* - support for reading/setting auto cleaning interval
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <asm/unaligned.h>
#include <linux/crc8.h>
#include <linux/delay.h>
#include <linux/i2c.h>
#include <linux/iio/buffer.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
#include <linux/module.h>
#define SPS30_CRC8_POLYNOMIAL 0x31
/* max number of bytes needed to store PM measurements or serial string */
#define SPS30_MAX_READ_SIZE 48
/* sensor measures reliably up to 3000 ug / m3 */
#define SPS30_MAX_PM 3000
/* SPS30 commands */
#define SPS30_START_MEAS 0x0010
#define SPS30_STOP_MEAS 0x0104
#define SPS30_RESET 0xd304
#define SPS30_READ_DATA_READY_FLAG 0x0202
#define SPS30_READ_DATA 0x0300
#define SPS30_READ_SERIAL 0xd033
enum {
PM1,
PM2P5,
PM4,
PM10,
};
struct sps30_state {
struct i2c_client *client;
/*
* Guards against concurrent access to sensor registers.
* Must be held whenever sequence of commands is to be executed.
*/
struct mutex lock;
};
DECLARE_CRC8_TABLE(sps30_crc8_table);
static int sps30_write_then_read(struct sps30_state *state, u8 *txbuf,
int txsize, u8 *rxbuf, int rxsize)
{
int ret;
/*
* Sensor does not support repeated start so instead of
* sending two i2c messages in a row we just send one by one.
*/
ret = i2c_master_send(state->client, txbuf, txsize);
if (ret != txsize)
return ret < 0 ? ret : -EIO;
if (!rxbuf)
return 0;
ret = i2c_master_recv(state->client, rxbuf, rxsize);
if (ret != rxsize)
return ret < 0 ? ret : -EIO;
return 0;
}
static int sps30_do_cmd(struct sps30_state *state, u16 cmd, u8 *data, int size)
{
/*
* Internally sensor stores measurements in a following manner:
*
* PM1: upper two bytes, crc8, lower two bytes, crc8
* PM2P5: upper two bytes, crc8, lower two bytes, crc8
* PM4: upper two bytes, crc8, lower two bytes, crc8
* PM10: upper two bytes, crc8, lower two bytes, crc8
*
* What follows next are number concentration measurements and
* typical particle size measurement which we omit.
*/
u8 buf[SPS30_MAX_READ_SIZE] = { cmd >> 8, cmd };
int i, ret = 0;
switch (cmd) {
case SPS30_START_MEAS:
buf[2] = 0x03;
buf[3] = 0x00;
buf[4] = crc8(sps30_crc8_table, &buf[2], 2, CRC8_INIT_VALUE);
ret = sps30_write_then_read(state, buf, 5, NULL, 0);
break;
case SPS30_STOP_MEAS:
case SPS30_RESET:
ret = sps30_write_then_read(state, buf, 2, NULL, 0);
break;
case SPS30_READ_DATA_READY_FLAG:
case SPS30_READ_DATA:
case SPS30_READ_SERIAL:
/* every two data bytes are checksummed */
size += size / 2;
ret = sps30_write_then_read(state, buf, 2, buf, size);
break;
}
if (ret)
return ret;
/* validate received data and strip off crc bytes */
for (i = 0; i < size; i += 3) {
u8 crc = crc8(sps30_crc8_table, &buf[i], 2, CRC8_INIT_VALUE);
if (crc != buf[i + 2]) {
dev_err(&state->client->dev,
"data integrity check failed\n");
return -EIO;
}
*data++ = buf[i];
*data++ = buf[i + 1];
}
return 0;
}
static s32 sps30_float_to_int_clamped(const u8 *fp)
{
int val = get_unaligned_be32(fp);
int mantissa = val & GENMASK(22, 0);
/* this is fine since passed float is always non-negative */
int exp = val >> 23;
int fraction, shift;
/* special case 0 */
if (!exp && !mantissa)
return 0;
exp -= 127;
if (exp < 0) {
/* return values ranging from 1 to 99 */
return ((((1 << 23) + mantissa) * 100) >> 23) >> (-exp);
}
/* return values ranging from 100 to 300000 */
shift = 23 - exp;
val = (1 << exp) + (mantissa >> shift);
if (val >= SPS30_MAX_PM)
return SPS30_MAX_PM * 100;
fraction = mantissa & GENMASK(shift - 1, 0);
return val * 100 + ((fraction * 100) >> shift);
}
static int sps30_do_meas(struct sps30_state *state, s32 *data, int size)
{
int i, ret, tries = 5;
u8 tmp[16];
while (tries--) {
ret = sps30_do_cmd(state, SPS30_READ_DATA_READY_FLAG, tmp, 2);
if (ret)
return -EIO;
/* new measurements ready to be read */
if (tmp[1] == 1)
break;
msleep_interruptible(300);
}
if (!tries)
return -ETIMEDOUT;
ret = sps30_do_cmd(state, SPS30_READ_DATA, tmp, sizeof(int) * size);
if (ret)
return ret;
for (i = 0; i < size; i++)
data[i] = sps30_float_to_int_clamped(&tmp[4 * i]);
return 0;
}
static irqreturn_t sps30_trigger_handler(int irq, void *p)
{
struct iio_poll_func *pf = p;
struct iio_dev *indio_dev = pf->indio_dev;
struct sps30_state *state = iio_priv(indio_dev);
int ret;
s32 data[4 + 2]; /* PM1, PM2P5, PM4, PM10, timestamp */
mutex_lock(&state->lock);
ret = sps30_do_meas(state, data, 4);
mutex_unlock(&state->lock);
if (ret)
goto err;
iio_push_to_buffers_with_timestamp(indio_dev, data,
iio_get_time_ns(indio_dev));
err:
iio_trigger_notify_done(indio_dev->trig);
return IRQ_HANDLED;
}
static int sps30_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
struct sps30_state *state = iio_priv(indio_dev);
int data[4], ret = -EINVAL;
switch (mask) {
case IIO_CHAN_INFO_PROCESSED:
switch (chan->type) {
case IIO_MASSCONCENTRATION:
mutex_lock(&state->lock);
/* read up to the number of bytes actually needed */
switch (chan->channel2) {
case IIO_MOD_PM1:
ret = sps30_do_meas(state, data, 1);
break;
case IIO_MOD_PM2P5:
ret = sps30_do_meas(state, data, 2);
break;
case IIO_MOD_PM4:
ret = sps30_do_meas(state, data, 3);
break;
case IIO_MOD_PM10:
ret = sps30_do_meas(state, data, 4);
break;
}
mutex_unlock(&state->lock);
if (ret)
return ret;
*val = data[chan->address] / 100;
*val2 = (data[chan->address] % 100) * 10000;
return IIO_VAL_INT_PLUS_MICRO;
default:
return -EINVAL;
}
case IIO_CHAN_INFO_SCALE:
switch (chan->type) {
case IIO_MASSCONCENTRATION:
switch (chan->channel2) {
case IIO_MOD_PM1:
case IIO_MOD_PM2P5:
case IIO_MOD_PM4:
case IIO_MOD_PM10:
*val = 0;
*val2 = 10000;
return IIO_VAL_INT_PLUS_MICRO;
}
default:
return -EINVAL;
}
}
return -EINVAL;
}
static const struct iio_info sps30_info = {
.read_raw = sps30_read_raw,
};
#define SPS30_CHAN(_index, _mod) { \
.type = IIO_MASSCONCENTRATION, \
.modified = 1, \
.channel2 = IIO_MOD_ ## _mod, \
.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), \
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \
.address = _mod, \
.scan_index = _index, \
.scan_type = { \
.sign = 'u', \
.realbits = 19, \
.storagebits = 32, \
.endianness = IIO_CPU, \
}, \
}
static const struct iio_chan_spec sps30_channels[] = {
SPS30_CHAN(0, PM1),
SPS30_CHAN(1, PM2P5),
SPS30_CHAN(2, PM4),
SPS30_CHAN(3, PM10),
IIO_CHAN_SOFT_TIMESTAMP(4),
};
static void sps30_stop_meas(void *data)
{
struct sps30_state *state = data;
sps30_do_cmd(state, SPS30_STOP_MEAS, NULL, 0);
}
static const unsigned long sps30_scan_masks[] = { 0x0f, 0x00 };
static int sps30_probe(struct i2c_client *client)
{
struct iio_dev *indio_dev;
struct sps30_state *state;
u8 buf[32];
int ret;
if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C))
return -EOPNOTSUPP;
indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*state));
if (!indio_dev)
return -ENOMEM;
state = iio_priv(indio_dev);
i2c_set_clientdata(client, indio_dev);
state->client = client;
indio_dev->dev.parent = &client->dev;
indio_dev->info = &sps30_info;
indio_dev->name = client->name;
indio_dev->channels = sps30_channels;
indio_dev->num_channels = ARRAY_SIZE(sps30_channels);
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->available_scan_masks = sps30_scan_masks;
mutex_init(&state->lock);
crc8_populate_msb(sps30_crc8_table, SPS30_CRC8_POLYNOMIAL);
ret = sps30_do_cmd(state, SPS30_RESET, NULL, 0);
if (ret) {
dev_err(&client->dev, "failed to reset device\n");
return ret;
}
msleep(300);
/*
* Power-on-reset causes sensor to produce some glitch on i2c bus and
* some controllers end up in error state. Recover simply by placing
* some data on the bus, for example STOP_MEAS command, which
* is NOP in this case.
*/
sps30_do_cmd(state, SPS30_STOP_MEAS, NULL, 0);
ret = sps30_do_cmd(state, SPS30_READ_SERIAL, buf, sizeof(buf));
if (ret) {
dev_err(&client->dev, "failed to read serial number\n");
return ret;
}
/* returned serial number is already NUL terminated */
dev_info(&client->dev, "serial number: %s\n", buf);
ret = sps30_do_cmd(state, SPS30_START_MEAS, NULL, 0);
if (ret) {
dev_err(&client->dev, "failed to start measurement\n");
return ret;
}
ret = devm_add_action_or_reset(&client->dev, sps30_stop_meas, state);
if (ret)
return ret;
ret = devm_iio_triggered_buffer_setup(&client->dev, indio_dev, NULL,
sps30_trigger_handler, NULL);
if (ret)
return ret;
return devm_iio_device_register(&client->dev, indio_dev);
}
static const struct i2c_device_id sps30_id[] = {
{ "sps30" },
{ }
};
MODULE_DEVICE_TABLE(i2c, sps30_id);
static const struct of_device_id sps30_of_match[] = {
{ .compatible = "sensirion,sps30" },
{ }
};
MODULE_DEVICE_TABLE(of, sps30_of_match);
static struct i2c_driver sps30_driver = {
.driver = {
.name = "sps30",
.of_match_table = sps30_of_match,
},
.id_table = sps30_id,
.probe_new = sps30_probe,
};
module_i2c_driver(sps30_driver);
MODULE_AUTHOR("Tomasz Duszynski <tduszyns@gmail.com>");
MODULE_DESCRIPTION("Sensirion SPS30 particulate matter sensor driver");
MODULE_LICENSE("GPL v2");
|