summaryrefslogtreecommitdiffstats
path: root/drivers/infiniband/hw/mlx5/odp.c
blob: a2c541c4809a583dc330db186593a03e01825f53 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
/*
 * Copyright (c) 2014 Mellanox Technologies. All rights reserved.
 *
 * This software is available to you under a choice of one of two
 * licenses.  You may choose to be licensed under the terms of the GNU
 * General Public License (GPL) Version 2, available from the file
 * COPYING in the main directory of this source tree, or the
 * OpenIB.org BSD license below:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      - Redistributions of source code must retain the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer.
 *
 *      - Redistributions in binary form must reproduce the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer in the documentation and/or other materials
 *        provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include <rdma/ib_umem.h>
#include <rdma/ib_umem_odp.h>

#include "mlx5_ib.h"

#define MAX_PREFETCH_LEN (4*1024*1024U)

/* Timeout in ms to wait for an active mmu notifier to complete when handling
 * a pagefault. */
#define MMU_NOTIFIER_TIMEOUT 1000

struct workqueue_struct *mlx5_ib_page_fault_wq;

void mlx5_ib_invalidate_range(struct ib_umem *umem, unsigned long start,
			      unsigned long end)
{
	struct mlx5_ib_mr *mr;
	const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT / sizeof(u64)) - 1;
	u64 idx = 0, blk_start_idx = 0;
	int in_block = 0;
	u64 addr;

	if (!umem || !umem->odp_data) {
		pr_err("invalidation called on NULL umem or non-ODP umem\n");
		return;
	}

	mr = umem->odp_data->private;

	if (!mr || !mr->ibmr.pd)
		return;

	start = max_t(u64, ib_umem_start(umem), start);
	end = min_t(u64, ib_umem_end(umem), end);

	/*
	 * Iteration one - zap the HW's MTTs. The notifiers_count ensures that
	 * while we are doing the invalidation, no page fault will attempt to
	 * overwrite the same MTTs.  Concurent invalidations might race us,
	 * but they will write 0s as well, so no difference in the end result.
	 */

	for (addr = start; addr < end; addr += (u64)umem->page_size) {
		idx = (addr - ib_umem_start(umem)) / PAGE_SIZE;
		/*
		 * Strive to write the MTTs in chunks, but avoid overwriting
		 * non-existing MTTs. The huristic here can be improved to
		 * estimate the cost of another UMR vs. the cost of bigger
		 * UMR.
		 */
		if (umem->odp_data->dma_list[idx] &
		    (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) {
			if (!in_block) {
				blk_start_idx = idx;
				in_block = 1;
			}
		} else {
			u64 umr_offset = idx & umr_block_mask;

			if (in_block && umr_offset == 0) {
				mlx5_ib_update_mtt(mr, blk_start_idx,
						   idx - blk_start_idx, 1);
				in_block = 0;
			}
		}
	}
	if (in_block)
		mlx5_ib_update_mtt(mr, blk_start_idx, idx - blk_start_idx + 1,
				   1);

	/*
	 * We are now sure that the device will not access the
	 * memory. We can safely unmap it, and mark it as dirty if
	 * needed.
	 */

	ib_umem_odp_unmap_dma_pages(umem, start, end);
}

#define COPY_ODP_BIT_MLX_TO_IB(reg, ib_caps, field_name, bit_name) do {	\
	if (be32_to_cpu(reg.field_name) & MLX5_ODP_SUPPORT_##bit_name)	\
		ib_caps->field_name |= IB_ODP_SUPPORT_##bit_name;	\
} while (0)

int mlx5_ib_internal_query_odp_caps(struct mlx5_ib_dev *dev)
{
	int err;
	struct mlx5_odp_caps hw_caps;
	struct ib_odp_caps *caps = &dev->odp_caps;

	memset(caps, 0, sizeof(*caps));

	if (!(dev->mdev->caps.gen.flags & MLX5_DEV_CAP_FLAG_ON_DMND_PG))
		return 0;

	err = mlx5_query_odp_caps(dev->mdev, &hw_caps);
	if (err)
		goto out;

	caps->general_caps = IB_ODP_SUPPORT;
	COPY_ODP_BIT_MLX_TO_IB(hw_caps, caps, per_transport_caps.ud_odp_caps,
			       SEND);
	COPY_ODP_BIT_MLX_TO_IB(hw_caps, caps, per_transport_caps.rc_odp_caps,
			       SEND);
	COPY_ODP_BIT_MLX_TO_IB(hw_caps, caps, per_transport_caps.rc_odp_caps,
			       RECV);
	COPY_ODP_BIT_MLX_TO_IB(hw_caps, caps, per_transport_caps.rc_odp_caps,
			       WRITE);
	COPY_ODP_BIT_MLX_TO_IB(hw_caps, caps, per_transport_caps.rc_odp_caps,
			       READ);

out:
	return err;
}

static struct mlx5_ib_mr *mlx5_ib_odp_find_mr_lkey(struct mlx5_ib_dev *dev,
						   u32 key)
{
	u32 base_key = mlx5_base_mkey(key);
	struct mlx5_core_mr *mmr = __mlx5_mr_lookup(dev->mdev, base_key);
	struct mlx5_ib_mr *mr = container_of(mmr, struct mlx5_ib_mr, mmr);

	if (!mmr || mmr->key != key || !mr->live)
		return NULL;

	return container_of(mmr, struct mlx5_ib_mr, mmr);
}

static void mlx5_ib_page_fault_resume(struct mlx5_ib_qp *qp,
				      struct mlx5_ib_pfault *pfault,
				      int error) {
	struct mlx5_ib_dev *dev = to_mdev(qp->ibqp.pd->device);
	int ret = mlx5_core_page_fault_resume(dev->mdev, qp->mqp.qpn,
					      pfault->mpfault.flags,
					      error);
	if (ret)
		pr_err("Failed to resolve the page fault on QP 0x%x\n",
		       qp->mqp.qpn);
}

/*
 * Handle a single data segment in a page-fault WQE.
 *
 * Returns number of pages retrieved on success. The caller will continue to
 * the next data segment.
 * Can return the following error codes:
 * -EAGAIN to designate a temporary error. The caller will abort handling the
 *  page fault and resolve it.
 * -EFAULT when there's an error mapping the requested pages. The caller will
 *  abort the page fault handling and possibly move the QP to an error state.
 * On other errors the QP should also be closed with an error.
 */
static int pagefault_single_data_segment(struct mlx5_ib_qp *qp,
					 struct mlx5_ib_pfault *pfault,
					 u32 key, u64 io_virt, size_t bcnt,
					 u32 *bytes_mapped)
{
	struct mlx5_ib_dev *mib_dev = to_mdev(qp->ibqp.pd->device);
	int srcu_key;
	unsigned int current_seq;
	u64 start_idx;
	int npages = 0, ret = 0;
	struct mlx5_ib_mr *mr;
	u64 access_mask = ODP_READ_ALLOWED_BIT;

	srcu_key = srcu_read_lock(&mib_dev->mr_srcu);
	mr = mlx5_ib_odp_find_mr_lkey(mib_dev, key);
	/*
	 * If we didn't find the MR, it means the MR was closed while we were
	 * handling the ODP event. In this case we return -EFAULT so that the
	 * QP will be closed.
	 */
	if (!mr || !mr->ibmr.pd) {
		pr_err("Failed to find relevant mr for lkey=0x%06x, probably the MR was destroyed\n",
		       key);
		ret = -EFAULT;
		goto srcu_unlock;
	}
	if (!mr->umem->odp_data) {
		pr_debug("skipping non ODP MR (lkey=0x%06x) in page fault handler.\n",
			 key);
		if (bytes_mapped)
			*bytes_mapped +=
				(bcnt - pfault->mpfault.bytes_committed);
		goto srcu_unlock;
	}
	if (mr->ibmr.pd != qp->ibqp.pd) {
		pr_err("Page-fault with different PDs for QP and MR.\n");
		ret = -EFAULT;
		goto srcu_unlock;
	}

	current_seq = ACCESS_ONCE(mr->umem->odp_data->notifiers_seq);
	/*
	 * Ensure the sequence number is valid for some time before we call
	 * gup.
	 */
	smp_rmb();

	/*
	 * Avoid branches - this code will perform correctly
	 * in all iterations (in iteration 2 and above,
	 * bytes_committed == 0).
	 */
	io_virt += pfault->mpfault.bytes_committed;
	bcnt -= pfault->mpfault.bytes_committed;

	start_idx = (io_virt - (mr->mmr.iova & PAGE_MASK)) >> PAGE_SHIFT;

	if (mr->umem->writable)
		access_mask |= ODP_WRITE_ALLOWED_BIT;
	npages = ib_umem_odp_map_dma_pages(mr->umem, io_virt, bcnt,
					   access_mask, current_seq);
	if (npages < 0) {
		ret = npages;
		goto srcu_unlock;
	}

	if (npages > 0) {
		mutex_lock(&mr->umem->odp_data->umem_mutex);
		if (!ib_umem_mmu_notifier_retry(mr->umem, current_seq)) {
			/*
			 * No need to check whether the MTTs really belong to
			 * this MR, since ib_umem_odp_map_dma_pages already
			 * checks this.
			 */
			ret = mlx5_ib_update_mtt(mr, start_idx, npages, 0);
		} else {
			ret = -EAGAIN;
		}
		mutex_unlock(&mr->umem->odp_data->umem_mutex);
		if (ret < 0) {
			if (ret != -EAGAIN)
				pr_err("Failed to update mkey page tables\n");
			goto srcu_unlock;
		}

		if (bytes_mapped) {
			u32 new_mappings = npages * PAGE_SIZE -
				(io_virt - round_down(io_virt, PAGE_SIZE));
			*bytes_mapped += min_t(u32, new_mappings, bcnt);
		}
	}

srcu_unlock:
	if (ret == -EAGAIN) {
		if (!mr->umem->odp_data->dying) {
			struct ib_umem_odp *odp_data = mr->umem->odp_data;
			unsigned long timeout =
				msecs_to_jiffies(MMU_NOTIFIER_TIMEOUT);

			if (!wait_for_completion_timeout(
					&odp_data->notifier_completion,
					timeout)) {
				pr_warn("timeout waiting for mmu notifier completion\n");
			}
		} else {
			/* The MR is being killed, kill the QP as well. */
			ret = -EFAULT;
		}
	}
	srcu_read_unlock(&mib_dev->mr_srcu, srcu_key);
	pfault->mpfault.bytes_committed = 0;
	return ret ? ret : npages;
}

/**
 * Parse a series of data segments for page fault handling.
 *
 * @qp the QP on which the fault occurred.
 * @pfault contains page fault information.
 * @wqe points at the first data segment in the WQE.
 * @wqe_end points after the end of the WQE.
 * @bytes_mapped receives the number of bytes that the function was able to
 *               map. This allows the caller to decide intelligently whether
 *               enough memory was mapped to resolve the page fault
 *               successfully (e.g. enough for the next MTU, or the entire
 *               WQE).
 * @total_wqe_bytes receives the total data size of this WQE in bytes (minus
 *                  the committed bytes).
 *
 * Returns the number of pages loaded if positive, zero for an empty WQE, or a
 * negative error code.
 */
static int pagefault_data_segments(struct mlx5_ib_qp *qp,
				   struct mlx5_ib_pfault *pfault, void *wqe,
				   void *wqe_end, u32 *bytes_mapped,
				   u32 *total_wqe_bytes, int receive_queue)
{
	int ret = 0, npages = 0;
	u64 io_virt;
	u32 key;
	u32 byte_count;
	size_t bcnt;
	int inline_segment;

	/* Skip SRQ next-WQE segment. */
	if (receive_queue && qp->ibqp.srq)
		wqe += sizeof(struct mlx5_wqe_srq_next_seg);

	if (bytes_mapped)
		*bytes_mapped = 0;
	if (total_wqe_bytes)
		*total_wqe_bytes = 0;

	while (wqe < wqe_end) {
		struct mlx5_wqe_data_seg *dseg = wqe;

		io_virt = be64_to_cpu(dseg->addr);
		key = be32_to_cpu(dseg->lkey);
		byte_count = be32_to_cpu(dseg->byte_count);
		inline_segment = !!(byte_count &  MLX5_INLINE_SEG);
		bcnt	       = byte_count & ~MLX5_INLINE_SEG;

		if (inline_segment) {
			bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK;
			wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt,
				     16);
		} else {
			wqe += sizeof(*dseg);
		}

		/* receive WQE end of sg list. */
		if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY &&
		    io_virt == 0)
			break;

		if (!inline_segment && total_wqe_bytes) {
			*total_wqe_bytes += bcnt - min_t(size_t, bcnt,
					pfault->mpfault.bytes_committed);
		}

		/* A zero length data segment designates a length of 2GB. */
		if (bcnt == 0)
			bcnt = 1U << 31;

		if (inline_segment || bcnt <= pfault->mpfault.bytes_committed) {
			pfault->mpfault.bytes_committed -=
				min_t(size_t, bcnt,
				      pfault->mpfault.bytes_committed);
			continue;
		}

		ret = pagefault_single_data_segment(qp, pfault, key, io_virt,
						    bcnt, bytes_mapped);
		if (ret < 0)
			break;
		npages += ret;
	}

	return ret < 0 ? ret : npages;
}

/*
 * Parse initiator WQE. Advances the wqe pointer to point at the
 * scatter-gather list, and set wqe_end to the end of the WQE.
 */
static int mlx5_ib_mr_initiator_pfault_handler(
	struct mlx5_ib_qp *qp, struct mlx5_ib_pfault *pfault,
	void **wqe, void **wqe_end, int wqe_length)
{
	struct mlx5_ib_dev *dev = to_mdev(qp->ibqp.pd->device);
	struct mlx5_wqe_ctrl_seg *ctrl = *wqe;
	u16 wqe_index = pfault->mpfault.wqe.wqe_index;
	unsigned ds, opcode;
#if defined(DEBUG)
	u32 ctrl_wqe_index, ctrl_qpn;
#endif

	ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK;
	if (ds * MLX5_WQE_DS_UNITS > wqe_length) {
		mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n",
			    ds, wqe_length);
		return -EFAULT;
	}

	if (ds == 0) {
		mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n",
			    wqe_index, qp->mqp.qpn);
		return -EFAULT;
	}

#if defined(DEBUG)
	ctrl_wqe_index = (be32_to_cpu(ctrl->opmod_idx_opcode) &
			MLX5_WQE_CTRL_WQE_INDEX_MASK) >>
			MLX5_WQE_CTRL_WQE_INDEX_SHIFT;
	if (wqe_index != ctrl_wqe_index) {
		mlx5_ib_err(dev, "Got WQE with invalid wqe_index. wqe_index=0x%x, qpn=0x%x ctrl->wqe_index=0x%x\n",
			    wqe_index, qp->mqp.qpn,
			    ctrl_wqe_index);
		return -EFAULT;
	}

	ctrl_qpn = (be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_QPN_MASK) >>
		MLX5_WQE_CTRL_QPN_SHIFT;
	if (qp->mqp.qpn != ctrl_qpn) {
		mlx5_ib_err(dev, "Got WQE with incorrect QP number. wqe_index=0x%x, qpn=0x%x ctrl->qpn=0x%x\n",
			    wqe_index, qp->mqp.qpn,
			    ctrl_qpn);
		return -EFAULT;
	}
#endif /* DEBUG */

	*wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS;
	*wqe += sizeof(*ctrl);

	opcode = be32_to_cpu(ctrl->opmod_idx_opcode) &
		 MLX5_WQE_CTRL_OPCODE_MASK;
	switch (qp->ibqp.qp_type) {
	case IB_QPT_RC:
		switch (opcode) {
		case MLX5_OPCODE_SEND:
		case MLX5_OPCODE_SEND_IMM:
		case MLX5_OPCODE_SEND_INVAL:
			if (!(dev->odp_caps.per_transport_caps.rc_odp_caps &
			      IB_ODP_SUPPORT_SEND))
				goto invalid_transport_or_opcode;
			break;
		case MLX5_OPCODE_RDMA_WRITE:
		case MLX5_OPCODE_RDMA_WRITE_IMM:
			if (!(dev->odp_caps.per_transport_caps.rc_odp_caps &
			      IB_ODP_SUPPORT_WRITE))
				goto invalid_transport_or_opcode;
			*wqe += sizeof(struct mlx5_wqe_raddr_seg);
			break;
		case MLX5_OPCODE_RDMA_READ:
			if (!(dev->odp_caps.per_transport_caps.rc_odp_caps &
			      IB_ODP_SUPPORT_READ))
				goto invalid_transport_or_opcode;
			*wqe += sizeof(struct mlx5_wqe_raddr_seg);
			break;
		default:
			goto invalid_transport_or_opcode;
		}
		break;
	case IB_QPT_UD:
		switch (opcode) {
		case MLX5_OPCODE_SEND:
		case MLX5_OPCODE_SEND_IMM:
			if (!(dev->odp_caps.per_transport_caps.ud_odp_caps &
			      IB_ODP_SUPPORT_SEND))
				goto invalid_transport_or_opcode;
			*wqe += sizeof(struct mlx5_wqe_datagram_seg);
			break;
		default:
			goto invalid_transport_or_opcode;
		}
		break;
	default:
invalid_transport_or_opcode:
		mlx5_ib_err(dev, "ODP fault on QP of an unsupported opcode or transport. transport: 0x%x opcode: 0x%x.\n",
			    qp->ibqp.qp_type, opcode);
		return -EFAULT;
	}

	return 0;
}

/*
 * Parse responder WQE. Advances the wqe pointer to point at the
 * scatter-gather list, and set wqe_end to the end of the WQE.
 */
static int mlx5_ib_mr_responder_pfault_handler(
	struct mlx5_ib_qp *qp, struct mlx5_ib_pfault *pfault,
	void **wqe, void **wqe_end, int wqe_length)
{
	struct mlx5_ib_dev *dev = to_mdev(qp->ibqp.pd->device);
	struct mlx5_ib_wq *wq = &qp->rq;
	int wqe_size = 1 << wq->wqe_shift;

	if (qp->ibqp.srq) {
		mlx5_ib_err(dev, "ODP fault on SRQ is not supported\n");
		return -EFAULT;
	}

	if (qp->wq_sig) {
		mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n");
		return -EFAULT;
	}

	if (wqe_size > wqe_length) {
		mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
		return -EFAULT;
	}

	switch (qp->ibqp.qp_type) {
	case IB_QPT_RC:
		if (!(dev->odp_caps.per_transport_caps.rc_odp_caps &
		      IB_ODP_SUPPORT_RECV))
			goto invalid_transport_or_opcode;
		break;
	default:
invalid_transport_or_opcode:
		mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport. transport: 0x%x\n",
			    qp->ibqp.qp_type);
		return -EFAULT;
	}

	*wqe_end = *wqe + wqe_size;

	return 0;
}

static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_qp *qp,
					  struct mlx5_ib_pfault *pfault)
{
	struct mlx5_ib_dev *dev = to_mdev(qp->ibqp.pd->device);
	int ret;
	void *wqe, *wqe_end;
	u32 bytes_mapped, total_wqe_bytes;
	char *buffer = NULL;
	int resume_with_error = 0;
	u16 wqe_index = pfault->mpfault.wqe.wqe_index;
	int requestor = pfault->mpfault.flags & MLX5_PFAULT_REQUESTOR;

	buffer = (char *)__get_free_page(GFP_KERNEL);
	if (!buffer) {
		mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n");
		resume_with_error = 1;
		goto resolve_page_fault;
	}

	ret = mlx5_ib_read_user_wqe(qp, requestor, wqe_index, buffer,
				    PAGE_SIZE);
	if (ret < 0) {
		mlx5_ib_err(dev, "Failed reading a WQE following page fault, error=%x, wqe_index=%x, qpn=%x\n",
			    -ret, wqe_index, qp->mqp.qpn);
		resume_with_error = 1;
		goto resolve_page_fault;
	}

	wqe = buffer;
	if (requestor)
		ret = mlx5_ib_mr_initiator_pfault_handler(qp, pfault, &wqe,
							  &wqe_end, ret);
	else
		ret = mlx5_ib_mr_responder_pfault_handler(qp, pfault, &wqe,
							  &wqe_end, ret);
	if (ret < 0) {
		resume_with_error = 1;
		goto resolve_page_fault;
	}

	if (wqe >= wqe_end) {
		mlx5_ib_err(dev, "ODP fault on invalid WQE.\n");
		resume_with_error = 1;
		goto resolve_page_fault;
	}

	ret = pagefault_data_segments(qp, pfault, wqe, wqe_end, &bytes_mapped,
				      &total_wqe_bytes, !requestor);
	if (ret == -EAGAIN) {
		goto resolve_page_fault;
	} else if (ret < 0 || total_wqe_bytes > bytes_mapped) {
		mlx5_ib_err(dev, "Error getting user pages for page fault. Error: 0x%x\n",
			    -ret);
		resume_with_error = 1;
		goto resolve_page_fault;
	}

resolve_page_fault:
	mlx5_ib_page_fault_resume(qp, pfault, resume_with_error);
	mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, flags: 0x%x\n",
		    qp->mqp.qpn, resume_with_error, pfault->mpfault.flags);

	free_page((unsigned long)buffer);
}

static int pages_in_range(u64 address, u32 length)
{
	return (ALIGN(address + length, PAGE_SIZE) -
		(address & PAGE_MASK)) >> PAGE_SHIFT;
}

static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_qp *qp,
					   struct mlx5_ib_pfault *pfault)
{
	struct mlx5_pagefault *mpfault = &pfault->mpfault;
	u64 address;
	u32 length;
	u32 prefetch_len = mpfault->bytes_committed;
	int prefetch_activated = 0;
	u32 rkey = mpfault->rdma.r_key;
	int ret;

	/* The RDMA responder handler handles the page fault in two parts.
	 * First it brings the necessary pages for the current packet
	 * (and uses the pfault context), and then (after resuming the QP)
	 * prefetches more pages. The second operation cannot use the pfault
	 * context and therefore uses the dummy_pfault context allocated on
	 * the stack */
	struct mlx5_ib_pfault dummy_pfault = {};

	dummy_pfault.mpfault.bytes_committed = 0;

	mpfault->rdma.rdma_va += mpfault->bytes_committed;
	mpfault->rdma.rdma_op_len -= min(mpfault->bytes_committed,
					 mpfault->rdma.rdma_op_len);
	mpfault->bytes_committed = 0;

	address = mpfault->rdma.rdma_va;
	length  = mpfault->rdma.rdma_op_len;

	/* For some operations, the hardware cannot tell the exact message
	 * length, and in those cases it reports zero. Use prefetch
	 * logic. */
	if (length == 0) {
		prefetch_activated = 1;
		length = mpfault->rdma.packet_size;
		prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len);
	}

	ret = pagefault_single_data_segment(qp, pfault, rkey, address, length,
					    NULL);
	if (ret == -EAGAIN) {
		/* We're racing with an invalidation, don't prefetch */
		prefetch_activated = 0;
	} else if (ret < 0 || pages_in_range(address, length) > ret) {
		mlx5_ib_page_fault_resume(qp, pfault, 1);
		return;
	}

	mlx5_ib_page_fault_resume(qp, pfault, 0);

	/* At this point, there might be a new pagefault already arriving in
	 * the eq, switch to the dummy pagefault for the rest of the
	 * processing. We're still OK with the objects being alive as the
	 * work-queue is being fenced. */

	if (prefetch_activated) {
		ret = pagefault_single_data_segment(qp, &dummy_pfault, rkey,
						    address,
						    prefetch_len,
						    NULL);
		if (ret < 0) {
			pr_warn("Prefetch failed (ret = %d, prefetch_activated = %d) for QPN %d, address: 0x%.16llx, length = 0x%.16x\n",
				ret, prefetch_activated,
				qp->ibqp.qp_num, address, prefetch_len);
		}
	}
}

void mlx5_ib_mr_pfault_handler(struct mlx5_ib_qp *qp,
			       struct mlx5_ib_pfault *pfault)
{
	u8 event_subtype = pfault->mpfault.event_subtype;

	switch (event_subtype) {
	case MLX5_PFAULT_SUBTYPE_WQE:
		mlx5_ib_mr_wqe_pfault_handler(qp, pfault);
		break;
	case MLX5_PFAULT_SUBTYPE_RDMA:
		mlx5_ib_mr_rdma_pfault_handler(qp, pfault);
		break;
	default:
		pr_warn("Invalid page fault event subtype: 0x%x\n",
			event_subtype);
		mlx5_ib_page_fault_resume(qp, pfault, 1);
		break;
	}
}

static void mlx5_ib_qp_pfault_action(struct work_struct *work)
{
	struct mlx5_ib_pfault *pfault = container_of(work,
						     struct mlx5_ib_pfault,
						     work);
	enum mlx5_ib_pagefault_context context =
		mlx5_ib_get_pagefault_context(&pfault->mpfault);
	struct mlx5_ib_qp *qp = container_of(pfault, struct mlx5_ib_qp,
					     pagefaults[context]);
	mlx5_ib_mr_pfault_handler(qp, pfault);
}

void mlx5_ib_qp_disable_pagefaults(struct mlx5_ib_qp *qp)
{
	unsigned long flags;

	spin_lock_irqsave(&qp->disable_page_faults_lock, flags);
	qp->disable_page_faults = 1;
	spin_unlock_irqrestore(&qp->disable_page_faults_lock, flags);

	/*
	 * Note that at this point, we are guarenteed that no more
	 * work queue elements will be posted to the work queue with
	 * the QP we are closing.
	 */
	flush_workqueue(mlx5_ib_page_fault_wq);
}

void mlx5_ib_qp_enable_pagefaults(struct mlx5_ib_qp *qp)
{
	unsigned long flags;

	spin_lock_irqsave(&qp->disable_page_faults_lock, flags);
	qp->disable_page_faults = 0;
	spin_unlock_irqrestore(&qp->disable_page_faults_lock, flags);
}

static void mlx5_ib_pfault_handler(struct mlx5_core_qp *qp,
				   struct mlx5_pagefault *pfault)
{
	/*
	 * Note that we will only get one fault event per QP per context
	 * (responder/initiator, read/write), until we resolve the page fault
	 * with the mlx5_ib_page_fault_resume command. Since this function is
	 * called from within the work element, there is no risk of missing
	 * events.
	 */
	struct mlx5_ib_qp *mibqp = to_mibqp(qp);
	enum mlx5_ib_pagefault_context context =
		mlx5_ib_get_pagefault_context(pfault);
	struct mlx5_ib_pfault *qp_pfault = &mibqp->pagefaults[context];

	qp_pfault->mpfault = *pfault;

	/* No need to stop interrupts here since we are in an interrupt */
	spin_lock(&mibqp->disable_page_faults_lock);
	if (!mibqp->disable_page_faults)
		queue_work(mlx5_ib_page_fault_wq, &qp_pfault->work);
	spin_unlock(&mibqp->disable_page_faults_lock);
}

void mlx5_ib_odp_create_qp(struct mlx5_ib_qp *qp)
{
	int i;

	qp->disable_page_faults = 1;
	spin_lock_init(&qp->disable_page_faults_lock);

	qp->mqp.pfault_handler	= mlx5_ib_pfault_handler;

	for (i = 0; i < MLX5_IB_PAGEFAULT_CONTEXTS; ++i)
		INIT_WORK(&qp->pagefaults[i].work, mlx5_ib_qp_pfault_action);
}

int mlx5_ib_odp_init_one(struct mlx5_ib_dev *ibdev)
{
	int ret;

	ret = init_srcu_struct(&ibdev->mr_srcu);
	if (ret)
		return ret;

	return 0;
}

void mlx5_ib_odp_remove_one(struct mlx5_ib_dev *ibdev)
{
	cleanup_srcu_struct(&ibdev->mr_srcu);
}

int __init mlx5_ib_odp_init(void)
{
	mlx5_ib_page_fault_wq =
		create_singlethread_workqueue("mlx5_ib_page_faults");
	if (!mlx5_ib_page_fault_wq)
		return -ENOMEM;

	return 0;
}

void mlx5_ib_odp_cleanup(void)
{
	destroy_workqueue(mlx5_ib_page_fault_wq);
}