summaryrefslogtreecommitdiffstats
path: root/drivers/input/rmi4/rmi_driver.c
blob: f5954981e9ee5bb68002af651557232c673eb30c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
/*
 * Copyright (c) 2011-2016 Synaptics Incorporated
 * Copyright (c) 2011 Unixphere
 *
 * This driver provides the core support for a single RMI4-based device.
 *
 * The RMI4 specification can be found here (URL split for line length):
 *
 * http://www.synaptics.com/sites/default/files/
 *      511-000136-01-Rev-E-RMI4-Interfacing-Guide.pdf
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published by
 * the Free Software Foundation.
 */

#include <linux/bitmap.h>
#include <linux/delay.h>
#include <linux/fs.h>
#include <linux/irq.h>
#include <linux/pm.h>
#include <linux/slab.h>
#include <linux/of.h>
#include <uapi/linux/input.h>
#include <linux/rmi.h>
#include "rmi_bus.h"
#include "rmi_driver.h"

#define HAS_NONSTANDARD_PDT_MASK 0x40
#define RMI4_MAX_PAGE 0xff
#define RMI4_PAGE_SIZE 0x100
#define RMI4_PAGE_MASK 0xFF00

#define RMI_DEVICE_RESET_CMD	0x01
#define DEFAULT_RESET_DELAY_MS	100

void rmi_free_function_list(struct rmi_device *rmi_dev)
{
	struct rmi_function *fn, *tmp;
	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);

	rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Freeing function list\n");

	/* Doing it in the reverse order so F01 will be removed last */
	list_for_each_entry_safe_reverse(fn, tmp,
					 &data->function_list, node) {
		list_del(&fn->node);
		rmi_unregister_function(fn);
	}

	devm_kfree(&rmi_dev->dev, data->irq_memory);
	data->irq_memory = NULL;
	data->irq_status = NULL;
	data->fn_irq_bits = NULL;
	data->current_irq_mask = NULL;
	data->new_irq_mask = NULL;

	data->f01_container = NULL;
	data->f34_container = NULL;
}

static int reset_one_function(struct rmi_function *fn)
{
	struct rmi_function_handler *fh;
	int retval = 0;

	if (!fn || !fn->dev.driver)
		return 0;

	fh = to_rmi_function_handler(fn->dev.driver);
	if (fh->reset) {
		retval = fh->reset(fn);
		if (retval < 0)
			dev_err(&fn->dev, "Reset failed with code %d.\n",
				retval);
	}

	return retval;
}

static int configure_one_function(struct rmi_function *fn)
{
	struct rmi_function_handler *fh;
	int retval = 0;

	if (!fn || !fn->dev.driver)
		return 0;

	fh = to_rmi_function_handler(fn->dev.driver);
	if (fh->config) {
		retval = fh->config(fn);
		if (retval < 0)
			dev_err(&fn->dev, "Config failed with code %d.\n",
				retval);
	}

	return retval;
}

static int rmi_driver_process_reset_requests(struct rmi_device *rmi_dev)
{
	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
	struct rmi_function *entry;
	int retval;

	list_for_each_entry(entry, &data->function_list, node) {
		retval = reset_one_function(entry);
		if (retval < 0)
			return retval;
	}

	return 0;
}

static int rmi_driver_process_config_requests(struct rmi_device *rmi_dev)
{
	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
	struct rmi_function *entry;
	int retval;

	list_for_each_entry(entry, &data->function_list, node) {
		retval = configure_one_function(entry);
		if (retval < 0)
			return retval;
	}

	return 0;
}

static void process_one_interrupt(struct rmi_driver_data *data,
				  struct rmi_function *fn)
{
	struct rmi_function_handler *fh;

	if (!fn || !fn->dev.driver)
		return;

	fh = to_rmi_function_handler(fn->dev.driver);
	if (fh->attention) {
		bitmap_and(data->fn_irq_bits, data->irq_status, fn->irq_mask,
				data->irq_count);
		if (!bitmap_empty(data->fn_irq_bits, data->irq_count))
			fh->attention(fn, data->fn_irq_bits);
	}
}

static int rmi_process_interrupt_requests(struct rmi_device *rmi_dev)
{
	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
	struct device *dev = &rmi_dev->dev;
	struct rmi_function *entry;
	int error;

	if (!data)
		return 0;

	if (!data->attn_data.data) {
		error = rmi_read_block(rmi_dev,
				data->f01_container->fd.data_base_addr + 1,
				data->irq_status, data->num_of_irq_regs);
		if (error < 0) {
			dev_err(dev, "Failed to read irqs, code=%d\n", error);
			return error;
		}
	}

	mutex_lock(&data->irq_mutex);
	bitmap_and(data->irq_status, data->irq_status, data->current_irq_mask,
	       data->irq_count);
	/*
	 * At this point, irq_status has all bits that are set in the
	 * interrupt status register and are enabled.
	 */
	mutex_unlock(&data->irq_mutex);

	/*
	 * It would be nice to be able to use irq_chip to handle these
	 * nested IRQs.  Unfortunately, most of the current customers for
	 * this driver are using older kernels (3.0.x) that don't support
	 * the features required for that.  Once they've shifted to more
	 * recent kernels (say, 3.3 and higher), this should be switched to
	 * use irq_chip.
	 */
	list_for_each_entry(entry, &data->function_list, node)
		process_one_interrupt(data, entry);

	if (data->input)
		input_sync(data->input);

	return 0;
}

void rmi_set_attn_data(struct rmi_device *rmi_dev, unsigned long irq_status,
		       void *data, size_t size)
{
	struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
	struct rmi4_attn_data attn_data;
	void *fifo_data;

	if (!drvdata->enabled)
		return;

	fifo_data = kmemdup(data, size, GFP_ATOMIC);
	if (!fifo_data)
		return;

	attn_data.irq_status = irq_status;
	attn_data.size = size;
	attn_data.data = fifo_data;

	kfifo_put(&drvdata->attn_fifo, attn_data);
}
EXPORT_SYMBOL_GPL(rmi_set_attn_data);

static irqreturn_t rmi_irq_fn(int irq, void *dev_id)
{
	struct rmi_device *rmi_dev = dev_id;
	struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
	struct rmi4_attn_data attn_data = {0};
	int ret, count;

	count = kfifo_get(&drvdata->attn_fifo, &attn_data);
	if (count) {
		*(drvdata->irq_status) = attn_data.irq_status;
		drvdata->attn_data = attn_data;
	}

	ret = rmi_process_interrupt_requests(rmi_dev);
	if (ret)
		rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev,
			"Failed to process interrupt request: %d\n", ret);

	if (count) {
		kfree(attn_data.data);
		attn_data.data = NULL;
	}

	if (!kfifo_is_empty(&drvdata->attn_fifo))
		return rmi_irq_fn(irq, dev_id);

	return IRQ_HANDLED;
}

static int rmi_irq_init(struct rmi_device *rmi_dev)
{
	struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
	int irq_flags = irq_get_trigger_type(pdata->irq);
	int ret;

	if (!irq_flags)
		irq_flags = IRQF_TRIGGER_LOW;

	ret = devm_request_threaded_irq(&rmi_dev->dev, pdata->irq, NULL,
					rmi_irq_fn, irq_flags | IRQF_ONESHOT,
					dev_driver_string(rmi_dev->xport->dev),
					rmi_dev);
	if (ret < 0) {
		dev_err(&rmi_dev->dev, "Failed to register interrupt %d\n",
			pdata->irq);

		return ret;
	}

	data->enabled = true;

	return 0;
}

struct rmi_function *rmi_find_function(struct rmi_device *rmi_dev, u8 number)
{
	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
	struct rmi_function *entry;

	list_for_each_entry(entry, &data->function_list, node) {
		if (entry->fd.function_number == number)
			return entry;
	}

	return NULL;
}

static int suspend_one_function(struct rmi_function *fn)
{
	struct rmi_function_handler *fh;
	int retval = 0;

	if (!fn || !fn->dev.driver)
		return 0;

	fh = to_rmi_function_handler(fn->dev.driver);
	if (fh->suspend) {
		retval = fh->suspend(fn);
		if (retval < 0)
			dev_err(&fn->dev, "Suspend failed with code %d.\n",
				retval);
	}

	return retval;
}

static int rmi_suspend_functions(struct rmi_device *rmi_dev)
{
	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
	struct rmi_function *entry;
	int retval;

	list_for_each_entry(entry, &data->function_list, node) {
		retval = suspend_one_function(entry);
		if (retval < 0)
			return retval;
	}

	return 0;
}

static int resume_one_function(struct rmi_function *fn)
{
	struct rmi_function_handler *fh;
	int retval = 0;

	if (!fn || !fn->dev.driver)
		return 0;

	fh = to_rmi_function_handler(fn->dev.driver);
	if (fh->resume) {
		retval = fh->resume(fn);
		if (retval < 0)
			dev_err(&fn->dev, "Resume failed with code %d.\n",
				retval);
	}

	return retval;
}

static int rmi_resume_functions(struct rmi_device *rmi_dev)
{
	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
	struct rmi_function *entry;
	int retval;

	list_for_each_entry(entry, &data->function_list, node) {
		retval = resume_one_function(entry);
		if (retval < 0)
			return retval;
	}

	return 0;
}

int rmi_enable_sensor(struct rmi_device *rmi_dev)
{
	int retval = 0;

	retval = rmi_driver_process_config_requests(rmi_dev);
	if (retval < 0)
		return retval;

	return rmi_process_interrupt_requests(rmi_dev);
}

/**
 * rmi_driver_set_input_params - set input device id and other data.
 *
 * @rmi_dev: Pointer to an RMI device
 * @input: Pointer to input device
 *
 */
static int rmi_driver_set_input_params(struct rmi_device *rmi_dev,
				struct input_dev *input)
{
	input->name = SYNAPTICS_INPUT_DEVICE_NAME;
	input->id.vendor  = SYNAPTICS_VENDOR_ID;
	input->id.bustype = BUS_RMI;
	return 0;
}

static void rmi_driver_set_input_name(struct rmi_device *rmi_dev,
				struct input_dev *input)
{
	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
	const char *device_name = rmi_f01_get_product_ID(data->f01_container);
	char *name;

	name = devm_kasprintf(&rmi_dev->dev, GFP_KERNEL,
			      "Synaptics %s", device_name);
	if (!name)
		return;

	input->name = name;
}

static int rmi_driver_set_irq_bits(struct rmi_device *rmi_dev,
				   unsigned long *mask)
{
	int error = 0;
	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
	struct device *dev = &rmi_dev->dev;

	mutex_lock(&data->irq_mutex);
	bitmap_or(data->new_irq_mask,
		  data->current_irq_mask, mask, data->irq_count);

	error = rmi_write_block(rmi_dev,
			data->f01_container->fd.control_base_addr + 1,
			data->new_irq_mask, data->num_of_irq_regs);
	if (error < 0) {
		dev_err(dev, "%s: Failed to change enabled interrupts!",
							__func__);
		goto error_unlock;
	}
	bitmap_copy(data->current_irq_mask, data->new_irq_mask,
		    data->num_of_irq_regs);

error_unlock:
	mutex_unlock(&data->irq_mutex);
	return error;
}

static int rmi_driver_clear_irq_bits(struct rmi_device *rmi_dev,
				     unsigned long *mask)
{
	int error = 0;
	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
	struct device *dev = &rmi_dev->dev;

	mutex_lock(&data->irq_mutex);
	bitmap_andnot(data->new_irq_mask,
		  data->current_irq_mask, mask, data->irq_count);

	error = rmi_write_block(rmi_dev,
			data->f01_container->fd.control_base_addr + 1,
			data->new_irq_mask, data->num_of_irq_regs);
	if (error < 0) {
		dev_err(dev, "%s: Failed to change enabled interrupts!",
							__func__);
		goto error_unlock;
	}
	bitmap_copy(data->current_irq_mask, data->new_irq_mask,
		    data->num_of_irq_regs);

error_unlock:
	mutex_unlock(&data->irq_mutex);
	return error;
}

static int rmi_driver_reset_handler(struct rmi_device *rmi_dev)
{
	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
	int error;

	/*
	 * Can get called before the driver is fully ready to deal with
	 * this situation.
	 */
	if (!data || !data->f01_container) {
		dev_warn(&rmi_dev->dev,
			 "Not ready to handle reset yet!\n");
		return 0;
	}

	error = rmi_read_block(rmi_dev,
			       data->f01_container->fd.control_base_addr + 1,
			       data->current_irq_mask, data->num_of_irq_regs);
	if (error < 0) {
		dev_err(&rmi_dev->dev, "%s: Failed to read current IRQ mask.\n",
			__func__);
		return error;
	}

	error = rmi_driver_process_reset_requests(rmi_dev);
	if (error < 0)
		return error;

	error = rmi_driver_process_config_requests(rmi_dev);
	if (error < 0)
		return error;

	return 0;
}

static int rmi_read_pdt_entry(struct rmi_device *rmi_dev,
			      struct pdt_entry *entry, u16 pdt_address)
{
	u8 buf[RMI_PDT_ENTRY_SIZE];
	int error;

	error = rmi_read_block(rmi_dev, pdt_address, buf, RMI_PDT_ENTRY_SIZE);
	if (error) {
		dev_err(&rmi_dev->dev, "Read PDT entry at %#06x failed, code: %d.\n",
				pdt_address, error);
		return error;
	}

	entry->page_start = pdt_address & RMI4_PAGE_MASK;
	entry->query_base_addr = buf[0];
	entry->command_base_addr = buf[1];
	entry->control_base_addr = buf[2];
	entry->data_base_addr = buf[3];
	entry->interrupt_source_count = buf[4] & RMI_PDT_INT_SOURCE_COUNT_MASK;
	entry->function_version = (buf[4] & RMI_PDT_FUNCTION_VERSION_MASK) >> 5;
	entry->function_number = buf[5];

	return 0;
}

static void rmi_driver_copy_pdt_to_fd(const struct pdt_entry *pdt,
				      struct rmi_function_descriptor *fd)
{
	fd->query_base_addr = pdt->query_base_addr + pdt->page_start;
	fd->command_base_addr = pdt->command_base_addr + pdt->page_start;
	fd->control_base_addr = pdt->control_base_addr + pdt->page_start;
	fd->data_base_addr = pdt->data_base_addr + pdt->page_start;
	fd->function_number = pdt->function_number;
	fd->interrupt_source_count = pdt->interrupt_source_count;
	fd->function_version = pdt->function_version;
}

#define RMI_SCAN_CONTINUE	0
#define RMI_SCAN_DONE		1

static int rmi_scan_pdt_page(struct rmi_device *rmi_dev,
			     int page,
			     int *empty_pages,
			     void *ctx,
			     int (*callback)(struct rmi_device *rmi_dev,
					     void *ctx,
					     const struct pdt_entry *entry))
{
	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
	struct pdt_entry pdt_entry;
	u16 page_start = RMI4_PAGE_SIZE * page;
	u16 pdt_start = page_start + PDT_START_SCAN_LOCATION;
	u16 pdt_end = page_start + PDT_END_SCAN_LOCATION;
	u16 addr;
	int error;
	int retval;

	for (addr = pdt_start; addr >= pdt_end; addr -= RMI_PDT_ENTRY_SIZE) {
		error = rmi_read_pdt_entry(rmi_dev, &pdt_entry, addr);
		if (error)
			return error;

		if (RMI4_END_OF_PDT(pdt_entry.function_number))
			break;

		retval = callback(rmi_dev, ctx, &pdt_entry);
		if (retval != RMI_SCAN_CONTINUE)
			return retval;
	}

	/*
	 * Count number of empty PDT pages. If a gap of two pages
	 * or more is found, stop scanning.
	 */
	if (addr == pdt_start)
		++*empty_pages;
	else
		*empty_pages = 0;

	return (data->bootloader_mode || *empty_pages >= 2) ?
					RMI_SCAN_DONE : RMI_SCAN_CONTINUE;
}

int rmi_scan_pdt(struct rmi_device *rmi_dev, void *ctx,
		 int (*callback)(struct rmi_device *rmi_dev,
		 void *ctx, const struct pdt_entry *entry))
{
	int page;
	int empty_pages = 0;
	int retval = RMI_SCAN_DONE;

	for (page = 0; page <= RMI4_MAX_PAGE; page++) {
		retval = rmi_scan_pdt_page(rmi_dev, page, &empty_pages,
					   ctx, callback);
		if (retval != RMI_SCAN_CONTINUE)
			break;
	}

	return retval < 0 ? retval : 0;
}

int rmi_read_register_desc(struct rmi_device *d, u16 addr,
				struct rmi_register_descriptor *rdesc)
{
	int ret;
	u8 size_presence_reg;
	u8 buf[35];
	int presense_offset = 1;
	u8 *struct_buf;
	int reg;
	int offset = 0;
	int map_offset = 0;
	int i;
	int b;

	/*
	 * The first register of the register descriptor is the size of
	 * the register descriptor's presense register.
	 */
	ret = rmi_read(d, addr, &size_presence_reg);
	if (ret)
		return ret;
	++addr;

	if (size_presence_reg < 0 || size_presence_reg > 35)
		return -EIO;

	memset(buf, 0, sizeof(buf));

	/*
	 * The presence register contains the size of the register structure
	 * and a bitmap which identified which packet registers are present
	 * for this particular register type (ie query, control, or data).
	 */
	ret = rmi_read_block(d, addr, buf, size_presence_reg);
	if (ret)
		return ret;
	++addr;

	if (buf[0] == 0) {
		presense_offset = 3;
		rdesc->struct_size = buf[1] | (buf[2] << 8);
	} else {
		rdesc->struct_size = buf[0];
	}

	for (i = presense_offset; i < size_presence_reg; i++) {
		for (b = 0; b < 8; b++) {
			if (buf[i] & (0x1 << b))
				bitmap_set(rdesc->presense_map, map_offset, 1);
			++map_offset;
		}
	}

	rdesc->num_registers = bitmap_weight(rdesc->presense_map,
						RMI_REG_DESC_PRESENSE_BITS);

	rdesc->registers = devm_kzalloc(&d->dev, rdesc->num_registers *
				sizeof(struct rmi_register_desc_item),
				GFP_KERNEL);
	if (!rdesc->registers)
		return -ENOMEM;

	/*
	 * Allocate a temporary buffer to hold the register structure.
	 * I'm not using devm_kzalloc here since it will not be retained
	 * after exiting this function
	 */
	struct_buf = kzalloc(rdesc->struct_size, GFP_KERNEL);
	if (!struct_buf)
		return -ENOMEM;

	/*
	 * The register structure contains information about every packet
	 * register of this type. This includes the size of the packet
	 * register and a bitmap of all subpackets contained in the packet
	 * register.
	 */
	ret = rmi_read_block(d, addr, struct_buf, rdesc->struct_size);
	if (ret)
		goto free_struct_buff;

	reg = find_first_bit(rdesc->presense_map, RMI_REG_DESC_PRESENSE_BITS);
	for (i = 0; i < rdesc->num_registers; i++) {
		struct rmi_register_desc_item *item = &rdesc->registers[i];
		int reg_size = struct_buf[offset];

		++offset;
		if (reg_size == 0) {
			reg_size = struct_buf[offset] |
					(struct_buf[offset + 1] << 8);
			offset += 2;
		}

		if (reg_size == 0) {
			reg_size = struct_buf[offset] |
					(struct_buf[offset + 1] << 8) |
					(struct_buf[offset + 2] << 16) |
					(struct_buf[offset + 3] << 24);
			offset += 4;
		}

		item->reg = reg;
		item->reg_size = reg_size;

		map_offset = 0;

		do {
			for (b = 0; b < 7; b++) {
				if (struct_buf[offset] & (0x1 << b))
					bitmap_set(item->subpacket_map,
						map_offset, 1);
				++map_offset;
			}
		} while (struct_buf[offset++] & 0x80);

		item->num_subpackets = bitmap_weight(item->subpacket_map,
						RMI_REG_DESC_SUBPACKET_BITS);

		rmi_dbg(RMI_DEBUG_CORE, &d->dev,
			"%s: reg: %d reg size: %ld subpackets: %d\n", __func__,
			item->reg, item->reg_size, item->num_subpackets);

		reg = find_next_bit(rdesc->presense_map,
				RMI_REG_DESC_PRESENSE_BITS, reg + 1);
	}

free_struct_buff:
	kfree(struct_buf);
	return ret;
}

const struct rmi_register_desc_item *rmi_get_register_desc_item(
				struct rmi_register_descriptor *rdesc, u16 reg)
{
	const struct rmi_register_desc_item *item;
	int i;

	for (i = 0; i < rdesc->num_registers; i++) {
		item = &rdesc->registers[i];
		if (item->reg == reg)
			return item;
	}

	return NULL;
}

size_t rmi_register_desc_calc_size(struct rmi_register_descriptor *rdesc)
{
	const struct rmi_register_desc_item *item;
	int i;
	size_t size = 0;

	for (i = 0; i < rdesc->num_registers; i++) {
		item = &rdesc->registers[i];
		size += item->reg_size;
	}
	return size;
}

/* Compute the register offset relative to the base address */
int rmi_register_desc_calc_reg_offset(
		struct rmi_register_descriptor *rdesc, u16 reg)
{
	const struct rmi_register_desc_item *item;
	int offset = 0;
	int i;

	for (i = 0; i < rdesc->num_registers; i++) {
		item = &rdesc->registers[i];
		if (item->reg == reg)
			return offset;
		++offset;
	}
	return -1;
}

bool rmi_register_desc_has_subpacket(const struct rmi_register_desc_item *item,
	u8 subpacket)
{
	return find_next_bit(item->subpacket_map, RMI_REG_DESC_PRESENSE_BITS,
				subpacket) == subpacket;
}

static int rmi_check_bootloader_mode(struct rmi_device *rmi_dev,
				     const struct pdt_entry *pdt)
{
	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
	int ret;
	u8 status;

	if (pdt->function_number == 0x34 && pdt->function_version > 1) {
		ret = rmi_read(rmi_dev, pdt->data_base_addr, &status);
		if (ret) {
			dev_err(&rmi_dev->dev,
				"Failed to read F34 status: %d.\n", ret);
			return ret;
		}

		if (status & BIT(7))
			data->bootloader_mode = true;
	} else if (pdt->function_number == 0x01) {
		ret = rmi_read(rmi_dev, pdt->data_base_addr, &status);
		if (ret) {
			dev_err(&rmi_dev->dev,
				"Failed to read F01 status: %d.\n", ret);
			return ret;
		}

		if (status & BIT(6))
			data->bootloader_mode = true;
	}

	return 0;
}

static int rmi_count_irqs(struct rmi_device *rmi_dev,
			 void *ctx, const struct pdt_entry *pdt)
{
	int *irq_count = ctx;
	int ret;

	*irq_count += pdt->interrupt_source_count;

	ret = rmi_check_bootloader_mode(rmi_dev, pdt);
	if (ret < 0)
		return ret;

	return RMI_SCAN_CONTINUE;
}

int rmi_initial_reset(struct rmi_device *rmi_dev, void *ctx,
		      const struct pdt_entry *pdt)
{
	int error;

	if (pdt->function_number == 0x01) {
		u16 cmd_addr = pdt->page_start + pdt->command_base_addr;
		u8 cmd_buf = RMI_DEVICE_RESET_CMD;
		const struct rmi_device_platform_data *pdata =
				rmi_get_platform_data(rmi_dev);

		if (rmi_dev->xport->ops->reset) {
			error = rmi_dev->xport->ops->reset(rmi_dev->xport,
								cmd_addr);
			if (error)
				return error;

			return RMI_SCAN_DONE;
		}

		rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Sending reset\n");
		error = rmi_write_block(rmi_dev, cmd_addr, &cmd_buf, 1);
		if (error) {
			dev_err(&rmi_dev->dev,
				"Initial reset failed. Code = %d.\n", error);
			return error;
		}

		mdelay(pdata->reset_delay_ms ?: DEFAULT_RESET_DELAY_MS);

		return RMI_SCAN_DONE;
	}

	/* F01 should always be on page 0. If we don't find it there, fail. */
	return pdt->page_start == 0 ? RMI_SCAN_CONTINUE : -ENODEV;
}

static int rmi_create_function(struct rmi_device *rmi_dev,
			       void *ctx, const struct pdt_entry *pdt)
{
	struct device *dev = &rmi_dev->dev;
	struct rmi_driver_data *data = dev_get_drvdata(dev);
	int *current_irq_count = ctx;
	struct rmi_function *fn;
	int i;
	int error;

	rmi_dbg(RMI_DEBUG_CORE, dev, "Initializing F%02X.\n",
			pdt->function_number);

	fn = kzalloc(sizeof(struct rmi_function) +
			BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long),
		     GFP_KERNEL);
	if (!fn) {
		dev_err(dev, "Failed to allocate memory for F%02X\n",
			pdt->function_number);
		return -ENOMEM;
	}

	INIT_LIST_HEAD(&fn->node);
	rmi_driver_copy_pdt_to_fd(pdt, &fn->fd);

	fn->rmi_dev = rmi_dev;

	fn->num_of_irqs = pdt->interrupt_source_count;
	fn->irq_pos = *current_irq_count;
	*current_irq_count += fn->num_of_irqs;

	for (i = 0; i < fn->num_of_irqs; i++)
		set_bit(fn->irq_pos + i, fn->irq_mask);

	error = rmi_register_function(fn);
	if (error)
		goto err_put_fn;

	if (pdt->function_number == 0x01)
		data->f01_container = fn;
	else if (pdt->function_number == 0x34)
		data->f34_container = fn;

	list_add_tail(&fn->node, &data->function_list);

	return RMI_SCAN_CONTINUE;

err_put_fn:
	put_device(&fn->dev);
	return error;
}

void rmi_enable_irq(struct rmi_device *rmi_dev, bool clear_wake)
{
	struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
	int irq = pdata->irq;
	int irq_flags;
	int retval;

	mutex_lock(&data->enabled_mutex);

	if (data->enabled)
		goto out;

	enable_irq(irq);
	data->enabled = true;
	if (clear_wake && device_may_wakeup(rmi_dev->xport->dev)) {
		retval = disable_irq_wake(irq);
		if (retval)
			dev_warn(&rmi_dev->dev,
				 "Failed to disable irq for wake: %d\n",
				 retval);
	}

	/*
	 * Call rmi_process_interrupt_requests() after enabling irq,
	 * otherwise we may lose interrupt on edge-triggered systems.
	 */
	irq_flags = irq_get_trigger_type(pdata->irq);
	if (irq_flags & IRQ_TYPE_EDGE_BOTH)
		rmi_process_interrupt_requests(rmi_dev);

out:
	mutex_unlock(&data->enabled_mutex);
}

void rmi_disable_irq(struct rmi_device *rmi_dev, bool enable_wake)
{
	struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
	struct rmi4_attn_data attn_data = {0};
	int irq = pdata->irq;
	int retval, count;

	mutex_lock(&data->enabled_mutex);

	if (!data->enabled)
		goto out;

	data->enabled = false;
	disable_irq(irq);
	if (enable_wake && device_may_wakeup(rmi_dev->xport->dev)) {
		retval = enable_irq_wake(irq);
		if (retval)
			dev_warn(&rmi_dev->dev,
				 "Failed to enable irq for wake: %d\n",
				 retval);
	}

	/* make sure the fifo is clean */
	while (!kfifo_is_empty(&data->attn_fifo)) {
		count = kfifo_get(&data->attn_fifo, &attn_data);
		if (count)
			kfree(attn_data.data);
	}

out:
	mutex_unlock(&data->enabled_mutex);
}

int rmi_driver_suspend(struct rmi_device *rmi_dev, bool enable_wake)
{
	int retval;

	retval = rmi_suspend_functions(rmi_dev);
	if (retval)
		dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
			retval);

	rmi_disable_irq(rmi_dev, enable_wake);
	return retval;
}
EXPORT_SYMBOL_GPL(rmi_driver_suspend);

int rmi_driver_resume(struct rmi_device *rmi_dev, bool clear_wake)
{
	int retval;

	rmi_enable_irq(rmi_dev, clear_wake);

	retval = rmi_resume_functions(rmi_dev);
	if (retval)
		dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
			retval);

	return retval;
}
EXPORT_SYMBOL_GPL(rmi_driver_resume);

static int rmi_driver_remove(struct device *dev)
{
	struct rmi_device *rmi_dev = to_rmi_device(dev);

	rmi_disable_irq(rmi_dev, false);

	rmi_f34_remove_sysfs(rmi_dev);
	rmi_free_function_list(rmi_dev);

	return 0;
}

#ifdef CONFIG_OF
static int rmi_driver_of_probe(struct device *dev,
				struct rmi_device_platform_data *pdata)
{
	int retval;

	retval = rmi_of_property_read_u32(dev, &pdata->reset_delay_ms,
					"syna,reset-delay-ms", 1);
	if (retval)
		return retval;

	return 0;
}
#else
static inline int rmi_driver_of_probe(struct device *dev,
					struct rmi_device_platform_data *pdata)
{
	return -ENODEV;
}
#endif

int rmi_probe_interrupts(struct rmi_driver_data *data)
{
	struct rmi_device *rmi_dev = data->rmi_dev;
	struct device *dev = &rmi_dev->dev;
	int irq_count;
	size_t size;
	int retval;

	/*
	 * We need to count the IRQs and allocate their storage before scanning
	 * the PDT and creating the function entries, because adding a new
	 * function can trigger events that result in the IRQ related storage
	 * being accessed.
	 */
	rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Counting IRQs.\n", __func__);
	irq_count = 0;
	data->bootloader_mode = false;

	retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_count_irqs);
	if (retval < 0) {
		dev_err(dev, "IRQ counting failed with code %d.\n", retval);
		return retval;
	}

	if (data->bootloader_mode)
		dev_warn(dev, "Device in bootloader mode.\n");

	data->irq_count = irq_count;
	data->num_of_irq_regs = (data->irq_count + 7) / 8;

	size = BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long);
	data->irq_memory = devm_kzalloc(dev, size * 4, GFP_KERNEL);
	if (!data->irq_memory) {
		dev_err(dev, "Failed to allocate memory for irq masks.\n");
		return -ENOMEM;
	}

	data->irq_status	= data->irq_memory + size * 0;
	data->fn_irq_bits	= data->irq_memory + size * 1;
	data->current_irq_mask	= data->irq_memory + size * 2;
	data->new_irq_mask	= data->irq_memory + size * 3;

	return retval;
}

int rmi_init_functions(struct rmi_driver_data *data)
{
	struct rmi_device *rmi_dev = data->rmi_dev;
	struct device *dev = &rmi_dev->dev;
	int irq_count;
	int retval;

	irq_count = 0;
	rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Creating functions.\n", __func__);
	retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_create_function);
	if (retval < 0) {
		dev_err(dev, "Function creation failed with code %d.\n",
			retval);
		goto err_destroy_functions;
	}

	if (!data->f01_container) {
		dev_err(dev, "Missing F01 container!\n");
		retval = -EINVAL;
		goto err_destroy_functions;
	}

	retval = rmi_read_block(rmi_dev,
				data->f01_container->fd.control_base_addr + 1,
				data->current_irq_mask, data->num_of_irq_regs);
	if (retval < 0) {
		dev_err(dev, "%s: Failed to read current IRQ mask.\n",
			__func__);
		goto err_destroy_functions;
	}

	return 0;

err_destroy_functions:
	rmi_free_function_list(rmi_dev);
	return retval;
}

static int rmi_driver_probe(struct device *dev)
{
	struct rmi_driver *rmi_driver;
	struct rmi_driver_data *data;
	struct rmi_device_platform_data *pdata;
	struct rmi_device *rmi_dev;
	int retval;

	rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Starting probe.\n",
			__func__);

	if (!rmi_is_physical_device(dev)) {
		rmi_dbg(RMI_DEBUG_CORE, dev, "Not a physical device.\n");
		return -ENODEV;
	}

	rmi_dev = to_rmi_device(dev);
	rmi_driver = to_rmi_driver(dev->driver);
	rmi_dev->driver = rmi_driver;

	pdata = rmi_get_platform_data(rmi_dev);

	if (rmi_dev->xport->dev->of_node) {
		retval = rmi_driver_of_probe(rmi_dev->xport->dev, pdata);
		if (retval)
			return retval;
	}

	data = devm_kzalloc(dev, sizeof(struct rmi_driver_data), GFP_KERNEL);
	if (!data)
		return -ENOMEM;

	INIT_LIST_HEAD(&data->function_list);
	data->rmi_dev = rmi_dev;
	dev_set_drvdata(&rmi_dev->dev, data);

	/*
	 * Right before a warm boot, the sensor might be in some unusual state,
	 * such as F54 diagnostics, or F34 bootloader mode after a firmware
	 * or configuration update.  In order to clear the sensor to a known
	 * state and/or apply any updates, we issue a initial reset to clear any
	 * previous settings and force it into normal operation.
	 *
	 * We have to do this before actually building the PDT because
	 * the reflash updates (if any) might cause various registers to move
	 * around.
	 *
	 * For a number of reasons, this initial reset may fail to return
	 * within the specified time, but we'll still be able to bring up the
	 * driver normally after that failure.  This occurs most commonly in
	 * a cold boot situation (where then firmware takes longer to come up
	 * than from a warm boot) and the reset_delay_ms in the platform data
	 * has been set too short to accommodate that.  Since the sensor will
	 * eventually come up and be usable, we don't want to just fail here
	 * and leave the customer's device unusable.  So we warn them, and
	 * continue processing.
	 */
	retval = rmi_scan_pdt(rmi_dev, NULL, rmi_initial_reset);
	if (retval < 0)
		dev_warn(dev, "RMI initial reset failed! Continuing in spite of this.\n");

	retval = rmi_read(rmi_dev, PDT_PROPERTIES_LOCATION, &data->pdt_props);
	if (retval < 0) {
		/*
		 * we'll print out a warning and continue since
		 * failure to get the PDT properties is not a cause to fail
		 */
		dev_warn(dev, "Could not read PDT properties from %#06x (code %d). Assuming 0x00.\n",
			 PDT_PROPERTIES_LOCATION, retval);
	}

	mutex_init(&data->irq_mutex);
	mutex_init(&data->enabled_mutex);

	retval = rmi_probe_interrupts(data);
	if (retval)
		goto err;

	if (rmi_dev->xport->input) {
		/*
		 * The transport driver already has an input device.
		 * In some cases it is preferable to reuse the transport
		 * devices input device instead of creating a new one here.
		 * One example is some HID touchpads report "pass-through"
		 * button events are not reported by rmi registers.
		 */
		data->input = rmi_dev->xport->input;
	} else {
		data->input = devm_input_allocate_device(dev);
		if (!data->input) {
			dev_err(dev, "%s: Failed to allocate input device.\n",
				__func__);
			retval = -ENOMEM;
			goto err;
		}
		rmi_driver_set_input_params(rmi_dev, data->input);
		data->input->phys = devm_kasprintf(dev, GFP_KERNEL,
						"%s/input0", dev_name(dev));
	}

	retval = rmi_init_functions(data);
	if (retval)
		goto err;

	retval = rmi_f34_create_sysfs(rmi_dev);
	if (retval)
		goto err;

	if (data->input) {
		rmi_driver_set_input_name(rmi_dev, data->input);
		if (!rmi_dev->xport->input) {
			if (input_register_device(data->input)) {
				dev_err(dev, "%s: Failed to register input device.\n",
					__func__);
				goto err_destroy_functions;
			}
		}
	}

	retval = rmi_irq_init(rmi_dev);
	if (retval < 0)
		goto err_destroy_functions;

	if (data->f01_container->dev.driver) {
		/* Driver already bound, so enable ATTN now. */
		retval = rmi_enable_sensor(rmi_dev);
		if (retval)
			goto err_disable_irq;
	}

	return 0;

err_disable_irq:
	rmi_disable_irq(rmi_dev, false);
err_destroy_functions:
	rmi_free_function_list(rmi_dev);
err:
	return retval;
}

static struct rmi_driver rmi_physical_driver = {
	.driver = {
		.owner	= THIS_MODULE,
		.name	= "rmi4_physical",
		.bus	= &rmi_bus_type,
		.probe = rmi_driver_probe,
		.remove = rmi_driver_remove,
	},
	.reset_handler = rmi_driver_reset_handler,
	.clear_irq_bits = rmi_driver_clear_irq_bits,
	.set_irq_bits = rmi_driver_set_irq_bits,
	.set_input_params = rmi_driver_set_input_params,
};

bool rmi_is_physical_driver(struct device_driver *drv)
{
	return drv == &rmi_physical_driver.driver;
}

int __init rmi_register_physical_driver(void)
{
	int error;

	error = driver_register(&rmi_physical_driver.driver);
	if (error) {
		pr_err("%s: driver register failed, code=%d.\n", __func__,
		       error);
		return error;
	}

	return 0;
}

void __exit rmi_unregister_physical_driver(void)
{
	driver_unregister(&rmi_physical_driver.driver);
}