summaryrefslogtreecommitdiffstats
path: root/drivers/leds/trigger/ledtrig-activity.c
blob: c6635c5e227afeb7006e5f86a1382e052b140106 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
/*
 * Activity LED trigger
 *
 * Copyright (C) 2017 Willy Tarreau <w@1wt.eu>
 * Partially based on Atsushi Nemoto's ledtrig-heartbeat.c.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 */
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/leds.h>
#include <linux/module.h>
#include <linux/reboot.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/timer.h>
#include "../leds.h"

static int panic_detected;

struct activity_data {
	struct timer_list timer;
	u64 last_used;
	u64 last_boot;
	int time_left;
	int state;
	int invert;
};

static void led_activity_function(unsigned long data)
{
	struct led_classdev *led_cdev = (struct led_classdev *)data;
	struct activity_data *activity_data = led_cdev->trigger_data;
	struct timespec boot_time;
	unsigned int target;
	unsigned int usage;
	int delay;
	u64 curr_used;
	u64 curr_boot;
	s32 diff_used;
	s32 diff_boot;
	int cpus;
	int i;

	if (test_and_clear_bit(LED_BLINK_BRIGHTNESS_CHANGE, &led_cdev->work_flags))
		led_cdev->blink_brightness = led_cdev->new_blink_brightness;

	if (unlikely(panic_detected)) {
		/* full brightness in case of panic */
		led_set_brightness_nosleep(led_cdev, led_cdev->blink_brightness);
		return;
	}

	get_monotonic_boottime(&boot_time);

	cpus = 0;
	curr_used = 0;

	for_each_possible_cpu(i) {
		curr_used += kcpustat_cpu(i).cpustat[CPUTIME_USER]
			  +  kcpustat_cpu(i).cpustat[CPUTIME_NICE]
			  +  kcpustat_cpu(i).cpustat[CPUTIME_SYSTEM]
			  +  kcpustat_cpu(i).cpustat[CPUTIME_SOFTIRQ]
			  +  kcpustat_cpu(i).cpustat[CPUTIME_IRQ];
		cpus++;
	}

	/* We come here every 100ms in the worst case, so that's 100M ns of
	 * cumulated time. By dividing by 2^16, we get the time resolution
	 * down to 16us, ensuring we won't overflow 32-bit computations below
	 * even up to 3k CPUs, while keeping divides cheap on smaller systems.
	 */
	curr_boot = timespec_to_ns(&boot_time) * cpus;
	diff_boot = (curr_boot - activity_data->last_boot) >> 16;
	diff_used = (curr_used - activity_data->last_used) >> 16;
	activity_data->last_boot = curr_boot;
	activity_data->last_used = curr_used;

	if (diff_boot <= 0 || diff_used < 0)
		usage = 0;
	else if (diff_used >= diff_boot)
		usage = 100;
	else
		usage = 100 * diff_used / diff_boot;

	/*
	 * Now we know the total boot_time multiplied by the number of CPUs, and
	 * the total idle+wait time for all CPUs. We'll compare how they evolved
	 * since last call. The % of overall CPU usage is :
	 *
	 *      1 - delta_idle / delta_boot
	 *
	 * What we want is that when the CPU usage is zero, the LED must blink
	 * slowly with very faint flashes that are detectable but not disturbing
	 * (typically 10ms every second, or 10ms ON, 990ms OFF). Then we want
	 * blinking frequency to increase up to the point where the load is
	 * enough to saturate one core in multi-core systems or 50% in single
	 * core systems. At this point it should reach 10 Hz with a 10/90 duty
	 * cycle (10ms ON, 90ms OFF). After this point, the blinking frequency
	 * remains stable (10 Hz) and only the duty cycle increases to report
	 * the activity, up to the point where we have 90ms ON, 10ms OFF when
	 * all cores are saturated. It's important that the LED never stays in
	 * a steady state so that it's easy to distinguish an idle or saturated
	 * machine from a hung one.
	 *
	 * This gives us :
	 *   - a target CPU usage of min(50%, 100%/#CPU) for a 10% duty cycle
	 *     (10ms ON, 90ms OFF)
	 *   - below target :
	 *      ON_ms  = 10
	 *      OFF_ms = 90 + (1 - usage/target) * 900
	 *   - above target :
	 *      ON_ms  = 10 + (usage-target)/(100%-target) * 80
	 *      OFF_ms = 90 - (usage-target)/(100%-target) * 80
	 *
	 * In order to keep a good responsiveness, we cap the sleep time to
	 * 100 ms and keep track of the sleep time left. This allows us to
	 * quickly change it if needed.
	 */

	activity_data->time_left -= 100;
	if (activity_data->time_left <= 0) {
		activity_data->time_left = 0;
		activity_data->state = !activity_data->state;
		led_set_brightness_nosleep(led_cdev,
			(activity_data->state ^ activity_data->invert) ?
			led_cdev->blink_brightness : LED_OFF);
	}

	target = (cpus > 1) ? (100 / cpus) : 50;

	if (usage < target)
		delay = activity_data->state ?
			10 :                        /* ON  */
			990 - 900 * usage / target; /* OFF */
	else
		delay = activity_data->state ?
			10 + 80 * (usage - target) / (100 - target) : /* ON  */
			90 - 80 * (usage - target) / (100 - target);  /* OFF */


	if (!activity_data->time_left || delay <= activity_data->time_left)
		activity_data->time_left = delay;

	delay = min_t(int, activity_data->time_left, 100);
	mod_timer(&activity_data->timer, jiffies + msecs_to_jiffies(delay));
}

static ssize_t led_invert_show(struct device *dev,
                               struct device_attribute *attr, char *buf)
{
	struct led_classdev *led_cdev = dev_get_drvdata(dev);
	struct activity_data *activity_data = led_cdev->trigger_data;

	return sprintf(buf, "%u\n", activity_data->invert);
}

static ssize_t led_invert_store(struct device *dev,
                                struct device_attribute *attr,
                                const char *buf, size_t size)
{
	struct led_classdev *led_cdev = dev_get_drvdata(dev);
	struct activity_data *activity_data = led_cdev->trigger_data;
	unsigned long state;
	int ret;

	ret = kstrtoul(buf, 0, &state);
	if (ret)
		return ret;

	activity_data->invert = !!state;

	return size;
}

static DEVICE_ATTR(invert, 0644, led_invert_show, led_invert_store);

static void activity_activate(struct led_classdev *led_cdev)
{
	struct activity_data *activity_data;
	int rc;

	activity_data = kzalloc(sizeof(*activity_data), GFP_KERNEL);
	if (!activity_data)
		return;

	led_cdev->trigger_data = activity_data;
	rc = device_create_file(led_cdev->dev, &dev_attr_invert);
	if (rc) {
		kfree(led_cdev->trigger_data);
		return;
	}

	setup_timer(&activity_data->timer,
		    led_activity_function, (unsigned long)led_cdev);
	if (!led_cdev->blink_brightness)
		led_cdev->blink_brightness = led_cdev->max_brightness;
	led_activity_function(activity_data->timer.data);
	set_bit(LED_BLINK_SW, &led_cdev->work_flags);
	led_cdev->activated = true;
}

static void activity_deactivate(struct led_classdev *led_cdev)
{
	struct activity_data *activity_data = led_cdev->trigger_data;

	if (led_cdev->activated) {
		del_timer_sync(&activity_data->timer);
		device_remove_file(led_cdev->dev, &dev_attr_invert);
		kfree(activity_data);
		clear_bit(LED_BLINK_SW, &led_cdev->work_flags);
		led_cdev->activated = false;
	}
}

static struct led_trigger activity_led_trigger = {
	.name       = "activity",
	.activate   = activity_activate,
	.deactivate = activity_deactivate,
};

static int activity_reboot_notifier(struct notifier_block *nb,
                                    unsigned long code, void *unused)
{
	led_trigger_unregister(&activity_led_trigger);
	return NOTIFY_DONE;
}

static int activity_panic_notifier(struct notifier_block *nb,
                                   unsigned long code, void *unused)
{
	panic_detected = 1;
	return NOTIFY_DONE;
}

static struct notifier_block activity_reboot_nb = {
	.notifier_call = activity_reboot_notifier,
};

static struct notifier_block activity_panic_nb = {
	.notifier_call = activity_panic_notifier,
};

static int __init activity_init(void)
{
	int rc = led_trigger_register(&activity_led_trigger);

	if (!rc) {
		atomic_notifier_chain_register(&panic_notifier_list,
					       &activity_panic_nb);
		register_reboot_notifier(&activity_reboot_nb);
	}
	return rc;
}

static void __exit activity_exit(void)
{
	unregister_reboot_notifier(&activity_reboot_nb);
	atomic_notifier_chain_unregister(&panic_notifier_list,
					 &activity_panic_nb);
	led_trigger_unregister(&activity_led_trigger);
}

module_init(activity_init);
module_exit(activity_exit);

MODULE_AUTHOR("Willy Tarreau <w@1wt.eu>");
MODULE_DESCRIPTION("Activity LED trigger");
MODULE_LICENSE("GPL");