summaryrefslogtreecommitdiffstats
path: root/drivers/memory/tegra/mc.c
blob: e58c3e5baea067f0fee0c5838c7a9a6a834cc708 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Copyright (C) 2014 NVIDIA CORPORATION.  All rights reserved.
 */

#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/export.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/sort.h>

#include <soc/tegra/fuse.h>

#include "mc.h"

static const struct of_device_id tegra_mc_of_match[] = {
#ifdef CONFIG_ARCH_TEGRA_2x_SOC
	{ .compatible = "nvidia,tegra20-mc-gart", .data = &tegra20_mc_soc },
#endif
#ifdef CONFIG_ARCH_TEGRA_3x_SOC
	{ .compatible = "nvidia,tegra30-mc", .data = &tegra30_mc_soc },
#endif
#ifdef CONFIG_ARCH_TEGRA_114_SOC
	{ .compatible = "nvidia,tegra114-mc", .data = &tegra114_mc_soc },
#endif
#ifdef CONFIG_ARCH_TEGRA_124_SOC
	{ .compatible = "nvidia,tegra124-mc", .data = &tegra124_mc_soc },
#endif
#ifdef CONFIG_ARCH_TEGRA_132_SOC
	{ .compatible = "nvidia,tegra132-mc", .data = &tegra132_mc_soc },
#endif
#ifdef CONFIG_ARCH_TEGRA_210_SOC
	{ .compatible = "nvidia,tegra210-mc", .data = &tegra210_mc_soc },
#endif
	{ }
};
MODULE_DEVICE_TABLE(of, tegra_mc_of_match);

static void tegra_mc_devm_action_put_device(void *data)
{
	struct tegra_mc *mc = data;

	put_device(mc->dev);
}

/**
 * devm_tegra_memory_controller_get() - get Tegra Memory Controller handle
 * @dev: device pointer for the consumer device
 *
 * This function will search for the Memory Controller node in a device-tree
 * and retrieve the Memory Controller handle.
 *
 * Return: ERR_PTR() on error or a valid pointer to a struct tegra_mc.
 */
struct tegra_mc *devm_tegra_memory_controller_get(struct device *dev)
{
	struct platform_device *pdev;
	struct device_node *np;
	struct tegra_mc *mc;
	int err;

	np = of_parse_phandle(dev->of_node, "nvidia,memory-controller", 0);
	if (!np)
		return ERR_PTR(-ENOENT);

	pdev = of_find_device_by_node(np);
	of_node_put(np);
	if (!pdev)
		return ERR_PTR(-ENODEV);

	mc = platform_get_drvdata(pdev);
	if (!mc) {
		put_device(&pdev->dev);
		return ERR_PTR(-EPROBE_DEFER);
	}

	err = devm_add_action(dev, tegra_mc_devm_action_put_device, mc);
	if (err) {
		put_device(mc->dev);
		return ERR_PTR(err);
	}

	return mc;
}
EXPORT_SYMBOL_GPL(devm_tegra_memory_controller_get);

static int tegra_mc_block_dma_common(struct tegra_mc *mc,
				     const struct tegra_mc_reset *rst)
{
	unsigned long flags;
	u32 value;

	spin_lock_irqsave(&mc->lock, flags);

	value = mc_readl(mc, rst->control) | BIT(rst->bit);
	mc_writel(mc, value, rst->control);

	spin_unlock_irqrestore(&mc->lock, flags);

	return 0;
}

static bool tegra_mc_dma_idling_common(struct tegra_mc *mc,
				       const struct tegra_mc_reset *rst)
{
	return (mc_readl(mc, rst->status) & BIT(rst->bit)) != 0;
}

static int tegra_mc_unblock_dma_common(struct tegra_mc *mc,
				       const struct tegra_mc_reset *rst)
{
	unsigned long flags;
	u32 value;

	spin_lock_irqsave(&mc->lock, flags);

	value = mc_readl(mc, rst->control) & ~BIT(rst->bit);
	mc_writel(mc, value, rst->control);

	spin_unlock_irqrestore(&mc->lock, flags);

	return 0;
}

static int tegra_mc_reset_status_common(struct tegra_mc *mc,
					const struct tegra_mc_reset *rst)
{
	return (mc_readl(mc, rst->control) & BIT(rst->bit)) != 0;
}

const struct tegra_mc_reset_ops tegra_mc_reset_ops_common = {
	.block_dma = tegra_mc_block_dma_common,
	.dma_idling = tegra_mc_dma_idling_common,
	.unblock_dma = tegra_mc_unblock_dma_common,
	.reset_status = tegra_mc_reset_status_common,
};

static inline struct tegra_mc *reset_to_mc(struct reset_controller_dev *rcdev)
{
	return container_of(rcdev, struct tegra_mc, reset);
}

static const struct tegra_mc_reset *tegra_mc_reset_find(struct tegra_mc *mc,
							unsigned long id)
{
	unsigned int i;

	for (i = 0; i < mc->soc->num_resets; i++)
		if (mc->soc->resets[i].id == id)
			return &mc->soc->resets[i];

	return NULL;
}

static int tegra_mc_hotreset_assert(struct reset_controller_dev *rcdev,
				    unsigned long id)
{
	struct tegra_mc *mc = reset_to_mc(rcdev);
	const struct tegra_mc_reset_ops *rst_ops;
	const struct tegra_mc_reset *rst;
	int retries = 500;
	int err;

	rst = tegra_mc_reset_find(mc, id);
	if (!rst)
		return -ENODEV;

	rst_ops = mc->soc->reset_ops;
	if (!rst_ops)
		return -ENODEV;

	/* DMA flushing will fail if reset is already asserted */
	if (rst_ops->reset_status) {
		/* check whether reset is asserted */
		if (rst_ops->reset_status(mc, rst))
			return 0;
	}

	if (rst_ops->block_dma) {
		/* block clients DMA requests */
		err = rst_ops->block_dma(mc, rst);
		if (err) {
			dev_err(mc->dev, "failed to block %s DMA: %d\n",
				rst->name, err);
			return err;
		}
	}

	if (rst_ops->dma_idling) {
		/* wait for completion of the outstanding DMA requests */
		while (!rst_ops->dma_idling(mc, rst)) {
			if (!retries--) {
				dev_err(mc->dev, "failed to flush %s DMA\n",
					rst->name);
				return -EBUSY;
			}

			usleep_range(10, 100);
		}
	}

	if (rst_ops->hotreset_assert) {
		/* clear clients DMA requests sitting before arbitration */
		err = rst_ops->hotreset_assert(mc, rst);
		if (err) {
			dev_err(mc->dev, "failed to hot reset %s: %d\n",
				rst->name, err);
			return err;
		}
	}

	return 0;
}

static int tegra_mc_hotreset_deassert(struct reset_controller_dev *rcdev,
				      unsigned long id)
{
	struct tegra_mc *mc = reset_to_mc(rcdev);
	const struct tegra_mc_reset_ops *rst_ops;
	const struct tegra_mc_reset *rst;
	int err;

	rst = tegra_mc_reset_find(mc, id);
	if (!rst)
		return -ENODEV;

	rst_ops = mc->soc->reset_ops;
	if (!rst_ops)
		return -ENODEV;

	if (rst_ops->hotreset_deassert) {
		/* take out client from hot reset */
		err = rst_ops->hotreset_deassert(mc, rst);
		if (err) {
			dev_err(mc->dev, "failed to deassert hot reset %s: %d\n",
				rst->name, err);
			return err;
		}
	}

	if (rst_ops->unblock_dma) {
		/* allow new DMA requests to proceed to arbitration */
		err = rst_ops->unblock_dma(mc, rst);
		if (err) {
			dev_err(mc->dev, "failed to unblock %s DMA : %d\n",
				rst->name, err);
			return err;
		}
	}

	return 0;
}

static int tegra_mc_hotreset_status(struct reset_controller_dev *rcdev,
				    unsigned long id)
{
	struct tegra_mc *mc = reset_to_mc(rcdev);
	const struct tegra_mc_reset_ops *rst_ops;
	const struct tegra_mc_reset *rst;

	rst = tegra_mc_reset_find(mc, id);
	if (!rst)
		return -ENODEV;

	rst_ops = mc->soc->reset_ops;
	if (!rst_ops)
		return -ENODEV;

	return rst_ops->reset_status(mc, rst);
}

static const struct reset_control_ops tegra_mc_reset_ops = {
	.assert = tegra_mc_hotreset_assert,
	.deassert = tegra_mc_hotreset_deassert,
	.status = tegra_mc_hotreset_status,
};

static int tegra_mc_reset_setup(struct tegra_mc *mc)
{
	int err;

	mc->reset.ops = &tegra_mc_reset_ops;
	mc->reset.owner = THIS_MODULE;
	mc->reset.of_node = mc->dev->of_node;
	mc->reset.of_reset_n_cells = 1;
	mc->reset.nr_resets = mc->soc->num_resets;

	err = reset_controller_register(&mc->reset);
	if (err < 0)
		return err;

	return 0;
}

static int tegra_mc_setup_latency_allowance(struct tegra_mc *mc)
{
	unsigned long long tick;
	unsigned int i;
	u32 value;

	/* compute the number of MC clock cycles per tick */
	tick = (unsigned long long)mc->tick * clk_get_rate(mc->clk);
	do_div(tick, NSEC_PER_SEC);

	value = mc_readl(mc, MC_EMEM_ARB_CFG);
	value &= ~MC_EMEM_ARB_CFG_CYCLES_PER_UPDATE_MASK;
	value |= MC_EMEM_ARB_CFG_CYCLES_PER_UPDATE(tick);
	mc_writel(mc, value, MC_EMEM_ARB_CFG);

	/* write latency allowance defaults */
	for (i = 0; i < mc->soc->num_clients; i++) {
		const struct tegra_mc_la *la = &mc->soc->clients[i].la;
		u32 value;

		value = mc_readl(mc, la->reg);
		value &= ~(la->mask << la->shift);
		value |= (la->def & la->mask) << la->shift;
		mc_writel(mc, value, la->reg);
	}

	/* latch new values */
	mc_writel(mc, MC_TIMING_UPDATE, MC_TIMING_CONTROL);

	return 0;
}

int tegra_mc_write_emem_configuration(struct tegra_mc *mc, unsigned long rate)
{
	unsigned int i;
	struct tegra_mc_timing *timing = NULL;

	for (i = 0; i < mc->num_timings; i++) {
		if (mc->timings[i].rate == rate) {
			timing = &mc->timings[i];
			break;
		}
	}

	if (!timing) {
		dev_err(mc->dev, "no memory timing registered for rate %lu\n",
			rate);
		return -EINVAL;
	}

	for (i = 0; i < mc->soc->num_emem_regs; ++i)
		mc_writel(mc, timing->emem_data[i], mc->soc->emem_regs[i]);

	return 0;
}
EXPORT_SYMBOL_GPL(tegra_mc_write_emem_configuration);

unsigned int tegra_mc_get_emem_device_count(struct tegra_mc *mc)
{
	u8 dram_count;

	dram_count = mc_readl(mc, MC_EMEM_ADR_CFG);
	dram_count &= MC_EMEM_ADR_CFG_EMEM_NUMDEV;
	dram_count++;

	return dram_count;
}
EXPORT_SYMBOL_GPL(tegra_mc_get_emem_device_count);

static int load_one_timing(struct tegra_mc *mc,
			   struct tegra_mc_timing *timing,
			   struct device_node *node)
{
	int err;
	u32 tmp;

	err = of_property_read_u32(node, "clock-frequency", &tmp);
	if (err) {
		dev_err(mc->dev,
			"timing %pOFn: failed to read rate\n", node);
		return err;
	}

	timing->rate = tmp;
	timing->emem_data = devm_kcalloc(mc->dev, mc->soc->num_emem_regs,
					 sizeof(u32), GFP_KERNEL);
	if (!timing->emem_data)
		return -ENOMEM;

	err = of_property_read_u32_array(node, "nvidia,emem-configuration",
					 timing->emem_data,
					 mc->soc->num_emem_regs);
	if (err) {
		dev_err(mc->dev,
			"timing %pOFn: failed to read EMEM configuration\n",
			node);
		return err;
	}

	return 0;
}

static int load_timings(struct tegra_mc *mc, struct device_node *node)
{
	struct device_node *child;
	struct tegra_mc_timing *timing;
	int child_count = of_get_child_count(node);
	int i = 0, err;

	mc->timings = devm_kcalloc(mc->dev, child_count, sizeof(*timing),
				   GFP_KERNEL);
	if (!mc->timings)
		return -ENOMEM;

	mc->num_timings = child_count;

	for_each_child_of_node(node, child) {
		timing = &mc->timings[i++];

		err = load_one_timing(mc, timing, child);
		if (err) {
			of_node_put(child);
			return err;
		}
	}

	return 0;
}

static int tegra_mc_setup_timings(struct tegra_mc *mc)
{
	struct device_node *node;
	u32 ram_code, node_ram_code;
	int err;

	ram_code = tegra_read_ram_code();

	mc->num_timings = 0;

	for_each_child_of_node(mc->dev->of_node, node) {
		err = of_property_read_u32(node, "nvidia,ram-code",
					   &node_ram_code);
		if (err || (node_ram_code != ram_code))
			continue;

		err = load_timings(mc, node);
		of_node_put(node);
		if (err)
			return err;
		break;
	}

	if (mc->num_timings == 0)
		dev_warn(mc->dev,
			 "no memory timings for RAM code %u registered\n",
			 ram_code);

	return 0;
}

static const char *const status_names[32] = {
	[ 1] = "External interrupt",
	[ 6] = "EMEM address decode error",
	[ 7] = "GART page fault",
	[ 8] = "Security violation",
	[ 9] = "EMEM arbitration error",
	[10] = "Page fault",
	[11] = "Invalid APB ASID update",
	[12] = "VPR violation",
	[13] = "Secure carveout violation",
	[16] = "MTS carveout violation",
};

static const char *const error_names[8] = {
	[2] = "EMEM decode error",
	[3] = "TrustZone violation",
	[4] = "Carveout violation",
	[6] = "SMMU translation error",
};

static irqreturn_t tegra_mc_irq(int irq, void *data)
{
	struct tegra_mc *mc = data;
	unsigned long status;
	unsigned int bit;

	/* mask all interrupts to avoid flooding */
	status = mc_readl(mc, MC_INTSTATUS) & mc->soc->intmask;
	if (!status)
		return IRQ_NONE;

	for_each_set_bit(bit, &status, 32) {
		const char *error = status_names[bit] ?: "unknown";
		const char *client = "unknown", *desc;
		const char *direction, *secure;
		phys_addr_t addr = 0;
		unsigned int i;
		char perm[7];
		u8 id, type;
		u32 value;

		value = mc_readl(mc, MC_ERR_STATUS);

#ifdef CONFIG_PHYS_ADDR_T_64BIT
		if (mc->soc->num_address_bits > 32) {
			addr = ((value >> MC_ERR_STATUS_ADR_HI_SHIFT) &
				MC_ERR_STATUS_ADR_HI_MASK);
			addr <<= 32;
		}
#endif

		if (value & MC_ERR_STATUS_RW)
			direction = "write";
		else
			direction = "read";

		if (value & MC_ERR_STATUS_SECURITY)
			secure = "secure ";
		else
			secure = "";

		id = value & mc->soc->client_id_mask;

		for (i = 0; i < mc->soc->num_clients; i++) {
			if (mc->soc->clients[i].id == id) {
				client = mc->soc->clients[i].name;
				break;
			}
		}

		type = (value & MC_ERR_STATUS_TYPE_MASK) >>
		       MC_ERR_STATUS_TYPE_SHIFT;
		desc = error_names[type];

		switch (value & MC_ERR_STATUS_TYPE_MASK) {
		case MC_ERR_STATUS_TYPE_INVALID_SMMU_PAGE:
			perm[0] = ' ';
			perm[1] = '[';

			if (value & MC_ERR_STATUS_READABLE)
				perm[2] = 'R';
			else
				perm[2] = '-';

			if (value & MC_ERR_STATUS_WRITABLE)
				perm[3] = 'W';
			else
				perm[3] = '-';

			if (value & MC_ERR_STATUS_NONSECURE)
				perm[4] = '-';
			else
				perm[4] = 'S';

			perm[5] = ']';
			perm[6] = '\0';
			break;

		default:
			perm[0] = '\0';
			break;
		}

		value = mc_readl(mc, MC_ERR_ADR);
		addr |= value;

		dev_err_ratelimited(mc->dev, "%s: %s%s @%pa: %s (%s%s)\n",
				    client, secure, direction, &addr, error,
				    desc, perm);
	}

	/* clear interrupts */
	mc_writel(mc, status, MC_INTSTATUS);

	return IRQ_HANDLED;
}

static __maybe_unused irqreturn_t tegra20_mc_irq(int irq, void *data)
{
	struct tegra_mc *mc = data;
	unsigned long status;
	unsigned int bit;

	/* mask all interrupts to avoid flooding */
	status = mc_readl(mc, MC_INTSTATUS) & mc->soc->intmask;
	if (!status)
		return IRQ_NONE;

	for_each_set_bit(bit, &status, 32) {
		const char *direction = "read", *secure = "";
		const char *error = status_names[bit];
		const char *client, *desc;
		phys_addr_t addr;
		u32 value, reg;
		u8 id, type;

		switch (BIT(bit)) {
		case MC_INT_DECERR_EMEM:
			reg = MC_DECERR_EMEM_OTHERS_STATUS;
			value = mc_readl(mc, reg);

			id = value & mc->soc->client_id_mask;
			desc = error_names[2];

			if (value & BIT(31))
				direction = "write";
			break;

		case MC_INT_INVALID_GART_PAGE:
			reg = MC_GART_ERROR_REQ;
			value = mc_readl(mc, reg);

			id = (value >> 1) & mc->soc->client_id_mask;
			desc = error_names[2];

			if (value & BIT(0))
				direction = "write";
			break;

		case MC_INT_SECURITY_VIOLATION:
			reg = MC_SECURITY_VIOLATION_STATUS;
			value = mc_readl(mc, reg);

			id = value & mc->soc->client_id_mask;
			type = (value & BIT(30)) ? 4 : 3;
			desc = error_names[type];
			secure = "secure ";

			if (value & BIT(31))
				direction = "write";
			break;

		default:
			continue;
		}

		client = mc->soc->clients[id].name;
		addr = mc_readl(mc, reg + sizeof(u32));

		dev_err_ratelimited(mc->dev, "%s: %s%s @%pa: %s (%s)\n",
				    client, secure, direction, &addr, error,
				    desc);
	}

	/* clear interrupts */
	mc_writel(mc, status, MC_INTSTATUS);

	return IRQ_HANDLED;
}

/*
 * Memory Controller (MC) has few Memory Clients that are issuing memory
 * bandwidth allocation requests to the MC interconnect provider. The MC
 * provider aggregates the requests and then sends the aggregated request
 * up to the External Memory Controller (EMC) interconnect provider which
 * re-configures hardware interface to External Memory (EMEM) in accordance
 * to the required bandwidth. Each MC interconnect node represents an
 * individual Memory Client.
 *
 * Memory interconnect topology:
 *
 *               +----+
 * +--------+    |    |
 * | TEXSRD +--->+    |
 * +--------+    |    |
 *               |    |    +-----+    +------+
 *    ...        | MC +--->+ EMC +--->+ EMEM |
 *               |    |    +-----+    +------+
 * +--------+    |    |
 * | DISP.. +--->+    |
 * +--------+    |    |
 *               +----+
 */
static int tegra_mc_interconnect_setup(struct tegra_mc *mc)
{
	struct icc_node *node;
	unsigned int i;
	int err;

	/* older device-trees don't have interconnect properties */
	if (!device_property_present(mc->dev, "#interconnect-cells") ||
	    !mc->soc->icc_ops)
		return 0;

	mc->provider.dev = mc->dev;
	mc->provider.data = &mc->provider;
	mc->provider.set = mc->soc->icc_ops->set;
	mc->provider.aggregate = mc->soc->icc_ops->aggregate;
	mc->provider.xlate_extended = mc->soc->icc_ops->xlate_extended;

	err = icc_provider_add(&mc->provider);
	if (err)
		return err;

	/* create Memory Controller node */
	node = icc_node_create(TEGRA_ICC_MC);
	if (IS_ERR(node)) {
		err = PTR_ERR(node);
		goto del_provider;
	}

	node->name = "Memory Controller";
	icc_node_add(node, &mc->provider);

	/* link Memory Controller to External Memory Controller */
	err = icc_link_create(node, TEGRA_ICC_EMC);
	if (err)
		goto remove_nodes;

	for (i = 0; i < mc->soc->num_clients; i++) {
		/* create MC client node */
		node = icc_node_create(mc->soc->clients[i].id);
		if (IS_ERR(node)) {
			err = PTR_ERR(node);
			goto remove_nodes;
		}

		node->name = mc->soc->clients[i].name;
		icc_node_add(node, &mc->provider);

		/* link Memory Client to Memory Controller */
		err = icc_link_create(node, TEGRA_ICC_MC);
		if (err)
			goto remove_nodes;
	}

	/*
	 * MC driver is registered too early, so early that generic driver
	 * syncing doesn't work for the MC. But it doesn't really matter
	 * since syncing works for the EMC drivers, hence we can sync the
	 * MC driver by ourselves and then EMC will complete syncing of
	 * the whole ICC state.
	 */
	icc_sync_state(mc->dev);

	return 0;

remove_nodes:
	icc_nodes_remove(&mc->provider);
del_provider:
	icc_provider_del(&mc->provider);

	return err;
}

static int tegra_mc_probe(struct platform_device *pdev)
{
	struct resource *res;
	struct tegra_mc *mc;
	void *isr;
	u64 mask;
	int err;

	mc = devm_kzalloc(&pdev->dev, sizeof(*mc), GFP_KERNEL);
	if (!mc)
		return -ENOMEM;

	platform_set_drvdata(pdev, mc);
	spin_lock_init(&mc->lock);
	mc->soc = of_device_get_match_data(&pdev->dev);
	mc->dev = &pdev->dev;

	mask = DMA_BIT_MASK(mc->soc->num_address_bits);

	err = dma_coerce_mask_and_coherent(&pdev->dev, mask);
	if (err < 0) {
		dev_err(&pdev->dev, "failed to set DMA mask: %d\n", err);
		return err;
	}

	/* length of MC tick in nanoseconds */
	mc->tick = 30;

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	mc->regs = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(mc->regs))
		return PTR_ERR(mc->regs);

	mc->clk = devm_clk_get(&pdev->dev, "mc");
	if (IS_ERR(mc->clk)) {
		dev_err(&pdev->dev, "failed to get MC clock: %ld\n",
			PTR_ERR(mc->clk));
		return PTR_ERR(mc->clk);
	}

#ifdef CONFIG_ARCH_TEGRA_2x_SOC
	if (mc->soc == &tegra20_mc_soc) {
		isr = tegra20_mc_irq;
	} else
#endif
	{
		/* ensure that debug features are disabled */
		mc_writel(mc, 0x00000000, MC_TIMING_CONTROL_DBG);

		err = tegra_mc_setup_latency_allowance(mc);
		if (err < 0) {
			dev_err(&pdev->dev,
				"failed to setup latency allowance: %d\n",
				err);
			return err;
		}

		isr = tegra_mc_irq;

		err = tegra_mc_setup_timings(mc);
		if (err < 0) {
			dev_err(&pdev->dev, "failed to setup timings: %d\n",
				err);
			return err;
		}
	}

	mc->irq = platform_get_irq(pdev, 0);
	if (mc->irq < 0)
		return mc->irq;

	WARN(!mc->soc->client_id_mask, "missing client ID mask for this SoC\n");

	mc_writel(mc, mc->soc->intmask, MC_INTMASK);

	err = devm_request_irq(&pdev->dev, mc->irq, isr, 0,
			       dev_name(&pdev->dev), mc);
	if (err < 0) {
		dev_err(&pdev->dev, "failed to request IRQ#%u: %d\n", mc->irq,
			err);
		return err;
	}

	mc->debugfs.root = debugfs_create_dir("mc", NULL);

	if (mc->soc->init) {
		err = mc->soc->init(mc);
		if (err < 0)
			dev_err(&pdev->dev, "failed to initialize SoC driver: %d\n",
				err);
	}

	err = tegra_mc_reset_setup(mc);
	if (err < 0)
		dev_err(&pdev->dev, "failed to register reset controller: %d\n",
			err);

	err = tegra_mc_interconnect_setup(mc);
	if (err < 0)
		dev_err(&pdev->dev, "failed to initialize interconnect: %d\n",
			err);

	if (IS_ENABLED(CONFIG_TEGRA_IOMMU_SMMU) && mc->soc->smmu) {
		mc->smmu = tegra_smmu_probe(&pdev->dev, mc->soc->smmu, mc);
		if (IS_ERR(mc->smmu)) {
			dev_err(&pdev->dev, "failed to probe SMMU: %ld\n",
				PTR_ERR(mc->smmu));
			mc->smmu = NULL;
		}
	}

	if (IS_ENABLED(CONFIG_TEGRA_IOMMU_GART) && !mc->soc->smmu) {
		mc->gart = tegra_gart_probe(&pdev->dev, mc);
		if (IS_ERR(mc->gart)) {
			dev_err(&pdev->dev, "failed to probe GART: %ld\n",
				PTR_ERR(mc->gart));
			mc->gart = NULL;
		}
	}

	return 0;
}

static int tegra_mc_suspend(struct device *dev)
{
	struct tegra_mc *mc = dev_get_drvdata(dev);
	int err;

	if (IS_ENABLED(CONFIG_TEGRA_IOMMU_GART) && mc->gart) {
		err = tegra_gart_suspend(mc->gart);
		if (err)
			return err;
	}

	return 0;
}

static int tegra_mc_resume(struct device *dev)
{
	struct tegra_mc *mc = dev_get_drvdata(dev);
	int err;

	if (IS_ENABLED(CONFIG_TEGRA_IOMMU_GART) && mc->gart) {
		err = tegra_gart_resume(mc->gart);
		if (err)
			return err;
	}

	return 0;
}

static const struct dev_pm_ops tegra_mc_pm_ops = {
	.suspend = tegra_mc_suspend,
	.resume = tegra_mc_resume,
};

static struct platform_driver tegra_mc_driver = {
	.driver = {
		.name = "tegra-mc",
		.of_match_table = tegra_mc_of_match,
		.pm = &tegra_mc_pm_ops,
		.suppress_bind_attrs = true,
	},
	.prevent_deferred_probe = true,
	.probe = tegra_mc_probe,
};

static int tegra_mc_init(void)
{
	return platform_driver_register(&tegra_mc_driver);
}
arch_initcall(tegra_mc_init);

MODULE_AUTHOR("Thierry Reding <treding@nvidia.com>");
MODULE_DESCRIPTION("NVIDIA Tegra Memory Controller driver");
MODULE_LICENSE("GPL v2");