1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
|
/*
*
* Intel Management Engine Interface (Intel MEI) Linux driver
* Copyright (c) 2003-2012, Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*/
#include <linux/pci.h>
#include <linux/mei.h>
#include "mei_dev.h"
#include "hw-me.h"
/**
* mei_reg_read - Reads 32bit data from the mei device
*
* @dev: the device structure
* @offset: offset from which to read the data
*
* returns register value (u32)
*/
static inline u32 mei_reg_read(const struct mei_device *dev,
unsigned long offset)
{
return ioread32(dev->mem_addr + offset);
}
/**
* mei_reg_write - Writes 32bit data to the mei device
*
* @dev: the device structure
* @offset: offset from which to write the data
* @value: register value to write (u32)
*/
static inline void mei_reg_write(const struct mei_device *dev,
unsigned long offset, u32 value)
{
iowrite32(value, dev->mem_addr + offset);
}
/**
* mei_mecbrw_read - Reads 32bit data from ME circular buffer
* read window register
*
* @dev: the device structure
*
* returns ME_CB_RW register value (u32)
*/
u32 mei_mecbrw_read(const struct mei_device *dev)
{
return mei_reg_read(dev, ME_CB_RW);
}
/**
* mei_mecsr_read - Reads 32bit data from the ME CSR
*
* @dev: the device structure
*
* returns ME_CSR_HA register value (u32)
*/
u32 mei_mecsr_read(const struct mei_device *dev)
{
return mei_reg_read(dev, ME_CSR_HA);
}
/**
* mei_hcsr_read - Reads 32bit data from the host CSR
*
* @dev: the device structure
*
* returns H_CSR register value (u32)
*/
u32 mei_hcsr_read(const struct mei_device *dev)
{
return mei_reg_read(dev, H_CSR);
}
/**
* mei_hcsr_set - writes H_CSR register to the mei device,
* and ignores the H_IS bit for it is write-one-to-zero.
*
* @dev: the device structure
*/
void mei_hcsr_set(struct mei_device *dev)
{
if ((dev->host_hw_state & H_IS) == H_IS)
dev->host_hw_state &= ~H_IS;
mei_reg_write(dev, H_CSR, dev->host_hw_state);
dev->host_hw_state = mei_hcsr_read(dev);
}
/**
* mei_clear_interrupts - clear and stop interrupts
*
* @dev: the device structure
*/
void mei_clear_interrupts(struct mei_device *dev)
{
if ((dev->host_hw_state & H_IS) == H_IS)
mei_reg_write(dev, H_CSR, dev->host_hw_state);
}
/**
* mei_enable_interrupts - enables mei device interrupts
*
* @dev: the device structure
*/
void mei_enable_interrupts(struct mei_device *dev)
{
dev->host_hw_state |= H_IE;
mei_hcsr_set(dev);
}
/**
* mei_disable_interrupts - disables mei device interrupts
*
* @dev: the device structure
*/
void mei_disable_interrupts(struct mei_device *dev)
{
dev->host_hw_state &= ~H_IE;
mei_hcsr_set(dev);
}
/**
* mei_interrupt_quick_handler - The ISR of the MEI device
*
* @irq: The irq number
* @dev_id: pointer to the device structure
*
* returns irqreturn_t
*/
irqreturn_t mei_interrupt_quick_handler(int irq, void *dev_id)
{
struct mei_device *dev = (struct mei_device *) dev_id;
u32 csr_reg = mei_hcsr_read(dev);
if ((csr_reg & H_IS) != H_IS)
return IRQ_NONE;
/* clear H_IS bit in H_CSR */
mei_reg_write(dev, H_CSR, csr_reg);
return IRQ_WAKE_THREAD;
}
/**
* mei_hbuf_filled_slots - gets number of device filled buffer slots
*
* @device: the device structure
*
* returns number of filled slots
*/
static unsigned char mei_hbuf_filled_slots(struct mei_device *dev)
{
char read_ptr, write_ptr;
dev->host_hw_state = mei_hcsr_read(dev);
read_ptr = (char) ((dev->host_hw_state & H_CBRP) >> 8);
write_ptr = (char) ((dev->host_hw_state & H_CBWP) >> 16);
return (unsigned char) (write_ptr - read_ptr);
}
/**
* mei_hbuf_is_empty - checks if host buffer is empty.
*
* @dev: the device structure
*
* returns true if empty, false - otherwise.
*/
bool mei_hbuf_is_empty(struct mei_device *dev)
{
return mei_hbuf_filled_slots(dev) == 0;
}
/**
* mei_hbuf_empty_slots - counts write empty slots.
*
* @dev: the device structure
*
* returns -1(ESLOTS_OVERFLOW) if overflow, otherwise empty slots count
*/
int mei_hbuf_empty_slots(struct mei_device *dev)
{
unsigned char filled_slots, empty_slots;
filled_slots = mei_hbuf_filled_slots(dev);
empty_slots = dev->hbuf_depth - filled_slots;
/* check for overflow */
if (filled_slots > dev->hbuf_depth)
return -EOVERFLOW;
return empty_slots;
}
/**
* mei_write_message - writes a message to mei device.
*
* @dev: the device structure
* @hader: mei HECI header of message
* @buf: message payload will be written
*
* This function returns -EIO if write has failed
*/
int mei_write_message(struct mei_device *dev, struct mei_msg_hdr *header,
unsigned char *buf)
{
unsigned long rem, dw_cnt;
unsigned long length = header->length;
u32 *reg_buf = (u32 *)buf;
int i;
int empty_slots;
dev_dbg(&dev->pdev->dev, MEI_HDR_FMT, MEI_HDR_PRM(header));
empty_slots = mei_hbuf_empty_slots(dev);
dev_dbg(&dev->pdev->dev, "empty slots = %hu.\n", empty_slots);
dw_cnt = mei_data2slots(length);
if (empty_slots < 0 || dw_cnt > empty_slots)
return -EIO;
mei_reg_write(dev, H_CB_WW, *((u32 *) header));
for (i = 0; i < length / 4; i++)
mei_reg_write(dev, H_CB_WW, reg_buf[i]);
rem = length & 0x3;
if (rem > 0) {
u32 reg = 0;
memcpy(®, &buf[length - rem], rem);
mei_reg_write(dev, H_CB_WW, reg);
}
dev->host_hw_state = mei_hcsr_read(dev);
dev->host_hw_state |= H_IG;
mei_hcsr_set(dev);
dev->me_hw_state = mei_mecsr_read(dev);
if ((dev->me_hw_state & ME_RDY_HRA) != ME_RDY_HRA)
return -EIO;
return 0;
}
/**
* mei_count_full_read_slots - counts read full slots.
*
* @dev: the device structure
*
* returns -1(ESLOTS_OVERFLOW) if overflow, otherwise filled slots count
*/
int mei_count_full_read_slots(struct mei_device *dev)
{
char read_ptr, write_ptr;
unsigned char buffer_depth, filled_slots;
dev->me_hw_state = mei_mecsr_read(dev);
buffer_depth = (unsigned char)((dev->me_hw_state & ME_CBD_HRA) >> 24);
read_ptr = (char) ((dev->me_hw_state & ME_CBRP_HRA) >> 8);
write_ptr = (char) ((dev->me_hw_state & ME_CBWP_HRA) >> 16);
filled_slots = (unsigned char) (write_ptr - read_ptr);
/* check for overflow */
if (filled_slots > buffer_depth)
return -EOVERFLOW;
dev_dbg(&dev->pdev->dev, "filled_slots =%08x\n", filled_slots);
return (int)filled_slots;
}
/**
* mei_read_slots - reads a message from mei device.
*
* @dev: the device structure
* @buffer: message buffer will be written
* @buffer_length: message size will be read
*/
void mei_read_slots(struct mei_device *dev, unsigned char *buffer,
unsigned long buffer_length)
{
u32 *reg_buf = (u32 *)buffer;
for (; buffer_length >= sizeof(u32); buffer_length -= sizeof(u32))
*reg_buf++ = mei_mecbrw_read(dev);
if (buffer_length > 0) {
u32 reg = mei_mecbrw_read(dev);
memcpy(reg_buf, ®, buffer_length);
}
dev->host_hw_state |= H_IG;
mei_hcsr_set(dev);
}
|