summaryrefslogtreecommitdiffstats
path: root/drivers/mtd/nand/fsl_elbc_nand.c
blob: 60a88f24c6b3279be38a5870dbb5957cfa5f4114 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
/* Freescale Enhanced Local Bus Controller NAND driver
 *
 * Copyright © 2006-2007, 2010 Freescale Semiconductor
 *
 * Authors: Nick Spence <nick.spence@freescale.com>,
 *          Scott Wood <scottwood@freescale.com>
 *          Jack Lan <jack.lan@freescale.com>
 *          Roy Zang <tie-fei.zang@freescale.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */

#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/ioport.h>
#include <linux/of_address.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/interrupt.h>

#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/nand_ecc.h>
#include <linux/mtd/partitions.h>

#include <asm/io.h>
#include <asm/fsl_lbc.h>

#define MAX_BANKS 8
#define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */
#define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */

/* mtd information per set */

struct fsl_elbc_mtd {
	struct nand_chip chip;
	struct fsl_lbc_ctrl *ctrl;

	struct device *dev;
	int bank;               /* Chip select bank number           */
	u8 __iomem *vbase;      /* Chip select base virtual address  */
	int page_size;          /* NAND page size (0=512, 1=2048)    */
	unsigned int fmr;       /* FCM Flash Mode Register value     */
};

/* Freescale eLBC FCM controller information */

struct fsl_elbc_fcm_ctrl {
	struct nand_hw_control controller;
	struct fsl_elbc_mtd *chips[MAX_BANKS];

	u8 __iomem *addr;        /* Address of assigned FCM buffer        */
	unsigned int page;       /* Last page written to / read from      */
	unsigned int read_bytes; /* Number of bytes read during command   */
	unsigned int column;     /* Saved column from SEQIN               */
	unsigned int index;      /* Pointer to next byte to 'read'        */
	unsigned int status;     /* status read from LTESR after last op  */
	unsigned int mdr;        /* UPM/FCM Data Register value           */
	unsigned int use_mdr;    /* Non zero if the MDR is to be set      */
	unsigned int oob;        /* Non zero if operating on OOB data     */
	unsigned int counter;	 /* counter for the initializations	  */
	unsigned int max_bitflips;  /* Saved during READ0 cmd		  */
};

/* These map to the positions used by the FCM hardware ECC generator */

static int fsl_elbc_ooblayout_ecc(struct mtd_info *mtd, int section,
				  struct mtd_oob_region *oobregion)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);

	if (section >= chip->ecc.steps)
		return -ERANGE;

	oobregion->offset = (16 * section) + 6;
	if (priv->fmr & FMR_ECCM)
		oobregion->offset += 2;

	oobregion->length = chip->ecc.bytes;

	return 0;
}

static int fsl_elbc_ooblayout_free(struct mtd_info *mtd, int section,
				   struct mtd_oob_region *oobregion)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);

	if (section > chip->ecc.steps)
		return -ERANGE;

	if (!section) {
		oobregion->offset = 0;
		if (mtd->writesize > 512)
			oobregion->offset++;
		oobregion->length = (priv->fmr & FMR_ECCM) ? 7 : 5;
	} else {
		oobregion->offset = (16 * section) -
				    ((priv->fmr & FMR_ECCM) ? 5 : 7);
		if (section < chip->ecc.steps)
			oobregion->length = 13;
		else
			oobregion->length = mtd->oobsize - oobregion->offset;
	}

	return 0;
}

static const struct mtd_ooblayout_ops fsl_elbc_ooblayout_ops = {
	.ecc = fsl_elbc_ooblayout_ecc,
	.free = fsl_elbc_ooblayout_free,
};

/*
 * ELBC may use HW ECC, so that OOB offsets, that NAND core uses for bbt,
 * interfere with ECC positions, that's why we implement our own descriptors.
 * OOB {11, 5}, works for both SP and LP chips, with ECCM = 1 and ECCM = 0.
 */
static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };

static struct nand_bbt_descr bbt_main_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
		   NAND_BBT_2BIT | NAND_BBT_VERSION,
	.offs =	11,
	.len = 4,
	.veroffs = 15,
	.maxblocks = 4,
	.pattern = bbt_pattern,
};

static struct nand_bbt_descr bbt_mirror_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
		   NAND_BBT_2BIT | NAND_BBT_VERSION,
	.offs =	11,
	.len = 4,
	.veroffs = 15,
	.maxblocks = 4,
	.pattern = mirror_pattern,
};

/*=================================*/

/*
 * Set up the FCM hardware block and page address fields, and the fcm
 * structure addr field to point to the correct FCM buffer in memory
 */
static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
	int buf_num;

	elbc_fcm_ctrl->page = page_addr;

	if (priv->page_size) {
		/*
		 * large page size chip : FPAR[PI] save the lowest 6 bits,
		 *                        FBAR[BLK] save the other bits.
		 */
		out_be32(&lbc->fbar, page_addr >> 6);
		out_be32(&lbc->fpar,
		         ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) |
		         (oob ? FPAR_LP_MS : 0) | column);
		buf_num = (page_addr & 1) << 2;
	} else {
		/*
		 * small page size chip : FPAR[PI] save the lowest 5 bits,
		 *                        FBAR[BLK] save the other bits.
		 */
		out_be32(&lbc->fbar, page_addr >> 5);
		out_be32(&lbc->fpar,
		         ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) |
		         (oob ? FPAR_SP_MS : 0) | column);
		buf_num = page_addr & 7;
	}

	elbc_fcm_ctrl->addr = priv->vbase + buf_num * 1024;
	elbc_fcm_ctrl->index = column;

	/* for OOB data point to the second half of the buffer */
	if (oob)
		elbc_fcm_ctrl->index += priv->page_size ? 2048 : 512;

	dev_vdbg(priv->dev, "set_addr: bank=%d, "
			    "elbc_fcm_ctrl->addr=0x%p (0x%p), "
	                    "index %x, pes %d ps %d\n",
		 buf_num, elbc_fcm_ctrl->addr, priv->vbase,
		 elbc_fcm_ctrl->index,
	         chip->phys_erase_shift, chip->page_shift);
}

/*
 * execute FCM command and wait for it to complete
 */
static int fsl_elbc_run_command(struct mtd_info *mtd)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;

	/* Setup the FMR[OP] to execute without write protection */
	out_be32(&lbc->fmr, priv->fmr | 3);
	if (elbc_fcm_ctrl->use_mdr)
		out_be32(&lbc->mdr, elbc_fcm_ctrl->mdr);

	dev_vdbg(priv->dev,
	         "fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n",
	         in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr));
	dev_vdbg(priv->dev,
	         "fsl_elbc_run_command: fbar=%08x fpar=%08x "
	         "fbcr=%08x bank=%d\n",
	         in_be32(&lbc->fbar), in_be32(&lbc->fpar),
	         in_be32(&lbc->fbcr), priv->bank);

	ctrl->irq_status = 0;
	/* execute special operation */
	out_be32(&lbc->lsor, priv->bank);

	/* wait for FCM complete flag or timeout */
	wait_event_timeout(ctrl->irq_wait, ctrl->irq_status,
	                   FCM_TIMEOUT_MSECS * HZ/1000);
	elbc_fcm_ctrl->status = ctrl->irq_status;
	/* store mdr value in case it was needed */
	if (elbc_fcm_ctrl->use_mdr)
		elbc_fcm_ctrl->mdr = in_be32(&lbc->mdr);

	elbc_fcm_ctrl->use_mdr = 0;

	if (elbc_fcm_ctrl->status != LTESR_CC) {
		dev_info(priv->dev,
		         "command failed: fir %x fcr %x status %x mdr %x\n",
		         in_be32(&lbc->fir), in_be32(&lbc->fcr),
			 elbc_fcm_ctrl->status, elbc_fcm_ctrl->mdr);
		return -EIO;
	}

	if (chip->ecc.mode != NAND_ECC_HW)
		return 0;

	elbc_fcm_ctrl->max_bitflips = 0;

	if (elbc_fcm_ctrl->read_bytes == mtd->writesize + mtd->oobsize) {
		uint32_t lteccr = in_be32(&lbc->lteccr);
		/*
		 * if command was a full page read and the ELBC
		 * has the LTECCR register, then bits 12-15 (ppc order) of
		 * LTECCR indicates which 512 byte sub-pages had fixed errors.
		 * bits 28-31 are uncorrectable errors, marked elsewhere.
		 * for small page nand only 1 bit is used.
		 * if the ELBC doesn't have the lteccr register it reads 0
		 * FIXME: 4 bits can be corrected on NANDs with 2k pages, so
		 * count the number of sub-pages with bitflips and update
		 * ecc_stats.corrected accordingly.
		 */
		if (lteccr & 0x000F000F)
			out_be32(&lbc->lteccr, 0x000F000F); /* clear lteccr */
		if (lteccr & 0x000F0000) {
			mtd->ecc_stats.corrected++;
			elbc_fcm_ctrl->max_bitflips = 1;
		}
	}

	return 0;
}

static void fsl_elbc_do_read(struct nand_chip *chip, int oob)
{
	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;

	if (priv->page_size) {
		out_be32(&lbc->fir,
		         (FIR_OP_CM0 << FIR_OP0_SHIFT) |
		         (FIR_OP_CA  << FIR_OP1_SHIFT) |
		         (FIR_OP_PA  << FIR_OP2_SHIFT) |
		         (FIR_OP_CM1 << FIR_OP3_SHIFT) |
		         (FIR_OP_RBW << FIR_OP4_SHIFT));

		out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) |
		                    (NAND_CMD_READSTART << FCR_CMD1_SHIFT));
	} else {
		out_be32(&lbc->fir,
		         (FIR_OP_CM0 << FIR_OP0_SHIFT) |
		         (FIR_OP_CA  << FIR_OP1_SHIFT) |
		         (FIR_OP_PA  << FIR_OP2_SHIFT) |
		         (FIR_OP_RBW << FIR_OP3_SHIFT));

		if (oob)
			out_be32(&lbc->fcr, NAND_CMD_READOOB << FCR_CMD0_SHIFT);
		else
			out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT);
	}
}

/* cmdfunc send commands to the FCM */
static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command,
                             int column, int page_addr)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;

	elbc_fcm_ctrl->use_mdr = 0;

	/* clear the read buffer */
	elbc_fcm_ctrl->read_bytes = 0;
	if (command != NAND_CMD_PAGEPROG)
		elbc_fcm_ctrl->index = 0;

	switch (command) {
	/* READ0 and READ1 read the entire buffer to use hardware ECC. */
	case NAND_CMD_READ1:
		column += 256;

	/* fall-through */
	case NAND_CMD_READ0:
		dev_dbg(priv->dev,
		        "fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:"
		        " 0x%x, column: 0x%x.\n", page_addr, column);


		out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */
		set_addr(mtd, 0, page_addr, 0);

		elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
		elbc_fcm_ctrl->index += column;

		fsl_elbc_do_read(chip, 0);
		fsl_elbc_run_command(mtd);
		return;

	/* READOOB reads only the OOB because no ECC is performed. */
	case NAND_CMD_READOOB:
		dev_vdbg(priv->dev,
		         "fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:"
			 " 0x%x, column: 0x%x.\n", page_addr, column);

		out_be32(&lbc->fbcr, mtd->oobsize - column);
		set_addr(mtd, column, page_addr, 1);

		elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;

		fsl_elbc_do_read(chip, 1);
		fsl_elbc_run_command(mtd);
		return;

	case NAND_CMD_READID:
	case NAND_CMD_PARAM:
		dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD %x\n", command);

		out_be32(&lbc->fir, (FIR_OP_CM0 << FIR_OP0_SHIFT) |
		                    (FIR_OP_UA  << FIR_OP1_SHIFT) |
		                    (FIR_OP_RBW << FIR_OP2_SHIFT));
		out_be32(&lbc->fcr, command << FCR_CMD0_SHIFT);
		/*
		 * although currently it's 8 bytes for READID, we always read
		 * the maximum 256 bytes(for PARAM)
		 */
		out_be32(&lbc->fbcr, 256);
		elbc_fcm_ctrl->read_bytes = 256;
		elbc_fcm_ctrl->use_mdr = 1;
		elbc_fcm_ctrl->mdr = column;
		set_addr(mtd, 0, 0, 0);
		fsl_elbc_run_command(mtd);
		return;

	/* ERASE1 stores the block and page address */
	case NAND_CMD_ERASE1:
		dev_vdbg(priv->dev,
		         "fsl_elbc_cmdfunc: NAND_CMD_ERASE1, "
		         "page_addr: 0x%x.\n", page_addr);
		set_addr(mtd, 0, page_addr, 0);
		return;

	/* ERASE2 uses the block and page address from ERASE1 */
	case NAND_CMD_ERASE2:
		dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n");

		out_be32(&lbc->fir,
		         (FIR_OP_CM0 << FIR_OP0_SHIFT) |
		         (FIR_OP_PA  << FIR_OP1_SHIFT) |
		         (FIR_OP_CM2 << FIR_OP2_SHIFT) |
		         (FIR_OP_CW1 << FIR_OP3_SHIFT) |
		         (FIR_OP_RS  << FIR_OP4_SHIFT));

		out_be32(&lbc->fcr,
		         (NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) |
		         (NAND_CMD_STATUS << FCR_CMD1_SHIFT) |
		         (NAND_CMD_ERASE2 << FCR_CMD2_SHIFT));

		out_be32(&lbc->fbcr, 0);
		elbc_fcm_ctrl->read_bytes = 0;
		elbc_fcm_ctrl->use_mdr = 1;

		fsl_elbc_run_command(mtd);
		return;

	/* SEQIN sets up the addr buffer and all registers except the length */
	case NAND_CMD_SEQIN: {
		__be32 fcr;
		dev_vdbg(priv->dev,
			 "fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, "
		         "page_addr: 0x%x, column: 0x%x.\n",
		         page_addr, column);

		elbc_fcm_ctrl->column = column;
		elbc_fcm_ctrl->use_mdr = 1;

		if (column >= mtd->writesize) {
			/* OOB area */
			column -= mtd->writesize;
			elbc_fcm_ctrl->oob = 1;
		} else {
			WARN_ON(column != 0);
			elbc_fcm_ctrl->oob = 0;
		}

		fcr = (NAND_CMD_STATUS   << FCR_CMD1_SHIFT) |
		      (NAND_CMD_SEQIN    << FCR_CMD2_SHIFT) |
		      (NAND_CMD_PAGEPROG << FCR_CMD3_SHIFT);

		if (priv->page_size) {
			out_be32(&lbc->fir,
			         (FIR_OP_CM2 << FIR_OP0_SHIFT) |
			         (FIR_OP_CA  << FIR_OP1_SHIFT) |
			         (FIR_OP_PA  << FIR_OP2_SHIFT) |
			         (FIR_OP_WB  << FIR_OP3_SHIFT) |
			         (FIR_OP_CM3 << FIR_OP4_SHIFT) |
			         (FIR_OP_CW1 << FIR_OP5_SHIFT) |
			         (FIR_OP_RS  << FIR_OP6_SHIFT));
		} else {
			out_be32(&lbc->fir,
			         (FIR_OP_CM0 << FIR_OP0_SHIFT) |
			         (FIR_OP_CM2 << FIR_OP1_SHIFT) |
			         (FIR_OP_CA  << FIR_OP2_SHIFT) |
			         (FIR_OP_PA  << FIR_OP3_SHIFT) |
			         (FIR_OP_WB  << FIR_OP4_SHIFT) |
			         (FIR_OP_CM3 << FIR_OP5_SHIFT) |
			         (FIR_OP_CW1 << FIR_OP6_SHIFT) |
			         (FIR_OP_RS  << FIR_OP7_SHIFT));

			if (elbc_fcm_ctrl->oob)
				/* OOB area --> READOOB */
				fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT;
			else
				/* First 256 bytes --> READ0 */
				fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
		}

		out_be32(&lbc->fcr, fcr);
		set_addr(mtd, column, page_addr, elbc_fcm_ctrl->oob);
		return;
	}

	/* PAGEPROG reuses all of the setup from SEQIN and adds the length */
	case NAND_CMD_PAGEPROG: {
		dev_vdbg(priv->dev,
		         "fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG "
			 "writing %d bytes.\n", elbc_fcm_ctrl->index);

		/* if the write did not start at 0 or is not a full page
		 * then set the exact length, otherwise use a full page
		 * write so the HW generates the ECC.
		 */
		if (elbc_fcm_ctrl->oob || elbc_fcm_ctrl->column != 0 ||
		    elbc_fcm_ctrl->index != mtd->writesize + mtd->oobsize)
			out_be32(&lbc->fbcr,
				elbc_fcm_ctrl->index - elbc_fcm_ctrl->column);
		else
			out_be32(&lbc->fbcr, 0);

		fsl_elbc_run_command(mtd);
		return;
	}

	/* CMD_STATUS must read the status byte while CEB is active */
	/* Note - it does not wait for the ready line */
	case NAND_CMD_STATUS:
		out_be32(&lbc->fir,
		         (FIR_OP_CM0 << FIR_OP0_SHIFT) |
		         (FIR_OP_RBW << FIR_OP1_SHIFT));
		out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
		out_be32(&lbc->fbcr, 1);
		set_addr(mtd, 0, 0, 0);
		elbc_fcm_ctrl->read_bytes = 1;

		fsl_elbc_run_command(mtd);

		/* The chip always seems to report that it is
		 * write-protected, even when it is not.
		 */
		setbits8(elbc_fcm_ctrl->addr, NAND_STATUS_WP);
		return;

	/* RESET without waiting for the ready line */
	case NAND_CMD_RESET:
		dev_dbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n");
		out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT);
		out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT);
		fsl_elbc_run_command(mtd);
		return;

	default:
		dev_err(priv->dev,
		        "fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n",
		        command);
	}
}

static void fsl_elbc_select_chip(struct mtd_info *mtd, int chip)
{
	/* The hardware does not seem to support multiple
	 * chips per bank.
	 */
}

/*
 * Write buf to the FCM Controller Data Buffer
 */
static void fsl_elbc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
	unsigned int bufsize = mtd->writesize + mtd->oobsize;

	if (len <= 0) {
		dev_err(priv->dev, "write_buf of %d bytes", len);
		elbc_fcm_ctrl->status = 0;
		return;
	}

	if ((unsigned int)len > bufsize - elbc_fcm_ctrl->index) {
		dev_err(priv->dev,
		        "write_buf beyond end of buffer "
		        "(%d requested, %u available)\n",
			len, bufsize - elbc_fcm_ctrl->index);
		len = bufsize - elbc_fcm_ctrl->index;
	}

	memcpy_toio(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], buf, len);
	/*
	 * This is workaround for the weird elbc hangs during nand write,
	 * Scott Wood says: "...perhaps difference in how long it takes a
	 * write to make it through the localbus compared to a write to IMMR
	 * is causing problems, and sync isn't helping for some reason."
	 * Reading back the last byte helps though.
	 */
	in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index] + len - 1);

	elbc_fcm_ctrl->index += len;
}

/*
 * read a byte from either the FCM hardware buffer if it has any data left
 * otherwise issue a command to read a single byte.
 */
static u8 fsl_elbc_read_byte(struct mtd_info *mtd)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;

	/* If there are still bytes in the FCM, then use the next byte. */
	if (elbc_fcm_ctrl->index < elbc_fcm_ctrl->read_bytes)
		return in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index++]);

	dev_err(priv->dev, "read_byte beyond end of buffer\n");
	return ERR_BYTE;
}

/*
 * Read from the FCM Controller Data Buffer
 */
static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
	int avail;

	if (len < 0)
		return;

	avail = min((unsigned int)len,
			elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index);
	memcpy_fromio(buf, &elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], avail);
	elbc_fcm_ctrl->index += avail;

	if (len > avail)
		dev_err(priv->dev,
		        "read_buf beyond end of buffer "
		        "(%d requested, %d available)\n",
		        len, avail);
}

/* This function is called after Program and Erase Operations to
 * check for success or failure.
 */
static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *chip)
{
	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;

	if (elbc_fcm_ctrl->status != LTESR_CC)
		return NAND_STATUS_FAIL;

	/* The chip always seems to report that it is
	 * write-protected, even when it is not.
	 */
	return (elbc_fcm_ctrl->mdr & 0xff) | NAND_STATUS_WP;
}

static int fsl_elbc_chip_init_tail(struct mtd_info *mtd)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
	unsigned int al;

	/* calculate FMR Address Length field */
	al = 0;
	if (chip->pagemask & 0xffff0000)
		al++;
	if (chip->pagemask & 0xff000000)
		al++;

	priv->fmr |= al << FMR_AL_SHIFT;

	dev_dbg(priv->dev, "fsl_elbc_init: nand->numchips = %d\n",
	        chip->numchips);
	dev_dbg(priv->dev, "fsl_elbc_init: nand->chipsize = %lld\n",
	        chip->chipsize);
	dev_dbg(priv->dev, "fsl_elbc_init: nand->pagemask = %8x\n",
	        chip->pagemask);
	dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_delay = %d\n",
	        chip->chip_delay);
	dev_dbg(priv->dev, "fsl_elbc_init: nand->badblockpos = %d\n",
	        chip->badblockpos);
	dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_shift = %d\n",
	        chip->chip_shift);
	dev_dbg(priv->dev, "fsl_elbc_init: nand->page_shift = %d\n",
	        chip->page_shift);
	dev_dbg(priv->dev, "fsl_elbc_init: nand->phys_erase_shift = %d\n",
	        chip->phys_erase_shift);
	dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.mode = %d\n",
	        chip->ecc.mode);
	dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.steps = %d\n",
	        chip->ecc.steps);
	dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.bytes = %d\n",
	        chip->ecc.bytes);
	dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.total = %d\n",
	        chip->ecc.total);
	dev_dbg(priv->dev, "fsl_elbc_init: mtd->ooblayout = %p\n",
		mtd->ooblayout);
	dev_dbg(priv->dev, "fsl_elbc_init: mtd->flags = %08x\n", mtd->flags);
	dev_dbg(priv->dev, "fsl_elbc_init: mtd->size = %lld\n", mtd->size);
	dev_dbg(priv->dev, "fsl_elbc_init: mtd->erasesize = %d\n",
	        mtd->erasesize);
	dev_dbg(priv->dev, "fsl_elbc_init: mtd->writesize = %d\n",
	        mtd->writesize);
	dev_dbg(priv->dev, "fsl_elbc_init: mtd->oobsize = %d\n",
	        mtd->oobsize);

	/* adjust Option Register and ECC to match Flash page size */
	if (mtd->writesize == 512) {
		priv->page_size = 0;
		clrbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
	} else if (mtd->writesize == 2048) {
		priv->page_size = 1;
		setbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
	} else {
		dev_err(priv->dev,
		        "fsl_elbc_init: page size %d is not supported\n",
		        mtd->writesize);
		return -1;
	}

	return 0;
}

static int fsl_elbc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
			      uint8_t *buf, int oob_required, int page)
{
	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;

	fsl_elbc_read_buf(mtd, buf, mtd->writesize);
	if (oob_required)
		fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize);

	if (fsl_elbc_wait(mtd, chip) & NAND_STATUS_FAIL)
		mtd->ecc_stats.failed++;

	return elbc_fcm_ctrl->max_bitflips;
}

/* ECC will be calculated automatically, and errors will be detected in
 * waitfunc.
 */
static int fsl_elbc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
				const uint8_t *buf, int oob_required, int page)
{
	fsl_elbc_write_buf(mtd, buf, mtd->writesize);
	fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);

	return 0;
}

/* ECC will be calculated automatically, and errors will be detected in
 * waitfunc.
 */
static int fsl_elbc_write_subpage(struct mtd_info *mtd, struct nand_chip *chip,
				uint32_t offset, uint32_t data_len,
				const uint8_t *buf, int oob_required, int page)
{
	fsl_elbc_write_buf(mtd, buf, mtd->writesize);
	fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);

	return 0;
}

static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv)
{
	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
	struct nand_chip *chip = &priv->chip;
	struct mtd_info *mtd = nand_to_mtd(chip);

	dev_dbg(priv->dev, "eLBC Set Information for bank %d\n", priv->bank);

	/* Fill in fsl_elbc_mtd structure */
	mtd->dev.parent = priv->dev;
	nand_set_flash_node(chip, priv->dev->of_node);

	/* set timeout to maximum */
	priv->fmr = 15 << FMR_CWTO_SHIFT;
	if (in_be32(&lbc->bank[priv->bank].or) & OR_FCM_PGS)
		priv->fmr |= FMR_ECCM;

	/* fill in nand_chip structure */
	/* set up function call table */
	chip->read_byte = fsl_elbc_read_byte;
	chip->write_buf = fsl_elbc_write_buf;
	chip->read_buf = fsl_elbc_read_buf;
	chip->select_chip = fsl_elbc_select_chip;
	chip->cmdfunc = fsl_elbc_cmdfunc;
	chip->waitfunc = fsl_elbc_wait;

	chip->bbt_td = &bbt_main_descr;
	chip->bbt_md = &bbt_mirror_descr;

	/* set up nand options */
	chip->bbt_options = NAND_BBT_USE_FLASH;

	chip->controller = &elbc_fcm_ctrl->controller;
	nand_set_controller_data(chip, priv);

	chip->ecc.read_page = fsl_elbc_read_page;
	chip->ecc.write_page = fsl_elbc_write_page;
	chip->ecc.write_subpage = fsl_elbc_write_subpage;

	/* If CS Base Register selects full hardware ECC then use it */
	if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
	    BR_DECC_CHK_GEN) {
		chip->ecc.mode = NAND_ECC_HW;
		mtd_set_ooblayout(mtd, &fsl_elbc_ooblayout_ops);
		chip->ecc.size = 512;
		chip->ecc.bytes = 3;
		chip->ecc.strength = 1;
	} else {
		/* otherwise fall back to default software ECC */
		chip->ecc.mode = NAND_ECC_SOFT;
		chip->ecc.algo = NAND_ECC_HAMMING;
	}

	return 0;
}

static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv)
{
	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
	struct mtd_info *mtd = nand_to_mtd(&priv->chip);

	nand_release(mtd);

	kfree(mtd->name);

	if (priv->vbase)
		iounmap(priv->vbase);

	elbc_fcm_ctrl->chips[priv->bank] = NULL;
	kfree(priv);
	return 0;
}

static DEFINE_MUTEX(fsl_elbc_nand_mutex);

static int fsl_elbc_nand_probe(struct platform_device *pdev)
{
	struct fsl_lbc_regs __iomem *lbc;
	struct fsl_elbc_mtd *priv;
	struct resource res;
	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl;
	static const char *part_probe_types[]
		= { "cmdlinepart", "RedBoot", "ofpart", NULL };
	int ret;
	int bank;
	struct device *dev;
	struct device_node *node = pdev->dev.of_node;
	struct mtd_info *mtd;

	if (!fsl_lbc_ctrl_dev || !fsl_lbc_ctrl_dev->regs)
		return -ENODEV;
	lbc = fsl_lbc_ctrl_dev->regs;
	dev = fsl_lbc_ctrl_dev->dev;

	/* get, allocate and map the memory resource */
	ret = of_address_to_resource(node, 0, &res);
	if (ret) {
		dev_err(dev, "failed to get resource\n");
		return ret;
	}

	/* find which chip select it is connected to */
	for (bank = 0; bank < MAX_BANKS; bank++)
		if ((in_be32(&lbc->bank[bank].br) & BR_V) &&
		    (in_be32(&lbc->bank[bank].br) & BR_MSEL) == BR_MS_FCM &&
		    (in_be32(&lbc->bank[bank].br) &
		     in_be32(&lbc->bank[bank].or) & BR_BA)
		     == fsl_lbc_addr(res.start))
			break;

	if (bank >= MAX_BANKS) {
		dev_err(dev, "address did not match any chip selects\n");
		return -ENODEV;
	}

	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
	if (!priv)
		return -ENOMEM;

	mutex_lock(&fsl_elbc_nand_mutex);
	if (!fsl_lbc_ctrl_dev->nand) {
		elbc_fcm_ctrl = kzalloc(sizeof(*elbc_fcm_ctrl), GFP_KERNEL);
		if (!elbc_fcm_ctrl) {
			mutex_unlock(&fsl_elbc_nand_mutex);
			ret = -ENOMEM;
			goto err;
		}
		elbc_fcm_ctrl->counter++;

		spin_lock_init(&elbc_fcm_ctrl->controller.lock);
		init_waitqueue_head(&elbc_fcm_ctrl->controller.wq);
		fsl_lbc_ctrl_dev->nand = elbc_fcm_ctrl;
	} else {
		elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
	}
	mutex_unlock(&fsl_elbc_nand_mutex);

	elbc_fcm_ctrl->chips[bank] = priv;
	priv->bank = bank;
	priv->ctrl = fsl_lbc_ctrl_dev;
	priv->dev = &pdev->dev;
	dev_set_drvdata(priv->dev, priv);

	priv->vbase = ioremap(res.start, resource_size(&res));
	if (!priv->vbase) {
		dev_err(dev, "failed to map chip region\n");
		ret = -ENOMEM;
		goto err;
	}

	mtd = nand_to_mtd(&priv->chip);
	mtd->name = kasprintf(GFP_KERNEL, "%llx.flash", (u64)res.start);
	if (!nand_to_mtd(&priv->chip)->name) {
		ret = -ENOMEM;
		goto err;
	}

	ret = fsl_elbc_chip_init(priv);
	if (ret)
		goto err;

	ret = nand_scan_ident(mtd, 1, NULL);
	if (ret)
		goto err;

	ret = fsl_elbc_chip_init_tail(mtd);
	if (ret)
		goto err;

	ret = nand_scan_tail(mtd);
	if (ret)
		goto err;

	/* First look for RedBoot table or partitions on the command
	 * line, these take precedence over device tree information */
	mtd_device_parse_register(mtd, part_probe_types, NULL,
				  NULL, 0);

	printk(KERN_INFO "eLBC NAND device at 0x%llx, bank %d\n",
	       (unsigned long long)res.start, priv->bank);
	return 0;

err:
	fsl_elbc_chip_remove(priv);
	return ret;
}

static int fsl_elbc_nand_remove(struct platform_device *pdev)
{
	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
	struct fsl_elbc_mtd *priv = dev_get_drvdata(&pdev->dev);

	fsl_elbc_chip_remove(priv);

	mutex_lock(&fsl_elbc_nand_mutex);
	elbc_fcm_ctrl->counter--;
	if (!elbc_fcm_ctrl->counter) {
		fsl_lbc_ctrl_dev->nand = NULL;
		kfree(elbc_fcm_ctrl);
	}
	mutex_unlock(&fsl_elbc_nand_mutex);

	return 0;

}

static const struct of_device_id fsl_elbc_nand_match[] = {
	{ .compatible = "fsl,elbc-fcm-nand", },
	{}
};
MODULE_DEVICE_TABLE(of, fsl_elbc_nand_match);

static struct platform_driver fsl_elbc_nand_driver = {
	.driver = {
		.name = "fsl,elbc-fcm-nand",
		.of_match_table = fsl_elbc_nand_match,
	},
	.probe = fsl_elbc_nand_probe,
	.remove = fsl_elbc_nand_remove,
};

module_platform_driver(fsl_elbc_nand_driver);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Freescale");
MODULE_DESCRIPTION("Freescale Enhanced Local Bus Controller MTD NAND driver");