summaryrefslogtreecommitdiffstats
path: root/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c
blob: 3fa8c22d3f36af1da132b9f3932f48101af0ccd7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
// SPDX-License-Identifier: GPL-2.0+
/*
 * Freescale GPMI NAND Flash Driver
 *
 * Copyright (C) 2010-2015 Freescale Semiconductor, Inc.
 * Copyright (C) 2008 Embedded Alley Solutions, Inc.
 */
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/sched/task_stack.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/mtd/partitions.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/pm_runtime.h>
#include <linux/dma/mxs-dma.h>
#include "gpmi-nand.h"
#include "gpmi-regs.h"
#include "bch-regs.h"

/* Resource names for the GPMI NAND driver. */
#define GPMI_NAND_GPMI_REGS_ADDR_RES_NAME  "gpmi-nand"
#define GPMI_NAND_BCH_REGS_ADDR_RES_NAME   "bch"
#define GPMI_NAND_BCH_INTERRUPT_RES_NAME   "bch"

/* Converts time to clock cycles */
#define TO_CYCLES(duration, period) DIV_ROUND_UP_ULL(duration, period)

#define MXS_SET_ADDR		0x4
#define MXS_CLR_ADDR		0x8
/*
 * Clear the bit and poll it cleared.  This is usually called with
 * a reset address and mask being either SFTRST(bit 31) or CLKGATE
 * (bit 30).
 */
static int clear_poll_bit(void __iomem *addr, u32 mask)
{
	int timeout = 0x400;

	/* clear the bit */
	writel(mask, addr + MXS_CLR_ADDR);

	/*
	 * SFTRST needs 3 GPMI clocks to settle, the reference manual
	 * recommends to wait 1us.
	 */
	udelay(1);

	/* poll the bit becoming clear */
	while ((readl(addr) & mask) && --timeout)
		/* nothing */;

	return !timeout;
}

#define MODULE_CLKGATE		(1 << 30)
#define MODULE_SFTRST		(1 << 31)
/*
 * The current mxs_reset_block() will do two things:
 *  [1] enable the module.
 *  [2] reset the module.
 *
 * In most of the cases, it's ok.
 * But in MX23, there is a hardware bug in the BCH block (see erratum #2847).
 * If you try to soft reset the BCH block, it becomes unusable until
 * the next hard reset. This case occurs in the NAND boot mode. When the board
 * boots by NAND, the ROM of the chip will initialize the BCH blocks itself.
 * So If the driver tries to reset the BCH again, the BCH will not work anymore.
 * You will see a DMA timeout in this case. The bug has been fixed
 * in the following chips, such as MX28.
 *
 * To avoid this bug, just add a new parameter `just_enable` for
 * the mxs_reset_block(), and rewrite it here.
 */
static int gpmi_reset_block(void __iomem *reset_addr, bool just_enable)
{
	int ret;
	int timeout = 0x400;

	/* clear and poll SFTRST */
	ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
	if (unlikely(ret))
		goto error;

	/* clear CLKGATE */
	writel(MODULE_CLKGATE, reset_addr + MXS_CLR_ADDR);

	if (!just_enable) {
		/* set SFTRST to reset the block */
		writel(MODULE_SFTRST, reset_addr + MXS_SET_ADDR);
		udelay(1);

		/* poll CLKGATE becoming set */
		while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout)
			/* nothing */;
		if (unlikely(!timeout))
			goto error;
	}

	/* clear and poll SFTRST */
	ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
	if (unlikely(ret))
		goto error;

	/* clear and poll CLKGATE */
	ret = clear_poll_bit(reset_addr, MODULE_CLKGATE);
	if (unlikely(ret))
		goto error;

	return 0;

error:
	pr_err("%s(%p): module reset timeout\n", __func__, reset_addr);
	return -ETIMEDOUT;
}

static int __gpmi_enable_clk(struct gpmi_nand_data *this, bool v)
{
	struct clk *clk;
	int ret;
	int i;

	for (i = 0; i < GPMI_CLK_MAX; i++) {
		clk = this->resources.clock[i];
		if (!clk)
			break;

		if (v) {
			ret = clk_prepare_enable(clk);
			if (ret)
				goto err_clk;
		} else {
			clk_disable_unprepare(clk);
		}
	}
	return 0;

err_clk:
	for (; i > 0; i--)
		clk_disable_unprepare(this->resources.clock[i - 1]);
	return ret;
}

static int gpmi_init(struct gpmi_nand_data *this)
{
	struct resources *r = &this->resources;
	int ret;

	ret = pm_runtime_get_sync(this->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(this->dev);
		return ret;
	}

	ret = gpmi_reset_block(r->gpmi_regs, false);
	if (ret)
		goto err_out;

	/*
	 * Reset BCH here, too. We got failures otherwise :(
	 * See later BCH reset for explanation of MX23 and MX28 handling
	 */
	ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this));
	if (ret)
		goto err_out;

	/* Choose NAND mode. */
	writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR);

	/* Set the IRQ polarity. */
	writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY,
				r->gpmi_regs + HW_GPMI_CTRL1_SET);

	/* Disable Write-Protection. */
	writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET);

	/* Select BCH ECC. */
	writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET);

	/*
	 * Decouple the chip select from dma channel. We use dma0 for all
	 * the chips, force all NAND RDY_BUSY inputs to be sourced from
	 * RDY_BUSY0.
	 */
	writel(BM_GPMI_CTRL1_DECOUPLE_CS | BM_GPMI_CTRL1_GANGED_RDYBUSY,
	       r->gpmi_regs + HW_GPMI_CTRL1_SET);

err_out:
	pm_runtime_mark_last_busy(this->dev);
	pm_runtime_put_autosuspend(this->dev);
	return ret;
}

/* This function is very useful. It is called only when the bug occur. */
static void gpmi_dump_info(struct gpmi_nand_data *this)
{
	struct resources *r = &this->resources;
	struct bch_geometry *geo = &this->bch_geometry;
	u32 reg;
	int i;

	dev_err(this->dev, "Show GPMI registers :\n");
	for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) {
		reg = readl(r->gpmi_regs + i * 0x10);
		dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
	}

	/* start to print out the BCH info */
	dev_err(this->dev, "Show BCH registers :\n");
	for (i = 0; i <= HW_BCH_VERSION / 0x10 + 1; i++) {
		reg = readl(r->bch_regs + i * 0x10);
		dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
	}
	dev_err(this->dev, "BCH Geometry :\n"
		"GF length              : %u\n"
		"ECC Strength           : %u\n"
		"Page Size in Bytes     : %u\n"
		"Metadata Size in Bytes : %u\n"
		"ECC Chunk Size in Bytes: %u\n"
		"ECC Chunk Count        : %u\n"
		"Payload Size in Bytes  : %u\n"
		"Auxiliary Size in Bytes: %u\n"
		"Auxiliary Status Offset: %u\n"
		"Block Mark Byte Offset : %u\n"
		"Block Mark Bit Offset  : %u\n",
		geo->gf_len,
		geo->ecc_strength,
		geo->page_size,
		geo->metadata_size,
		geo->ecc_chunk_size,
		geo->ecc_chunk_count,
		geo->payload_size,
		geo->auxiliary_size,
		geo->auxiliary_status_offset,
		geo->block_mark_byte_offset,
		geo->block_mark_bit_offset);
}

static inline bool gpmi_check_ecc(struct gpmi_nand_data *this)
{
	struct bch_geometry *geo = &this->bch_geometry;

	/* Do the sanity check. */
	if (GPMI_IS_MXS(this)) {
		/* The mx23/mx28 only support the GF13. */
		if (geo->gf_len == 14)
			return false;
	}
	return geo->ecc_strength <= this->devdata->bch_max_ecc_strength;
}

/*
 * If we can get the ECC information from the nand chip, we do not
 * need to calculate them ourselves.
 *
 * We may have available oob space in this case.
 */
static int set_geometry_by_ecc_info(struct gpmi_nand_data *this,
				    unsigned int ecc_strength,
				    unsigned int ecc_step)
{
	struct bch_geometry *geo = &this->bch_geometry;
	struct nand_chip *chip = &this->nand;
	struct mtd_info *mtd = nand_to_mtd(chip);
	unsigned int block_mark_bit_offset;

	switch (ecc_step) {
	case SZ_512:
		geo->gf_len = 13;
		break;
	case SZ_1K:
		geo->gf_len = 14;
		break;
	default:
		dev_err(this->dev,
			"unsupported nand chip. ecc bits : %d, ecc size : %d\n",
			nanddev_get_ecc_requirements(&chip->base)->strength,
			nanddev_get_ecc_requirements(&chip->base)->step_size);
		return -EINVAL;
	}
	geo->ecc_chunk_size = ecc_step;
	geo->ecc_strength = round_up(ecc_strength, 2);
	if (!gpmi_check_ecc(this))
		return -EINVAL;

	/* Keep the C >= O */
	if (geo->ecc_chunk_size < mtd->oobsize) {
		dev_err(this->dev,
			"unsupported nand chip. ecc size: %d, oob size : %d\n",
			ecc_step, mtd->oobsize);
		return -EINVAL;
	}

	/* The default value, see comment in the legacy_set_geometry(). */
	geo->metadata_size = 10;

	geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;

	/*
	 * Now, the NAND chip with 2K page(data chunk is 512byte) shows below:
	 *
	 *    |                          P                            |
	 *    |<----------------------------------------------------->|
	 *    |                                                       |
	 *    |                                        (Block Mark)   |
	 *    |                      P'                      |      | |     |
	 *    |<-------------------------------------------->|  D   | |  O' |
	 *    |                                              |<---->| |<--->|
	 *    V                                              V      V V     V
	 *    +---+----------+-+----------+-+----------+-+----------+-+-----+
	 *    | M |   data   |E|   data   |E|   data   |E|   data   |E|     |
	 *    +---+----------+-+----------+-+----------+-+----------+-+-----+
	 *                                                   ^              ^
	 *                                                   |      O       |
	 *                                                   |<------------>|
	 *                                                   |              |
	 *
	 *	P : the page size for BCH module.
	 *	E : The ECC strength.
	 *	G : the length of Galois Field.
	 *	N : The chunk count of per page.
	 *	M : the metasize of per page.
	 *	C : the ecc chunk size, aka the "data" above.
	 *	P': the nand chip's page size.
	 *	O : the nand chip's oob size.
	 *	O': the free oob.
	 *
	 *	The formula for P is :
	 *
	 *	            E * G * N
	 *	       P = ------------ + P' + M
	 *                      8
	 *
	 * The position of block mark moves forward in the ECC-based view
	 * of page, and the delta is:
	 *
	 *                   E * G * (N - 1)
	 *             D = (---------------- + M)
	 *                          8
	 *
	 * Please see the comment in legacy_set_geometry().
	 * With the condition C >= O , we still can get same result.
	 * So the bit position of the physical block mark within the ECC-based
	 * view of the page is :
	 *             (P' - D) * 8
	 */
	geo->page_size = mtd->writesize + geo->metadata_size +
		(geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;

	geo->payload_size = mtd->writesize;

	geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4);
	geo->auxiliary_size = ALIGN(geo->metadata_size, 4)
				+ ALIGN(geo->ecc_chunk_count, 4);

	if (!this->swap_block_mark)
		return 0;

	/* For bit swap. */
	block_mark_bit_offset = mtd->writesize * 8 -
		(geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
				+ geo->metadata_size * 8);

	geo->block_mark_byte_offset = block_mark_bit_offset / 8;
	geo->block_mark_bit_offset  = block_mark_bit_offset % 8;
	return 0;
}

/*
 *  Calculate the ECC strength by hand:
 *	E : The ECC strength.
 *	G : the length of Galois Field.
 *	N : The chunk count of per page.
 *	O : the oobsize of the NAND chip.
 *	M : the metasize of per page.
 *
 *	The formula is :
 *		E * G * N
 *	      ------------ <= (O - M)
 *                  8
 *
 *      So, we get E by:
 *                    (O - M) * 8
 *              E <= -------------
 *                       G * N
 */
static inline int get_ecc_strength(struct gpmi_nand_data *this)
{
	struct bch_geometry *geo = &this->bch_geometry;
	struct mtd_info	*mtd = nand_to_mtd(&this->nand);
	int ecc_strength;

	ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8)
			/ (geo->gf_len * geo->ecc_chunk_count);

	/* We need the minor even number. */
	return round_down(ecc_strength, 2);
}

static int legacy_set_geometry(struct gpmi_nand_data *this)
{
	struct bch_geometry *geo = &this->bch_geometry;
	struct mtd_info *mtd = nand_to_mtd(&this->nand);
	unsigned int metadata_size;
	unsigned int status_size;
	unsigned int block_mark_bit_offset;

	/*
	 * The size of the metadata can be changed, though we set it to 10
	 * bytes now. But it can't be too large, because we have to save
	 * enough space for BCH.
	 */
	geo->metadata_size = 10;

	/* The default for the length of Galois Field. */
	geo->gf_len = 13;

	/* The default for chunk size. */
	geo->ecc_chunk_size = 512;
	while (geo->ecc_chunk_size < mtd->oobsize) {
		geo->ecc_chunk_size *= 2; /* keep C >= O */
		geo->gf_len = 14;
	}

	geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;

	/* We use the same ECC strength for all chunks. */
	geo->ecc_strength = get_ecc_strength(this);
	if (!gpmi_check_ecc(this)) {
		dev_err(this->dev,
			"ecc strength: %d cannot be supported by the controller (%d)\n"
			"try to use minimum ecc strength that NAND chip required\n",
			geo->ecc_strength,
			this->devdata->bch_max_ecc_strength);
		return -EINVAL;
	}

	geo->page_size = mtd->writesize + geo->metadata_size +
		(geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
	geo->payload_size = mtd->writesize;

	/*
	 * The auxiliary buffer contains the metadata and the ECC status. The
	 * metadata is padded to the nearest 32-bit boundary. The ECC status
	 * contains one byte for every ECC chunk, and is also padded to the
	 * nearest 32-bit boundary.
	 */
	metadata_size = ALIGN(geo->metadata_size, 4);
	status_size   = ALIGN(geo->ecc_chunk_count, 4);

	geo->auxiliary_size = metadata_size + status_size;
	geo->auxiliary_status_offset = metadata_size;

	if (!this->swap_block_mark)
		return 0;

	/*
	 * We need to compute the byte and bit offsets of
	 * the physical block mark within the ECC-based view of the page.
	 *
	 * NAND chip with 2K page shows below:
	 *                                             (Block Mark)
	 *                                                   |      |
	 *                                                   |  D   |
	 *                                                   |<---->|
	 *                                                   V      V
	 *    +---+----------+-+----------+-+----------+-+----------+-+
	 *    | M |   data   |E|   data   |E|   data   |E|   data   |E|
	 *    +---+----------+-+----------+-+----------+-+----------+-+
	 *
	 * The position of block mark moves forward in the ECC-based view
	 * of page, and the delta is:
	 *
	 *                   E * G * (N - 1)
	 *             D = (---------------- + M)
	 *                          8
	 *
	 * With the formula to compute the ECC strength, and the condition
	 *       : C >= O         (C is the ecc chunk size)
	 *
	 * It's easy to deduce to the following result:
	 *
	 *         E * G       (O - M)      C - M         C - M
	 *      ----------- <= ------- <=  --------  <  ---------
	 *           8            N           N          (N - 1)
	 *
	 *  So, we get:
	 *
	 *                   E * G * (N - 1)
	 *             D = (---------------- + M) < C
	 *                          8
	 *
	 *  The above inequality means the position of block mark
	 *  within the ECC-based view of the page is still in the data chunk,
	 *  and it's NOT in the ECC bits of the chunk.
	 *
	 *  Use the following to compute the bit position of the
	 *  physical block mark within the ECC-based view of the page:
	 *          (page_size - D) * 8
	 *
	 *  --Huang Shijie
	 */
	block_mark_bit_offset = mtd->writesize * 8 -
		(geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
				+ geo->metadata_size * 8);

	geo->block_mark_byte_offset = block_mark_bit_offset / 8;
	geo->block_mark_bit_offset  = block_mark_bit_offset % 8;
	return 0;
}

static int common_nfc_set_geometry(struct gpmi_nand_data *this)
{
	struct nand_chip *chip = &this->nand;
	const struct nand_ecc_props *requirements =
		nanddev_get_ecc_requirements(&chip->base);

	if (chip->ecc.strength > 0 && chip->ecc.size > 0)
		return set_geometry_by_ecc_info(this, chip->ecc.strength,
						chip->ecc.size);

	if ((of_property_read_bool(this->dev->of_node, "fsl,use-minimum-ecc"))
				|| legacy_set_geometry(this)) {
		if (!(requirements->strength > 0 && requirements->step_size > 0))
			return -EINVAL;

		return set_geometry_by_ecc_info(this,
						requirements->strength,
						requirements->step_size);
	}

	return 0;
}

/* Configures the geometry for BCH.  */
static int bch_set_geometry(struct gpmi_nand_data *this)
{
	struct resources *r = &this->resources;
	int ret;

	ret = common_nfc_set_geometry(this);
	if (ret)
		return ret;

	ret = pm_runtime_get_sync(this->dev);
	if (ret < 0) {
		pm_runtime_put_autosuspend(this->dev);
		return ret;
	}

	/*
	* Due to erratum #2847 of the MX23, the BCH cannot be soft reset on this
	* chip, otherwise it will lock up. So we skip resetting BCH on the MX23.
	* and MX28.
	*/
	ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this));
	if (ret)
		goto err_out;

	/* Set *all* chip selects to use layout 0. */
	writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT);

	ret = 0;
err_out:
	pm_runtime_mark_last_busy(this->dev);
	pm_runtime_put_autosuspend(this->dev);

	return ret;
}

/*
 * <1> Firstly, we should know what's the GPMI-clock means.
 *     The GPMI-clock is the internal clock in the gpmi nand controller.
 *     If you set 100MHz to gpmi nand controller, the GPMI-clock's period
 *     is 10ns. Mark the GPMI-clock's period as GPMI-clock-period.
 *
 * <2> Secondly, we should know what's the frequency on the nand chip pins.
 *     The frequency on the nand chip pins is derived from the GPMI-clock.
 *     We can get it from the following equation:
 *
 *         F = G / (DS + DH)
 *
 *         F  : the frequency on the nand chip pins.
 *         G  : the GPMI clock, such as 100MHz.
 *         DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP
 *         DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD
 *
 * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz,
 *     the nand EDO(extended Data Out) timing could be applied.
 *     The GPMI implements a feedback read strobe to sample the read data.
 *     The feedback read strobe can be delayed to support the nand EDO timing
 *     where the read strobe may deasserts before the read data is valid, and
 *     read data is valid for some time after read strobe.
 *
 *     The following figure illustrates some aspects of a NAND Flash read:
 *
 *                   |<---tREA---->|
 *                   |             |
 *                   |         |   |
 *                   |<--tRP-->|   |
 *                   |         |   |
 *                  __          ___|__________________________________
 *     RDN            \________/   |
 *                                 |
 *                                 /---------\
 *     Read Data    --------------<           >---------
 *                                 \---------/
 *                                |     |
 *                                |<-D->|
 *     FeedbackRDN  ________             ____________
 *                          \___________/
 *
 *          D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY.
 *
 *
 * <4> Now, we begin to describe how to compute the right RDN_DELAY.
 *
 *  4.1) From the aspect of the nand chip pins:
 *        Delay = (tREA + C - tRP)               {1}
 *
 *        tREA : the maximum read access time.
 *        C    : a constant to adjust the delay. default is 4000ps.
 *        tRP  : the read pulse width, which is exactly:
 *                   tRP = (GPMI-clock-period) * DATA_SETUP
 *
 *  4.2) From the aspect of the GPMI nand controller:
 *         Delay = RDN_DELAY * 0.125 * RP        {2}
 *
 *         RP   : the DLL reference period.
 *            if (GPMI-clock-period > DLL_THRETHOLD)
 *                   RP = GPMI-clock-period / 2;
 *            else
 *                   RP = GPMI-clock-period;
 *
 *            Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period
 *            is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD
 *            is 16000ps, but in mx6q, we use 12000ps.
 *
 *  4.3) since {1} equals {2}, we get:
 *
 *                     (tREA + 4000 - tRP) * 8
 *         RDN_DELAY = -----------------------     {3}
 *                           RP
 */
static void gpmi_nfc_compute_timings(struct gpmi_nand_data *this,
				     const struct nand_sdr_timings *sdr)
{
	struct gpmi_nfc_hardware_timing *hw = &this->hw;
	unsigned int dll_threshold_ps = this->devdata->max_chain_delay;
	unsigned int period_ps, reference_period_ps;
	unsigned int data_setup_cycles, data_hold_cycles, addr_setup_cycles;
	unsigned int tRP_ps;
	bool use_half_period;
	int sample_delay_ps, sample_delay_factor;
	u16 busy_timeout_cycles;
	u8 wrn_dly_sel;

	if (sdr->tRC_min >= 30000) {
		/* ONFI non-EDO modes [0-3] */
		hw->clk_rate = 22000000;
		wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS;
	} else if (sdr->tRC_min >= 25000) {
		/* ONFI EDO mode 4 */
		hw->clk_rate = 80000000;
		wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
	} else {
		/* ONFI EDO mode 5 */
		hw->clk_rate = 100000000;
		wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
	}

	/* SDR core timings are given in picoseconds */
	period_ps = div_u64((u64)NSEC_PER_SEC * 1000, hw->clk_rate);

	addr_setup_cycles = TO_CYCLES(sdr->tALS_min, period_ps);
	data_setup_cycles = TO_CYCLES(sdr->tDS_min, period_ps);
	data_hold_cycles = TO_CYCLES(sdr->tDH_min, period_ps);
	busy_timeout_cycles = TO_CYCLES(sdr->tWB_max + sdr->tR_max, period_ps);

	hw->timing0 = BF_GPMI_TIMING0_ADDRESS_SETUP(addr_setup_cycles) |
		      BF_GPMI_TIMING0_DATA_HOLD(data_hold_cycles) |
		      BF_GPMI_TIMING0_DATA_SETUP(data_setup_cycles);
	hw->timing1 = BF_GPMI_TIMING1_BUSY_TIMEOUT(busy_timeout_cycles * 4096);

	/*
	 * Derive NFC ideal delay from {3}:
	 *
	 *                     (tREA + 4000 - tRP) * 8
	 *         RDN_DELAY = -----------------------
	 *                                RP
	 */
	if (period_ps > dll_threshold_ps) {
		use_half_period = true;
		reference_period_ps = period_ps / 2;
	} else {
		use_half_period = false;
		reference_period_ps = period_ps;
	}

	tRP_ps = data_setup_cycles * period_ps;
	sample_delay_ps = (sdr->tREA_max + 4000 - tRP_ps) * 8;
	if (sample_delay_ps > 0)
		sample_delay_factor = sample_delay_ps / reference_period_ps;
	else
		sample_delay_factor = 0;

	hw->ctrl1n = BF_GPMI_CTRL1_WRN_DLY_SEL(wrn_dly_sel);
	if (sample_delay_factor)
		hw->ctrl1n |= BF_GPMI_CTRL1_RDN_DELAY(sample_delay_factor) |
			      BM_GPMI_CTRL1_DLL_ENABLE |
			      (use_half_period ? BM_GPMI_CTRL1_HALF_PERIOD : 0);
}

static void gpmi_nfc_apply_timings(struct gpmi_nand_data *this)
{
	struct gpmi_nfc_hardware_timing *hw = &this->hw;
	struct resources *r = &this->resources;
	void __iomem *gpmi_regs = r->gpmi_regs;
	unsigned int dll_wait_time_us;

	clk_set_rate(r->clock[0], hw->clk_rate);

	writel(hw->timing0, gpmi_regs + HW_GPMI_TIMING0);
	writel(hw->timing1, gpmi_regs + HW_GPMI_TIMING1);

	/*
	 * Clear several CTRL1 fields, DLL must be disabled when setting
	 * RDN_DELAY or HALF_PERIOD.
	 */
	writel(BM_GPMI_CTRL1_CLEAR_MASK, gpmi_regs + HW_GPMI_CTRL1_CLR);
	writel(hw->ctrl1n, gpmi_regs + HW_GPMI_CTRL1_SET);

	/* Wait 64 clock cycles before using the GPMI after enabling the DLL */
	dll_wait_time_us = USEC_PER_SEC / hw->clk_rate * 64;
	if (!dll_wait_time_us)
		dll_wait_time_us = 1;

	/* Wait for the DLL to settle. */
	udelay(dll_wait_time_us);
}

static int gpmi_setup_interface(struct nand_chip *chip, int chipnr,
				const struct nand_interface_config *conf)
{
	struct gpmi_nand_data *this = nand_get_controller_data(chip);
	const struct nand_sdr_timings *sdr;

	/* Retrieve required NAND timings */
	sdr = nand_get_sdr_timings(conf);
	if (IS_ERR(sdr))
		return PTR_ERR(sdr);

	/* Only MX6 GPMI controller can reach EDO timings */
	if (sdr->tRC_min <= 25000 && !GPMI_IS_MX6(this))
		return -ENOTSUPP;

	/* Stop here if this call was just a check */
	if (chipnr < 0)
		return 0;

	/* Do the actual derivation of the controller timings */
	gpmi_nfc_compute_timings(this, sdr);

	this->hw.must_apply_timings = true;

	return 0;
}

/* Clears a BCH interrupt. */
static void gpmi_clear_bch(struct gpmi_nand_data *this)
{
	struct resources *r = &this->resources;
	writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR);
}

static struct dma_chan *get_dma_chan(struct gpmi_nand_data *this)
{
	/* We use the DMA channel 0 to access all the nand chips. */
	return this->dma_chans[0];
}

/* This will be called after the DMA operation is finished. */
static void dma_irq_callback(void *param)
{
	struct gpmi_nand_data *this = param;
	struct completion *dma_c = &this->dma_done;

	complete(dma_c);
}

static irqreturn_t bch_irq(int irq, void *cookie)
{
	struct gpmi_nand_data *this = cookie;

	gpmi_clear_bch(this);
	complete(&this->bch_done);
	return IRQ_HANDLED;
}

static int gpmi_raw_len_to_len(struct gpmi_nand_data *this, int raw_len)
{
	/*
	 * raw_len is the length to read/write including bch data which
	 * we are passed in exec_op. Calculate the data length from it.
	 */
	if (this->bch)
		return ALIGN_DOWN(raw_len, this->bch_geometry.ecc_chunk_size);
	else
		return raw_len;
}

/* Can we use the upper's buffer directly for DMA? */
static bool prepare_data_dma(struct gpmi_nand_data *this, const void *buf,
			     int raw_len, struct scatterlist *sgl,
			     enum dma_data_direction dr)
{
	int ret;
	int len = gpmi_raw_len_to_len(this, raw_len);

	/* first try to map the upper buffer directly */
	if (virt_addr_valid(buf) && !object_is_on_stack(buf)) {
		sg_init_one(sgl, buf, len);
		ret = dma_map_sg(this->dev, sgl, 1, dr);
		if (ret == 0)
			goto map_fail;

		return true;
	}

map_fail:
	/* We have to use our own DMA buffer. */
	sg_init_one(sgl, this->data_buffer_dma, len);

	if (dr == DMA_TO_DEVICE && buf != this->data_buffer_dma)
		memcpy(this->data_buffer_dma, buf, len);

	dma_map_sg(this->dev, sgl, 1, dr);

	return false;
}

/* add our owner bbt descriptor */
static uint8_t scan_ff_pattern[] = { 0xff };
static struct nand_bbt_descr gpmi_bbt_descr = {
	.options	= 0,
	.offs		= 0,
	.len		= 1,
	.pattern	= scan_ff_pattern
};

/*
 * We may change the layout if we can get the ECC info from the datasheet,
 * else we will use all the (page + OOB).
 */
static int gpmi_ooblayout_ecc(struct mtd_info *mtd, int section,
			      struct mtd_oob_region *oobregion)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct gpmi_nand_data *this = nand_get_controller_data(chip);
	struct bch_geometry *geo = &this->bch_geometry;

	if (section)
		return -ERANGE;

	oobregion->offset = 0;
	oobregion->length = geo->page_size - mtd->writesize;

	return 0;
}

static int gpmi_ooblayout_free(struct mtd_info *mtd, int section,
			       struct mtd_oob_region *oobregion)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct gpmi_nand_data *this = nand_get_controller_data(chip);
	struct bch_geometry *geo = &this->bch_geometry;

	if (section)
		return -ERANGE;

	/* The available oob size we have. */
	if (geo->page_size < mtd->writesize + mtd->oobsize) {
		oobregion->offset = geo->page_size - mtd->writesize;
		oobregion->length = mtd->oobsize - oobregion->offset;
	}

	return 0;
}

static const char * const gpmi_clks_for_mx2x[] = {
	"gpmi_io",
};

static const struct mtd_ooblayout_ops gpmi_ooblayout_ops = {
	.ecc = gpmi_ooblayout_ecc,
	.free = gpmi_ooblayout_free,
};

static const struct gpmi_devdata gpmi_devdata_imx23 = {
	.type = IS_MX23,
	.bch_max_ecc_strength = 20,
	.max_chain_delay = 16000,
	.clks = gpmi_clks_for_mx2x,
	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
};

static const struct gpmi_devdata gpmi_devdata_imx28 = {
	.type = IS_MX28,
	.bch_max_ecc_strength = 20,
	.max_chain_delay = 16000,
	.clks = gpmi_clks_for_mx2x,
	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
};

static const char * const gpmi_clks_for_mx6[] = {
	"gpmi_io", "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch",
};

static const struct gpmi_devdata gpmi_devdata_imx6q = {
	.type = IS_MX6Q,
	.bch_max_ecc_strength = 40,
	.max_chain_delay = 12000,
	.clks = gpmi_clks_for_mx6,
	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
};

static const struct gpmi_devdata gpmi_devdata_imx6sx = {
	.type = IS_MX6SX,
	.bch_max_ecc_strength = 62,
	.max_chain_delay = 12000,
	.clks = gpmi_clks_for_mx6,
	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
};

static const char * const gpmi_clks_for_mx7d[] = {
	"gpmi_io", "gpmi_bch_apb",
};

static const struct gpmi_devdata gpmi_devdata_imx7d = {
	.type = IS_MX7D,
	.bch_max_ecc_strength = 62,
	.max_chain_delay = 12000,
	.clks = gpmi_clks_for_mx7d,
	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx7d),
};

static int acquire_register_block(struct gpmi_nand_data *this,
				  const char *res_name)
{
	struct platform_device *pdev = this->pdev;
	struct resources *res = &this->resources;
	struct resource *r;
	void __iomem *p;

	r = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name);
	p = devm_ioremap_resource(&pdev->dev, r);
	if (IS_ERR(p))
		return PTR_ERR(p);

	if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME))
		res->gpmi_regs = p;
	else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME))
		res->bch_regs = p;
	else
		dev_err(this->dev, "unknown resource name : %s\n", res_name);

	return 0;
}

static int acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h)
{
	struct platform_device *pdev = this->pdev;
	const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME;
	struct resource *r;
	int err;

	r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, res_name);
	if (!r) {
		dev_err(this->dev, "Can't get resource for %s\n", res_name);
		return -ENODEV;
	}

	err = devm_request_irq(this->dev, r->start, irq_h, 0, res_name, this);
	if (err)
		dev_err(this->dev, "error requesting BCH IRQ\n");

	return err;
}

static void release_dma_channels(struct gpmi_nand_data *this)
{
	unsigned int i;
	for (i = 0; i < DMA_CHANS; i++)
		if (this->dma_chans[i]) {
			dma_release_channel(this->dma_chans[i]);
			this->dma_chans[i] = NULL;
		}
}

static int acquire_dma_channels(struct gpmi_nand_data *this)
{
	struct platform_device *pdev = this->pdev;
	struct dma_chan *dma_chan;
	int ret = 0;

	/* request dma channel */
	dma_chan = dma_request_chan(&pdev->dev, "rx-tx");
	if (IS_ERR(dma_chan)) {
		ret = dev_err_probe(this->dev, PTR_ERR(dma_chan),
				    "DMA channel request failed\n");
		release_dma_channels(this);
	} else {
		this->dma_chans[0] = dma_chan;
	}

	return ret;
}

static int gpmi_get_clks(struct gpmi_nand_data *this)
{
	struct resources *r = &this->resources;
	struct clk *clk;
	int err, i;

	for (i = 0; i < this->devdata->clks_count; i++) {
		clk = devm_clk_get(this->dev, this->devdata->clks[i]);
		if (IS_ERR(clk)) {
			err = PTR_ERR(clk);
			goto err_clock;
		}

		r->clock[i] = clk;
	}

	if (GPMI_IS_MX6(this))
		/*
		 * Set the default value for the gpmi clock.
		 *
		 * If you want to use the ONFI nand which is in the
		 * Synchronous Mode, you should change the clock as you need.
		 */
		clk_set_rate(r->clock[0], 22000000);

	return 0;

err_clock:
	dev_dbg(this->dev, "failed in finding the clocks.\n");
	return err;
}

static int acquire_resources(struct gpmi_nand_data *this)
{
	int ret;

	ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME);
	if (ret)
		goto exit_regs;

	ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME);
	if (ret)
		goto exit_regs;

	ret = acquire_bch_irq(this, bch_irq);
	if (ret)
		goto exit_regs;

	ret = acquire_dma_channels(this);
	if (ret)
		goto exit_regs;

	ret = gpmi_get_clks(this);
	if (ret)
		goto exit_clock;
	return 0;

exit_clock:
	release_dma_channels(this);
exit_regs:
	return ret;
}

static void release_resources(struct gpmi_nand_data *this)
{
	release_dma_channels(this);
}

static void gpmi_free_dma_buffer(struct gpmi_nand_data *this)
{
	struct device *dev = this->dev;
	struct bch_geometry *geo = &this->bch_geometry;

	if (this->auxiliary_virt && virt_addr_valid(this->auxiliary_virt))
		dma_free_coherent(dev, geo->auxiliary_size,
					this->auxiliary_virt,
					this->auxiliary_phys);
	kfree(this->data_buffer_dma);
	kfree(this->raw_buffer);

	this->data_buffer_dma	= NULL;
	this->raw_buffer	= NULL;
}

/* Allocate the DMA buffers */
static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this)
{
	struct bch_geometry *geo = &this->bch_geometry;
	struct device *dev = this->dev;
	struct mtd_info *mtd = nand_to_mtd(&this->nand);

	/*
	 * [2] Allocate a read/write data buffer.
	 *     The gpmi_alloc_dma_buffer can be called twice.
	 *     We allocate a PAGE_SIZE length buffer if gpmi_alloc_dma_buffer
	 *     is called before the NAND identification; and we allocate a
	 *     buffer of the real NAND page size when the gpmi_alloc_dma_buffer
	 *     is called after.
	 */
	this->data_buffer_dma = kzalloc(mtd->writesize ?: PAGE_SIZE,
					GFP_DMA | GFP_KERNEL);
	if (this->data_buffer_dma == NULL)
		goto error_alloc;

	this->auxiliary_virt = dma_alloc_coherent(dev, geo->auxiliary_size,
					&this->auxiliary_phys, GFP_DMA);
	if (!this->auxiliary_virt)
		goto error_alloc;

	this->raw_buffer = kzalloc((mtd->writesize ?: PAGE_SIZE) + mtd->oobsize, GFP_KERNEL);
	if (!this->raw_buffer)
		goto error_alloc;

	return 0;

error_alloc:
	gpmi_free_dma_buffer(this);
	return -ENOMEM;
}

/*
 * Handles block mark swapping.
 * It can be called in swapping the block mark, or swapping it back,
 * because the the operations are the same.
 */
static void block_mark_swapping(struct gpmi_nand_data *this,
				void *payload, void *auxiliary)
{
	struct bch_geometry *nfc_geo = &this->bch_geometry;
	unsigned char *p;
	unsigned char *a;
	unsigned int  bit;
	unsigned char mask;
	unsigned char from_data;
	unsigned char from_oob;

	if (!this->swap_block_mark)
		return;

	/*
	 * If control arrives here, we're swapping. Make some convenience
	 * variables.
	 */
	bit = nfc_geo->block_mark_bit_offset;
	p   = payload + nfc_geo->block_mark_byte_offset;
	a   = auxiliary;

	/*
	 * Get the byte from the data area that overlays the block mark. Since
	 * the ECC engine applies its own view to the bits in the page, the
	 * physical block mark won't (in general) appear on a byte boundary in
	 * the data.
	 */
	from_data = (p[0] >> bit) | (p[1] << (8 - bit));

	/* Get the byte from the OOB. */
	from_oob = a[0];

	/* Swap them. */
	a[0] = from_data;

	mask = (0x1 << bit) - 1;
	p[0] = (p[0] & mask) | (from_oob << bit);

	mask = ~0 << bit;
	p[1] = (p[1] & mask) | (from_oob >> (8 - bit));
}

static int gpmi_count_bitflips(struct nand_chip *chip, void *buf, int first,
			       int last, int meta)
{
	struct gpmi_nand_data *this = nand_get_controller_data(chip);
	struct bch_geometry *nfc_geo = &this->bch_geometry;
	struct mtd_info *mtd = nand_to_mtd(chip);
	int i;
	unsigned char *status;
	unsigned int max_bitflips = 0;

	/* Loop over status bytes, accumulating ECC status. */
	status = this->auxiliary_virt + ALIGN(meta, 4);

	for (i = first; i < last; i++, status++) {
		if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED))
			continue;

		if (*status == STATUS_UNCORRECTABLE) {
			int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
			u8 *eccbuf = this->raw_buffer;
			int offset, bitoffset;
			int eccbytes;
			int flips;

			/* Read ECC bytes into our internal raw_buffer */
			offset = nfc_geo->metadata_size * 8;
			offset += ((8 * nfc_geo->ecc_chunk_size) + eccbits) * (i + 1);
			offset -= eccbits;
			bitoffset = offset % 8;
			eccbytes = DIV_ROUND_UP(offset + eccbits, 8);
			offset /= 8;
			eccbytes -= offset;
			nand_change_read_column_op(chip, offset, eccbuf,
						   eccbytes, false);

			/*
			 * ECC data are not byte aligned and we may have
			 * in-band data in the first and last byte of
			 * eccbuf. Set non-eccbits to one so that
			 * nand_check_erased_ecc_chunk() does not count them
			 * as bitflips.
			 */
			if (bitoffset)
				eccbuf[0] |= GENMASK(bitoffset - 1, 0);

			bitoffset = (bitoffset + eccbits) % 8;
			if (bitoffset)
				eccbuf[eccbytes - 1] |= GENMASK(7, bitoffset);

			/*
			 * The ECC hardware has an uncorrectable ECC status
			 * code in case we have bitflips in an erased page. As
			 * nothing was written into this subpage the ECC is
			 * obviously wrong and we can not trust it. We assume
			 * at this point that we are reading an erased page and
			 * try to correct the bitflips in buffer up to
			 * ecc_strength bitflips. If this is a page with random
			 * data, we exceed this number of bitflips and have a
			 * ECC failure. Otherwise we use the corrected buffer.
			 */
			if (i == 0) {
				/* The first block includes metadata */
				flips = nand_check_erased_ecc_chunk(
						buf + i * nfc_geo->ecc_chunk_size,
						nfc_geo->ecc_chunk_size,
						eccbuf, eccbytes,
						this->auxiliary_virt,
						nfc_geo->metadata_size,
						nfc_geo->ecc_strength);
			} else {
				flips = nand_check_erased_ecc_chunk(
						buf + i * nfc_geo->ecc_chunk_size,
						nfc_geo->ecc_chunk_size,
						eccbuf, eccbytes,
						NULL, 0,
						nfc_geo->ecc_strength);
			}

			if (flips > 0) {
				max_bitflips = max_t(unsigned int, max_bitflips,
						     flips);
				mtd->ecc_stats.corrected += flips;
				continue;
			}

			mtd->ecc_stats.failed++;
			continue;
		}

		mtd->ecc_stats.corrected += *status;
		max_bitflips = max_t(unsigned int, max_bitflips, *status);
	}

	return max_bitflips;
}

static void gpmi_bch_layout_std(struct gpmi_nand_data *this)
{
	struct bch_geometry *geo = &this->bch_geometry;
	unsigned int ecc_strength = geo->ecc_strength >> 1;
	unsigned int gf_len = geo->gf_len;
	unsigned int block_size = geo->ecc_chunk_size;

	this->bch_flashlayout0 =
		BF_BCH_FLASH0LAYOUT0_NBLOCKS(geo->ecc_chunk_count - 1) |
		BF_BCH_FLASH0LAYOUT0_META_SIZE(geo->metadata_size) |
		BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) |
		BF_BCH_FLASH0LAYOUT0_GF(gf_len, this) |
		BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size, this);

	this->bch_flashlayout1 =
		BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(geo->page_size) |
		BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) |
		BF_BCH_FLASH0LAYOUT1_GF(gf_len, this) |
		BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size, this);
}

static int gpmi_ecc_read_page(struct nand_chip *chip, uint8_t *buf,
			      int oob_required, int page)
{
	struct gpmi_nand_data *this = nand_get_controller_data(chip);
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct bch_geometry *geo = &this->bch_geometry;
	unsigned int max_bitflips;
	int ret;

	gpmi_bch_layout_std(this);
	this->bch = true;

	ret = nand_read_page_op(chip, page, 0, buf, geo->page_size);
	if (ret)
		return ret;

	max_bitflips = gpmi_count_bitflips(chip, buf, 0,
					   geo->ecc_chunk_count,
					   geo->auxiliary_status_offset);

	/* handle the block mark swapping */
	block_mark_swapping(this, buf, this->auxiliary_virt);

	if (oob_required) {
		/*
		 * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob()
		 * for details about our policy for delivering the OOB.
		 *
		 * We fill the caller's buffer with set bits, and then copy the
		 * block mark to th caller's buffer. Note that, if block mark
		 * swapping was necessary, it has already been done, so we can
		 * rely on the first byte of the auxiliary buffer to contain
		 * the block mark.
		 */
		memset(chip->oob_poi, ~0, mtd->oobsize);
		chip->oob_poi[0] = ((uint8_t *)this->auxiliary_virt)[0];
	}

	return max_bitflips;
}

/* Fake a virtual small page for the subpage read */
static int gpmi_ecc_read_subpage(struct nand_chip *chip, uint32_t offs,
				 uint32_t len, uint8_t *buf, int page)
{
	struct gpmi_nand_data *this = nand_get_controller_data(chip);
	struct bch_geometry *geo = &this->bch_geometry;
	int size = chip->ecc.size; /* ECC chunk size */
	int meta, n, page_size;
	unsigned int max_bitflips;
	unsigned int ecc_strength;
	int first, last, marker_pos;
	int ecc_parity_size;
	int col = 0;
	int ret;

	/* The size of ECC parity */
	ecc_parity_size = geo->gf_len * geo->ecc_strength / 8;

	/* Align it with the chunk size */
	first = offs / size;
	last = (offs + len - 1) / size;

	if (this->swap_block_mark) {
		/*
		 * Find the chunk which contains the Block Marker.
		 * If this chunk is in the range of [first, last],
		 * we have to read out the whole page.
		 * Why? since we had swapped the data at the position of Block
		 * Marker to the metadata which is bound with the chunk 0.
		 */
		marker_pos = geo->block_mark_byte_offset / size;
		if (last >= marker_pos && first <= marker_pos) {
			dev_dbg(this->dev,
				"page:%d, first:%d, last:%d, marker at:%d\n",
				page, first, last, marker_pos);
			return gpmi_ecc_read_page(chip, buf, 0, page);
		}
	}

	meta = geo->metadata_size;
	if (first) {
		col = meta + (size + ecc_parity_size) * first;
		meta = 0;
		buf = buf + first * size;
	}

	ecc_parity_size = geo->gf_len * geo->ecc_strength / 8;

	n = last - first + 1;
	page_size = meta + (size + ecc_parity_size) * n;
	ecc_strength = geo->ecc_strength >> 1;

	this->bch_flashlayout0 = BF_BCH_FLASH0LAYOUT0_NBLOCKS(n - 1) |
		BF_BCH_FLASH0LAYOUT0_META_SIZE(meta) |
		BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) |
		BF_BCH_FLASH0LAYOUT0_GF(geo->gf_len, this) |
		BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(geo->ecc_chunk_size, this);

	this->bch_flashlayout1 = BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size) |
		BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) |
		BF_BCH_FLASH0LAYOUT1_GF(geo->gf_len, this) |
		BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(geo->ecc_chunk_size, this);

	this->bch = true;

	ret = nand_read_page_op(chip, page, col, buf, page_size);
	if (ret)
		return ret;

	dev_dbg(this->dev, "page:%d(%d:%d)%d, chunk:(%d:%d), BCH PG size:%d\n",
		page, offs, len, col, first, n, page_size);

	max_bitflips = gpmi_count_bitflips(chip, buf, first, last, meta);

	return max_bitflips;
}

static int gpmi_ecc_write_page(struct nand_chip *chip, const uint8_t *buf,
			       int oob_required, int page)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct gpmi_nand_data *this = nand_get_controller_data(chip);
	struct bch_geometry *nfc_geo = &this->bch_geometry;
	int ret;

	dev_dbg(this->dev, "ecc write page.\n");

	gpmi_bch_layout_std(this);
	this->bch = true;

	memcpy(this->auxiliary_virt, chip->oob_poi, nfc_geo->auxiliary_size);

	if (this->swap_block_mark) {
		/*
		 * When doing bad block marker swapping we must always copy the
		 * input buffer as we can't modify the const buffer.
		 */
		memcpy(this->data_buffer_dma, buf, mtd->writesize);
		buf = this->data_buffer_dma;
		block_mark_swapping(this, this->data_buffer_dma,
				    this->auxiliary_virt);
	}

	ret = nand_prog_page_op(chip, page, 0, buf, nfc_geo->page_size);

	return ret;
}

/*
 * There are several places in this driver where we have to handle the OOB and
 * block marks. This is the function where things are the most complicated, so
 * this is where we try to explain it all. All the other places refer back to
 * here.
 *
 * These are the rules, in order of decreasing importance:
 *
 * 1) Nothing the caller does can be allowed to imperil the block mark.
 *
 * 2) In read operations, the first byte of the OOB we return must reflect the
 *    true state of the block mark, no matter where that block mark appears in
 *    the physical page.
 *
 * 3) ECC-based read operations return an OOB full of set bits (since we never
 *    allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
 *    return).
 *
 * 4) "Raw" read operations return a direct view of the physical bytes in the
 *    page, using the conventional definition of which bytes are data and which
 *    are OOB. This gives the caller a way to see the actual, physical bytes
 *    in the page, without the distortions applied by our ECC engine.
 *
 *
 * What we do for this specific read operation depends on two questions:
 *
 * 1) Are we doing a "raw" read, or an ECC-based read?
 *
 * 2) Are we using block mark swapping or transcription?
 *
 * There are four cases, illustrated by the following Karnaugh map:
 *
 *                    |           Raw           |         ECC-based       |
 *       -------------+-------------------------+-------------------------+
 *                    | Read the conventional   |                         |
 *                    | OOB at the end of the   |                         |
 *       Swapping     | page and return it. It  |                         |
 *                    | contains exactly what   |                         |
 *                    | we want.                | Read the block mark and |
 *       -------------+-------------------------+ return it in a buffer   |
 *                    | Read the conventional   | full of set bits.       |
 *                    | OOB at the end of the   |                         |
 *                    | page and also the block |                         |
 *       Transcribing | mark in the metadata.   |                         |
 *                    | Copy the block mark     |                         |
 *                    | into the first byte of  |                         |
 *                    | the OOB.                |                         |
 *       -------------+-------------------------+-------------------------+
 *
 * Note that we break rule #4 in the Transcribing/Raw case because we're not
 * giving an accurate view of the actual, physical bytes in the page (we're
 * overwriting the block mark). That's OK because it's more important to follow
 * rule #2.
 *
 * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
 * easy. When reading a page, for example, the NAND Flash MTD code calls our
 * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
 * ECC-based or raw view of the page is implicit in which function it calls
 * (there is a similar pair of ECC-based/raw functions for writing).
 */
static int gpmi_ecc_read_oob(struct nand_chip *chip, int page)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct gpmi_nand_data *this = nand_get_controller_data(chip);
	int ret;

	/* clear the OOB buffer */
	memset(chip->oob_poi, ~0, mtd->oobsize);

	/* Read out the conventional OOB. */
	ret = nand_read_page_op(chip, page, mtd->writesize, chip->oob_poi,
				mtd->oobsize);
	if (ret)
		return ret;

	/*
	 * Now, we want to make sure the block mark is correct. In the
	 * non-transcribing case (!GPMI_IS_MX23()), we already have it.
	 * Otherwise, we need to explicitly read it.
	 */
	if (GPMI_IS_MX23(this)) {
		/* Read the block mark into the first byte of the OOB buffer. */
		ret = nand_read_page_op(chip, page, 0, chip->oob_poi, 1);
		if (ret)
			return ret;
	}

	return 0;
}

static int gpmi_ecc_write_oob(struct nand_chip *chip, int page)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct mtd_oob_region of = { };

	/* Do we have available oob area? */
	mtd_ooblayout_free(mtd, 0, &of);
	if (!of.length)
		return -EPERM;

	if (!nand_is_slc(chip))
		return -EPERM;

	return nand_prog_page_op(chip, page, mtd->writesize + of.offset,
				 chip->oob_poi + of.offset, of.length);
}

/*
 * This function reads a NAND page without involving the ECC engine (no HW
 * ECC correction).
 * The tricky part in the GPMI/BCH controller is that it stores ECC bits
 * inline (interleaved with payload DATA), and do not align data chunk on
 * byte boundaries.
 * We thus need to take care moving the payload data and ECC bits stored in the
 * page into the provided buffers, which is why we're using nand_extract_bits().
 *
 * See set_geometry_by_ecc_info inline comments to have a full description
 * of the layout used by the GPMI controller.
 */
static int gpmi_ecc_read_page_raw(struct nand_chip *chip, uint8_t *buf,
				  int oob_required, int page)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct gpmi_nand_data *this = nand_get_controller_data(chip);
	struct bch_geometry *nfc_geo = &this->bch_geometry;
	int eccsize = nfc_geo->ecc_chunk_size;
	int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
	u8 *tmp_buf = this->raw_buffer;
	size_t src_bit_off;
	size_t oob_bit_off;
	size_t oob_byte_off;
	uint8_t *oob = chip->oob_poi;
	int step;
	int ret;

	ret = nand_read_page_op(chip, page, 0, tmp_buf,
				mtd->writesize + mtd->oobsize);
	if (ret)
		return ret;

	/*
	 * If required, swap the bad block marker and the data stored in the
	 * metadata section, so that we don't wrongly consider a block as bad.
	 *
	 * See the layout description for a detailed explanation on why this
	 * is needed.
	 */
	if (this->swap_block_mark)
		swap(tmp_buf[0], tmp_buf[mtd->writesize]);

	/*
	 * Copy the metadata section into the oob buffer (this section is
	 * guaranteed to be aligned on a byte boundary).
	 */
	if (oob_required)
		memcpy(oob, tmp_buf, nfc_geo->metadata_size);

	oob_bit_off = nfc_geo->metadata_size * 8;
	src_bit_off = oob_bit_off;

	/* Extract interleaved payload data and ECC bits */
	for (step = 0; step < nfc_geo->ecc_chunk_count; step++) {
		if (buf)
			nand_extract_bits(buf, step * eccsize * 8, tmp_buf,
					  src_bit_off, eccsize * 8);
		src_bit_off += eccsize * 8;

		/* Align last ECC block to align a byte boundary */
		if (step == nfc_geo->ecc_chunk_count - 1 &&
		    (oob_bit_off + eccbits) % 8)
			eccbits += 8 - ((oob_bit_off + eccbits) % 8);

		if (oob_required)
			nand_extract_bits(oob, oob_bit_off, tmp_buf,
					  src_bit_off, eccbits);

		src_bit_off += eccbits;
		oob_bit_off += eccbits;
	}

	if (oob_required) {
		oob_byte_off = oob_bit_off / 8;

		if (oob_byte_off < mtd->oobsize)
			memcpy(oob + oob_byte_off,
			       tmp_buf + mtd->writesize + oob_byte_off,
			       mtd->oobsize - oob_byte_off);
	}

	return 0;
}

/*
 * This function writes a NAND page without involving the ECC engine (no HW
 * ECC generation).
 * The tricky part in the GPMI/BCH controller is that it stores ECC bits
 * inline (interleaved with payload DATA), and do not align data chunk on
 * byte boundaries.
 * We thus need to take care moving the OOB area at the right place in the
 * final page, which is why we're using nand_extract_bits().
 *
 * See set_geometry_by_ecc_info inline comments to have a full description
 * of the layout used by the GPMI controller.
 */
static int gpmi_ecc_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
				   int oob_required, int page)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct gpmi_nand_data *this = nand_get_controller_data(chip);
	struct bch_geometry *nfc_geo = &this->bch_geometry;
	int eccsize = nfc_geo->ecc_chunk_size;
	int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
	u8 *tmp_buf = this->raw_buffer;
	uint8_t *oob = chip->oob_poi;
	size_t dst_bit_off;
	size_t oob_bit_off;
	size_t oob_byte_off;
	int step;

	/*
	 * Initialize all bits to 1 in case we don't have a buffer for the
	 * payload or oob data in order to leave unspecified bits of data
	 * to their initial state.
	 */
	if (!buf || !oob_required)
		memset(tmp_buf, 0xff, mtd->writesize + mtd->oobsize);

	/*
	 * First copy the metadata section (stored in oob buffer) at the
	 * beginning of the page, as imposed by the GPMI layout.
	 */
	memcpy(tmp_buf, oob, nfc_geo->metadata_size);
	oob_bit_off = nfc_geo->metadata_size * 8;
	dst_bit_off = oob_bit_off;

	/* Interleave payload data and ECC bits */
	for (step = 0; step < nfc_geo->ecc_chunk_count; step++) {
		if (buf)
			nand_extract_bits(tmp_buf, dst_bit_off, buf,
					  step * eccsize * 8, eccsize * 8);
		dst_bit_off += eccsize * 8;

		/* Align last ECC block to align a byte boundary */
		if (step == nfc_geo->ecc_chunk_count - 1 &&
		    (oob_bit_off + eccbits) % 8)
			eccbits += 8 - ((oob_bit_off + eccbits) % 8);

		if (oob_required)
			nand_extract_bits(tmp_buf, dst_bit_off, oob,
					  oob_bit_off, eccbits);

		dst_bit_off += eccbits;
		oob_bit_off += eccbits;
	}

	oob_byte_off = oob_bit_off / 8;

	if (oob_required && oob_byte_off < mtd->oobsize)
		memcpy(tmp_buf + mtd->writesize + oob_byte_off,
		       oob + oob_byte_off, mtd->oobsize - oob_byte_off);

	/*
	 * If required, swap the bad block marker and the first byte of the
	 * metadata section, so that we don't modify the bad block marker.
	 *
	 * See the layout description for a detailed explanation on why this
	 * is needed.
	 */
	if (this->swap_block_mark)
		swap(tmp_buf[0], tmp_buf[mtd->writesize]);

	return nand_prog_page_op(chip, page, 0, tmp_buf,
				 mtd->writesize + mtd->oobsize);
}

static int gpmi_ecc_read_oob_raw(struct nand_chip *chip, int page)
{
	return gpmi_ecc_read_page_raw(chip, NULL, 1, page);
}

static int gpmi_ecc_write_oob_raw(struct nand_chip *chip, int page)
{
	return gpmi_ecc_write_page_raw(chip, NULL, 1, page);
}

static int gpmi_block_markbad(struct nand_chip *chip, loff_t ofs)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct gpmi_nand_data *this = nand_get_controller_data(chip);
	int ret = 0;
	uint8_t *block_mark;
	int column, page, chipnr;

	chipnr = (int)(ofs >> chip->chip_shift);
	nand_select_target(chip, chipnr);

	column = !GPMI_IS_MX23(this) ? mtd->writesize : 0;

	/* Write the block mark. */
	block_mark = this->data_buffer_dma;
	block_mark[0] = 0; /* bad block marker */

	/* Shift to get page */
	page = (int)(ofs >> chip->page_shift);

	ret = nand_prog_page_op(chip, page, column, block_mark, 1);

	nand_deselect_target(chip);

	return ret;
}

static int nand_boot_set_geometry(struct gpmi_nand_data *this)
{
	struct boot_rom_geometry *geometry = &this->rom_geometry;

	/*
	 * Set the boot block stride size.
	 *
	 * In principle, we should be reading this from the OTP bits, since
	 * that's where the ROM is going to get it. In fact, we don't have any
	 * way to read the OTP bits, so we go with the default and hope for the
	 * best.
	 */
	geometry->stride_size_in_pages = 64;

	/*
	 * Set the search area stride exponent.
	 *
	 * In principle, we should be reading this from the OTP bits, since
	 * that's where the ROM is going to get it. In fact, we don't have any
	 * way to read the OTP bits, so we go with the default and hope for the
	 * best.
	 */
	geometry->search_area_stride_exponent = 2;
	return 0;
}

static const char  *fingerprint = "STMP";
static int mx23_check_transcription_stamp(struct gpmi_nand_data *this)
{
	struct boot_rom_geometry *rom_geo = &this->rom_geometry;
	struct device *dev = this->dev;
	struct nand_chip *chip = &this->nand;
	unsigned int search_area_size_in_strides;
	unsigned int stride;
	unsigned int page;
	u8 *buffer = nand_get_data_buf(chip);
	int found_an_ncb_fingerprint = false;
	int ret;

	/* Compute the number of strides in a search area. */
	search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;

	nand_select_target(chip, 0);

	/*
	 * Loop through the first search area, looking for the NCB fingerprint.
	 */
	dev_dbg(dev, "Scanning for an NCB fingerprint...\n");

	for (stride = 0; stride < search_area_size_in_strides; stride++) {
		/* Compute the page addresses. */
		page = stride * rom_geo->stride_size_in_pages;

		dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page);

		/*
		 * Read the NCB fingerprint. The fingerprint is four bytes long
		 * and starts in the 12th byte of the page.
		 */
		ret = nand_read_page_op(chip, page, 12, buffer,
					strlen(fingerprint));
		if (ret)
			continue;

		/* Look for the fingerprint. */
		if (!memcmp(buffer, fingerprint, strlen(fingerprint))) {
			found_an_ncb_fingerprint = true;
			break;
		}

	}

	nand_deselect_target(chip);

	if (found_an_ncb_fingerprint)
		dev_dbg(dev, "\tFound a fingerprint\n");
	else
		dev_dbg(dev, "\tNo fingerprint found\n");
	return found_an_ncb_fingerprint;
}

/* Writes a transcription stamp. */
static int mx23_write_transcription_stamp(struct gpmi_nand_data *this)
{
	struct device *dev = this->dev;
	struct boot_rom_geometry *rom_geo = &this->rom_geometry;
	struct nand_chip *chip = &this->nand;
	struct mtd_info *mtd = nand_to_mtd(chip);
	unsigned int block_size_in_pages;
	unsigned int search_area_size_in_strides;
	unsigned int search_area_size_in_pages;
	unsigned int search_area_size_in_blocks;
	unsigned int block;
	unsigned int stride;
	unsigned int page;
	u8 *buffer = nand_get_data_buf(chip);
	int status;

	/* Compute the search area geometry. */
	block_size_in_pages = mtd->erasesize / mtd->writesize;
	search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
	search_area_size_in_pages = search_area_size_in_strides *
					rom_geo->stride_size_in_pages;
	search_area_size_in_blocks =
		  (search_area_size_in_pages + (block_size_in_pages - 1)) /
				    block_size_in_pages;

	dev_dbg(dev, "Search Area Geometry :\n");
	dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks);
	dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides);
	dev_dbg(dev, "\tin Pages  : %u\n", search_area_size_in_pages);

	nand_select_target(chip, 0);

	/* Loop over blocks in the first search area, erasing them. */
	dev_dbg(dev, "Erasing the search area...\n");

	for (block = 0; block < search_area_size_in_blocks; block++) {
		/* Erase this block. */
		dev_dbg(dev, "\tErasing block 0x%x\n", block);
		status = nand_erase_op(chip, block);
		if (status)
			dev_err(dev, "[%s] Erase failed.\n", __func__);
	}

	/* Write the NCB fingerprint into the page buffer. */
	memset(buffer, ~0, mtd->writesize);
	memcpy(buffer + 12, fingerprint, strlen(fingerprint));

	/* Loop through the first search area, writing NCB fingerprints. */
	dev_dbg(dev, "Writing NCB fingerprints...\n");
	for (stride = 0; stride < search_area_size_in_strides; stride++) {
		/* Compute the page addresses. */
		page = stride * rom_geo->stride_size_in_pages;

		/* Write the first page of the current stride. */
		dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page);

		status = chip->ecc.write_page_raw(chip, buffer, 0, page);
		if (status)
			dev_err(dev, "[%s] Write failed.\n", __func__);
	}

	nand_deselect_target(chip);

	return 0;
}

static int mx23_boot_init(struct gpmi_nand_data  *this)
{
	struct device *dev = this->dev;
	struct nand_chip *chip = &this->nand;
	struct mtd_info *mtd = nand_to_mtd(chip);
	unsigned int block_count;
	unsigned int block;
	int     chipnr;
	int     page;
	loff_t  byte;
	uint8_t block_mark;
	int     ret = 0;

	/*
	 * If control arrives here, we can't use block mark swapping, which
	 * means we're forced to use transcription. First, scan for the
	 * transcription stamp. If we find it, then we don't have to do
	 * anything -- the block marks are already transcribed.
	 */
	if (mx23_check_transcription_stamp(this))
		return 0;

	/*
	 * If control arrives here, we couldn't find a transcription stamp, so
	 * so we presume the block marks are in the conventional location.
	 */
	dev_dbg(dev, "Transcribing bad block marks...\n");

	/* Compute the number of blocks in the entire medium. */
	block_count = nanddev_eraseblocks_per_target(&chip->base);

	/*
	 * Loop over all the blocks in the medium, transcribing block marks as
	 * we go.
	 */
	for (block = 0; block < block_count; block++) {
		/*
		 * Compute the chip, page and byte addresses for this block's
		 * conventional mark.
		 */
		chipnr = block >> (chip->chip_shift - chip->phys_erase_shift);
		page = block << (chip->phys_erase_shift - chip->page_shift);
		byte = block <<  chip->phys_erase_shift;

		/* Send the command to read the conventional block mark. */
		nand_select_target(chip, chipnr);
		ret = nand_read_page_op(chip, page, mtd->writesize, &block_mark,
					1);
		nand_deselect_target(chip);

		if (ret)
			continue;

		/*
		 * Check if the block is marked bad. If so, we need to mark it
		 * again, but this time the result will be a mark in the
		 * location where we transcribe block marks.
		 */
		if (block_mark != 0xff) {
			dev_dbg(dev, "Transcribing mark in block %u\n", block);
			ret = chip->legacy.block_markbad(chip, byte);
			if (ret)
				dev_err(dev,
					"Failed to mark block bad with ret %d\n",
					ret);
		}
	}

	/* Write the stamp that indicates we've transcribed the block marks. */
	mx23_write_transcription_stamp(this);
	return 0;
}

static int nand_boot_init(struct gpmi_nand_data  *this)
{
	nand_boot_set_geometry(this);

	/* This is ROM arch-specific initilization before the BBT scanning. */
	if (GPMI_IS_MX23(this))
		return mx23_boot_init(this);
	return 0;
}

static int gpmi_set_geometry(struct gpmi_nand_data *this)
{
	int ret;

	/* Free the temporary DMA memory for reading ID. */
	gpmi_free_dma_buffer(this);

	/* Set up the NFC geometry which is used by BCH. */
	ret = bch_set_geometry(this);
	if (ret) {
		dev_err(this->dev, "Error setting BCH geometry : %d\n", ret);
		return ret;
	}

	/* Alloc the new DMA buffers according to the pagesize and oobsize */
	return gpmi_alloc_dma_buffer(this);
}

static int gpmi_init_last(struct gpmi_nand_data *this)
{
	struct nand_chip *chip = &this->nand;
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct nand_ecc_ctrl *ecc = &chip->ecc;
	struct bch_geometry *bch_geo = &this->bch_geometry;
	int ret;

	/* Set up the medium geometry */
	ret = gpmi_set_geometry(this);
	if (ret)
		return ret;

	/* Init the nand_ecc_ctrl{} */
	ecc->read_page	= gpmi_ecc_read_page;
	ecc->write_page	= gpmi_ecc_write_page;
	ecc->read_oob	= gpmi_ecc_read_oob;
	ecc->write_oob	= gpmi_ecc_write_oob;
	ecc->read_page_raw = gpmi_ecc_read_page_raw;
	ecc->write_page_raw = gpmi_ecc_write_page_raw;
	ecc->read_oob_raw = gpmi_ecc_read_oob_raw;
	ecc->write_oob_raw = gpmi_ecc_write_oob_raw;
	ecc->engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
	ecc->size	= bch_geo->ecc_chunk_size;
	ecc->strength	= bch_geo->ecc_strength;
	mtd_set_ooblayout(mtd, &gpmi_ooblayout_ops);

	/*
	 * We only enable the subpage read when:
	 *  (1) the chip is imx6, and
	 *  (2) the size of the ECC parity is byte aligned.
	 */
	if (GPMI_IS_MX6(this) &&
		((bch_geo->gf_len * bch_geo->ecc_strength) % 8) == 0) {
		ecc->read_subpage = gpmi_ecc_read_subpage;
		chip->options |= NAND_SUBPAGE_READ;
	}

	return 0;
}

static int gpmi_nand_attach_chip(struct nand_chip *chip)
{
	struct gpmi_nand_data *this = nand_get_controller_data(chip);
	int ret;

	if (chip->bbt_options & NAND_BBT_USE_FLASH) {
		chip->bbt_options |= NAND_BBT_NO_OOB;

		if (of_property_read_bool(this->dev->of_node,
					  "fsl,no-blockmark-swap"))
			this->swap_block_mark = false;
	}
	dev_dbg(this->dev, "Blockmark swapping %sabled\n",
		this->swap_block_mark ? "en" : "dis");

	ret = gpmi_init_last(this);
	if (ret)
		return ret;

	chip->options |= NAND_SKIP_BBTSCAN;

	return 0;
}

static struct gpmi_transfer *get_next_transfer(struct gpmi_nand_data *this)
{
	struct gpmi_transfer *transfer = &this->transfers[this->ntransfers];

	this->ntransfers++;

	if (this->ntransfers == GPMI_MAX_TRANSFERS)
		return NULL;

	return transfer;
}

static struct dma_async_tx_descriptor *gpmi_chain_command(
	struct gpmi_nand_data *this, u8 cmd, const u8 *addr, int naddr)
{
	struct dma_chan *channel = get_dma_chan(this);
	struct dma_async_tx_descriptor *desc;
	struct gpmi_transfer *transfer;
	int chip = this->nand.cur_cs;
	u32 pio[3];

	/* [1] send out the PIO words */
	pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
		| BM_GPMI_CTRL0_WORD_LENGTH
		| BF_GPMI_CTRL0_CS(chip, this)
		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
		| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE)
		| BM_GPMI_CTRL0_ADDRESS_INCREMENT
		| BF_GPMI_CTRL0_XFER_COUNT(naddr + 1);
	pio[1] = 0;
	pio[2] = 0;
	desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio),
				      DMA_TRANS_NONE, 0);
	if (!desc)
		return NULL;

	transfer = get_next_transfer(this);
	if (!transfer)
		return NULL;

	transfer->cmdbuf[0] = cmd;
	if (naddr)
		memcpy(&transfer->cmdbuf[1], addr, naddr);

	sg_init_one(&transfer->sgl, transfer->cmdbuf, naddr + 1);
	dma_map_sg(this->dev, &transfer->sgl, 1, DMA_TO_DEVICE);

	transfer->direction = DMA_TO_DEVICE;

	desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1, DMA_MEM_TO_DEV,
				       MXS_DMA_CTRL_WAIT4END);
	return desc;
}

static struct dma_async_tx_descriptor *gpmi_chain_wait_ready(
	struct gpmi_nand_data *this)
{
	struct dma_chan *channel = get_dma_chan(this);
	u32 pio[2];

	pio[0] =  BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY)
		| BM_GPMI_CTRL0_WORD_LENGTH
		| BF_GPMI_CTRL0_CS(this->nand.cur_cs, this)
		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
		| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
		| BF_GPMI_CTRL0_XFER_COUNT(0);
	pio[1] = 0;

	return mxs_dmaengine_prep_pio(channel, pio, 2, DMA_TRANS_NONE,
				MXS_DMA_CTRL_WAIT4END | MXS_DMA_CTRL_WAIT4RDY);
}

static struct dma_async_tx_descriptor *gpmi_chain_data_read(
	struct gpmi_nand_data *this, void *buf, int raw_len, bool *direct)
{
	struct dma_async_tx_descriptor *desc;
	struct dma_chan *channel = get_dma_chan(this);
	struct gpmi_transfer *transfer;
	u32 pio[6] = {};

	transfer = get_next_transfer(this);
	if (!transfer)
		return NULL;

	transfer->direction = DMA_FROM_DEVICE;

	*direct = prepare_data_dma(this, buf, raw_len, &transfer->sgl,
				   DMA_FROM_DEVICE);

	pio[0] =  BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ)
		| BM_GPMI_CTRL0_WORD_LENGTH
		| BF_GPMI_CTRL0_CS(this->nand.cur_cs, this)
		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
		| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
		| BF_GPMI_CTRL0_XFER_COUNT(raw_len);

	if (this->bch) {
		pio[2] =  BM_GPMI_ECCCTRL_ENABLE_ECC
			| BF_GPMI_ECCCTRL_ECC_CMD(BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE)
			| BF_GPMI_ECCCTRL_BUFFER_MASK(BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE
				| BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY);
		pio[3] = raw_len;
		pio[4] = transfer->sgl.dma_address;
		pio[5] = this->auxiliary_phys;
	}

	desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio),
				      DMA_TRANS_NONE, 0);
	if (!desc)
		return NULL;

	if (!this->bch)
		desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1,
					     DMA_DEV_TO_MEM,
					     MXS_DMA_CTRL_WAIT4END);

	return desc;
}

static struct dma_async_tx_descriptor *gpmi_chain_data_write(
	struct gpmi_nand_data *this, const void *buf, int raw_len)
{
	struct dma_chan *channel = get_dma_chan(this);
	struct dma_async_tx_descriptor *desc;
	struct gpmi_transfer *transfer;
	u32 pio[6] = {};

	transfer = get_next_transfer(this);
	if (!transfer)
		return NULL;

	transfer->direction = DMA_TO_DEVICE;

	prepare_data_dma(this, buf, raw_len, &transfer->sgl, DMA_TO_DEVICE);

	pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
		| BM_GPMI_CTRL0_WORD_LENGTH
		| BF_GPMI_CTRL0_CS(this->nand.cur_cs, this)
		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
		| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
		| BF_GPMI_CTRL0_XFER_COUNT(raw_len);

	if (this->bch) {
		pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
			| BF_GPMI_ECCCTRL_ECC_CMD(BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE)
			| BF_GPMI_ECCCTRL_BUFFER_MASK(BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE |
					BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY);
		pio[3] = raw_len;
		pio[4] = transfer->sgl.dma_address;
		pio[5] = this->auxiliary_phys;
	}

	desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio),
				      DMA_TRANS_NONE,
				      (this->bch ? MXS_DMA_CTRL_WAIT4END : 0));
	if (!desc)
		return NULL;

	if (!this->bch)
		desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1,
					       DMA_MEM_TO_DEV,
					       MXS_DMA_CTRL_WAIT4END);

	return desc;
}

static int gpmi_nfc_exec_op(struct nand_chip *chip,
			     const struct nand_operation *op,
			     bool check_only)
{
	const struct nand_op_instr *instr;
	struct gpmi_nand_data *this = nand_get_controller_data(chip);
	struct dma_async_tx_descriptor *desc = NULL;
	int i, ret, buf_len = 0, nbufs = 0;
	u8 cmd = 0;
	void *buf_read = NULL;
	const void *buf_write = NULL;
	bool direct = false;
	struct completion *dma_completion, *bch_completion;
	unsigned long to;

	if (check_only)
		return 0;

	this->ntransfers = 0;
	for (i = 0; i < GPMI_MAX_TRANSFERS; i++)
		this->transfers[i].direction = DMA_NONE;

	ret = pm_runtime_get_sync(this->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(this->dev);
		return ret;
	}

	/*
	 * This driver currently supports only one NAND chip. Plus, dies share
	 * the same configuration. So once timings have been applied on the
	 * controller side, they will not change anymore. When the time will
	 * come, the check on must_apply_timings will have to be dropped.
	 */
	if (this->hw.must_apply_timings) {
		this->hw.must_apply_timings = false;
		gpmi_nfc_apply_timings(this);
	}

	dev_dbg(this->dev, "%s: %d instructions\n", __func__, op->ninstrs);

	for (i = 0; i < op->ninstrs; i++) {
		instr = &op->instrs[i];

		nand_op_trace("  ", instr);

		switch (instr->type) {
		case NAND_OP_WAITRDY_INSTR:
			desc = gpmi_chain_wait_ready(this);
			break;
		case NAND_OP_CMD_INSTR:
			cmd = instr->ctx.cmd.opcode;

			/*
			 * When this command has an address cycle chain it
			 * together with the address cycle
			 */
			if (i + 1 != op->ninstrs &&
			    op->instrs[i + 1].type == NAND_OP_ADDR_INSTR)
				continue;

			desc = gpmi_chain_command(this, cmd, NULL, 0);

			break;
		case NAND_OP_ADDR_INSTR:
			desc = gpmi_chain_command(this, cmd, instr->ctx.addr.addrs,
						  instr->ctx.addr.naddrs);
			break;
		case NAND_OP_DATA_OUT_INSTR:
			buf_write = instr->ctx.data.buf.out;
			buf_len = instr->ctx.data.len;
			nbufs++;

			desc = gpmi_chain_data_write(this, buf_write, buf_len);

			break;
		case NAND_OP_DATA_IN_INSTR:
			if (!instr->ctx.data.len)
				break;
			buf_read = instr->ctx.data.buf.in;
			buf_len = instr->ctx.data.len;
			nbufs++;

			desc = gpmi_chain_data_read(this, buf_read, buf_len,
						   &direct);
			break;
		}

		if (!desc) {
			ret = -ENXIO;
			goto unmap;
		}
	}

	dev_dbg(this->dev, "%s setup done\n", __func__);

	if (nbufs > 1) {
		dev_err(this->dev, "Multiple data instructions not supported\n");
		ret = -EINVAL;
		goto unmap;
	}

	if (this->bch) {
		writel(this->bch_flashlayout0,
		       this->resources.bch_regs + HW_BCH_FLASH0LAYOUT0);
		writel(this->bch_flashlayout1,
		       this->resources.bch_regs + HW_BCH_FLASH0LAYOUT1);
	}

	desc->callback = dma_irq_callback;
	desc->callback_param = this;
	dma_completion = &this->dma_done;
	bch_completion = NULL;

	init_completion(dma_completion);

	if (this->bch && buf_read) {
		writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
		       this->resources.bch_regs + HW_BCH_CTRL_SET);
		bch_completion = &this->bch_done;
		init_completion(bch_completion);
	}

	dmaengine_submit(desc);
	dma_async_issue_pending(get_dma_chan(this));

	to = wait_for_completion_timeout(dma_completion, msecs_to_jiffies(1000));
	if (!to) {
		dev_err(this->dev, "DMA timeout, last DMA\n");
		gpmi_dump_info(this);
		ret = -ETIMEDOUT;
		goto unmap;
	}

	if (this->bch && buf_read) {
		to = wait_for_completion_timeout(bch_completion, msecs_to_jiffies(1000));
		if (!to) {
			dev_err(this->dev, "BCH timeout, last DMA\n");
			gpmi_dump_info(this);
			ret = -ETIMEDOUT;
			goto unmap;
		}
	}

	writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
	       this->resources.bch_regs + HW_BCH_CTRL_CLR);
	gpmi_clear_bch(this);

	ret = 0;

unmap:
	for (i = 0; i < this->ntransfers; i++) {
		struct gpmi_transfer *transfer = &this->transfers[i];

		if (transfer->direction != DMA_NONE)
			dma_unmap_sg(this->dev, &transfer->sgl, 1,
				     transfer->direction);
	}

	if (!ret && buf_read && !direct)
		memcpy(buf_read, this->data_buffer_dma,
		       gpmi_raw_len_to_len(this, buf_len));

	this->bch = false;

	pm_runtime_mark_last_busy(this->dev);
	pm_runtime_put_autosuspend(this->dev);

	return ret;
}

static const struct nand_controller_ops gpmi_nand_controller_ops = {
	.attach_chip = gpmi_nand_attach_chip,
	.setup_interface = gpmi_setup_interface,
	.exec_op = gpmi_nfc_exec_op,
};

static int gpmi_nand_init(struct gpmi_nand_data *this)
{
	struct nand_chip *chip = &this->nand;
	struct mtd_info  *mtd = nand_to_mtd(chip);
	int ret;

	/* init the MTD data structures */
	mtd->name		= "gpmi-nand";
	mtd->dev.parent		= this->dev;

	/* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */
	nand_set_controller_data(chip, this);
	nand_set_flash_node(chip, this->pdev->dev.of_node);
	chip->legacy.block_markbad = gpmi_block_markbad;
	chip->badblock_pattern	= &gpmi_bbt_descr;
	chip->options		|= NAND_NO_SUBPAGE_WRITE;

	/* Set up swap_block_mark, must be set before the gpmi_set_geometry() */
	this->swap_block_mark = !GPMI_IS_MX23(this);

	/*
	 * Allocate a temporary DMA buffer for reading ID in the
	 * nand_scan_ident().
	 */
	this->bch_geometry.payload_size = 1024;
	this->bch_geometry.auxiliary_size = 128;
	ret = gpmi_alloc_dma_buffer(this);
	if (ret)
		goto err_out;

	nand_controller_init(&this->base);
	this->base.ops = &gpmi_nand_controller_ops;
	chip->controller = &this->base;

	ret = nand_scan(chip, GPMI_IS_MX6(this) ? 2 : 1);
	if (ret)
		goto err_out;

	ret = nand_boot_init(this);
	if (ret)
		goto err_nand_cleanup;
	ret = nand_create_bbt(chip);
	if (ret)
		goto err_nand_cleanup;

	ret = mtd_device_register(mtd, NULL, 0);
	if (ret)
		goto err_nand_cleanup;
	return 0;

err_nand_cleanup:
	nand_cleanup(chip);
err_out:
	gpmi_free_dma_buffer(this);
	return ret;
}

static const struct of_device_id gpmi_nand_id_table[] = {
	{ .compatible = "fsl,imx23-gpmi-nand", .data = &gpmi_devdata_imx23, },
	{ .compatible = "fsl,imx28-gpmi-nand", .data = &gpmi_devdata_imx28, },
	{ .compatible = "fsl,imx6q-gpmi-nand", .data = &gpmi_devdata_imx6q, },
	{ .compatible = "fsl,imx6sx-gpmi-nand", .data = &gpmi_devdata_imx6sx, },
	{ .compatible = "fsl,imx7d-gpmi-nand", .data = &gpmi_devdata_imx7d,},
	{}
};
MODULE_DEVICE_TABLE(of, gpmi_nand_id_table);

static int gpmi_nand_probe(struct platform_device *pdev)
{
	struct gpmi_nand_data *this;
	int ret;

	this = devm_kzalloc(&pdev->dev, sizeof(*this), GFP_KERNEL);
	if (!this)
		return -ENOMEM;

	this->devdata = of_device_get_match_data(&pdev->dev);
	platform_set_drvdata(pdev, this);
	this->pdev  = pdev;
	this->dev   = &pdev->dev;

	ret = acquire_resources(this);
	if (ret)
		goto exit_acquire_resources;

	ret = __gpmi_enable_clk(this, true);
	if (ret)
		goto exit_acquire_resources;

	pm_runtime_set_autosuspend_delay(&pdev->dev, 500);
	pm_runtime_use_autosuspend(&pdev->dev);
	pm_runtime_set_active(&pdev->dev);
	pm_runtime_enable(&pdev->dev);
	pm_runtime_get_sync(&pdev->dev);

	ret = gpmi_init(this);
	if (ret)
		goto exit_nfc_init;

	ret = gpmi_nand_init(this);
	if (ret)
		goto exit_nfc_init;

	pm_runtime_mark_last_busy(&pdev->dev);
	pm_runtime_put_autosuspend(&pdev->dev);

	dev_info(this->dev, "driver registered.\n");

	return 0;

exit_nfc_init:
	pm_runtime_put(&pdev->dev);
	pm_runtime_disable(&pdev->dev);
	release_resources(this);
exit_acquire_resources:

	return ret;
}

static int gpmi_nand_remove(struct platform_device *pdev)
{
	struct gpmi_nand_data *this = platform_get_drvdata(pdev);
	struct nand_chip *chip = &this->nand;
	int ret;

	pm_runtime_put_sync(&pdev->dev);
	pm_runtime_disable(&pdev->dev);

	ret = mtd_device_unregister(nand_to_mtd(chip));
	WARN_ON(ret);
	nand_cleanup(chip);
	gpmi_free_dma_buffer(this);
	release_resources(this);
	return 0;
}

#ifdef CONFIG_PM_SLEEP
static int gpmi_pm_suspend(struct device *dev)
{
	struct gpmi_nand_data *this = dev_get_drvdata(dev);

	release_dma_channels(this);
	return 0;
}

static int gpmi_pm_resume(struct device *dev)
{
	struct gpmi_nand_data *this = dev_get_drvdata(dev);
	int ret;

	ret = acquire_dma_channels(this);
	if (ret < 0)
		return ret;

	/* re-init the GPMI registers */
	ret = gpmi_init(this);
	if (ret) {
		dev_err(this->dev, "Error setting GPMI : %d\n", ret);
		return ret;
	}

	/* Set flag to get timing setup restored for next exec_op */
	if (this->hw.clk_rate)
		this->hw.must_apply_timings = true;

	/* re-init the BCH registers */
	ret = bch_set_geometry(this);
	if (ret) {
		dev_err(this->dev, "Error setting BCH : %d\n", ret);
		return ret;
	}

	return 0;
}
#endif /* CONFIG_PM_SLEEP */

static int __maybe_unused gpmi_runtime_suspend(struct device *dev)
{
	struct gpmi_nand_data *this = dev_get_drvdata(dev);

	return __gpmi_enable_clk(this, false);
}

static int __maybe_unused gpmi_runtime_resume(struct device *dev)
{
	struct gpmi_nand_data *this = dev_get_drvdata(dev);

	return __gpmi_enable_clk(this, true);
}

static const struct dev_pm_ops gpmi_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(gpmi_pm_suspend, gpmi_pm_resume)
	SET_RUNTIME_PM_OPS(gpmi_runtime_suspend, gpmi_runtime_resume, NULL)
};

static struct platform_driver gpmi_nand_driver = {
	.driver = {
		.name = "gpmi-nand",
		.pm = &gpmi_pm_ops,
		.of_match_table = gpmi_nand_id_table,
	},
	.probe   = gpmi_nand_probe,
	.remove  = gpmi_nand_remove,
};
module_platform_driver(gpmi_nand_driver);

MODULE_AUTHOR("Freescale Semiconductor, Inc.");
MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver");
MODULE_LICENSE("GPL");