summaryrefslogtreecommitdiffstats
path: root/drivers/mtd/spi-nor/spi-nor.c
blob: 4425b0283725beb5a24ad8fd3e7e8c056119c589 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
/*
 * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
 * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
 *
 * Copyright (C) 2005, Intec Automation Inc.
 * Copyright (C) 2014, Freescale Semiconductor, Inc.
 *
 * This code is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/err.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/mutex.h>
#include <linux/math64.h>
#include <linux/sizes.h>
#include <linux/slab.h>

#include <linux/mtd/mtd.h>
#include <linux/of_platform.h>
#include <linux/spi/flash.h>
#include <linux/mtd/spi-nor.h>

/* Define max times to check status register before we give up. */

/*
 * For everything but full-chip erase; probably could be much smaller, but kept
 * around for safety for now
 */
#define DEFAULT_READY_WAIT_JIFFIES		(40UL * HZ)

/*
 * For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up
 * for larger flash
 */
#define CHIP_ERASE_2MB_READY_WAIT_JIFFIES	(40UL * HZ)

#define SPI_NOR_MAX_ID_LEN	6
#define SPI_NOR_MAX_ADDR_WIDTH	4

struct flash_info {
	char		*name;

	/*
	 * This array stores the ID bytes.
	 * The first three bytes are the JEDIC ID.
	 * JEDEC ID zero means "no ID" (mostly older chips).
	 */
	u8		id[SPI_NOR_MAX_ID_LEN];
	u8		id_len;

	/* The size listed here is what works with SPINOR_OP_SE, which isn't
	 * necessarily called a "sector" by the vendor.
	 */
	unsigned	sector_size;
	u16		n_sectors;

	u16		page_size;
	u16		addr_width;

	u16		flags;
#define SECT_4K			BIT(0)	/* SPINOR_OP_BE_4K works uniformly */
#define SPI_NOR_NO_ERASE	BIT(1)	/* No erase command needed */
#define SST_WRITE		BIT(2)	/* use SST byte programming */
#define SPI_NOR_NO_FR		BIT(3)	/* Can't do fastread */
#define SECT_4K_PMC		BIT(4)	/* SPINOR_OP_BE_4K_PMC works uniformly */
#define SPI_NOR_DUAL_READ	BIT(5)	/* Flash supports Dual Read */
#define SPI_NOR_QUAD_READ	BIT(6)	/* Flash supports Quad Read */
#define USE_FSR			BIT(7)	/* use flag status register */
#define SPI_NOR_HAS_LOCK	BIT(8)	/* Flash supports lock/unlock via SR */
#define SPI_NOR_HAS_TB		BIT(9)	/*
					 * Flash SR has Top/Bottom (TB) protect
					 * bit. Must be used with
					 * SPI_NOR_HAS_LOCK.
					 */
#define	SPI_S3AN		BIT(10)	/*
					 * Xilinx Spartan 3AN In-System Flash
					 * (MFR cannot be used for probing
					 * because it has the same value as
					 * ATMEL flashes)
					 */
#define SPI_NOR_4B_OPCODES	BIT(11)	/*
					 * Use dedicated 4byte address op codes
					 * to support memory size above 128Mib.
					 */
#define NO_CHIP_ERASE		BIT(12) /* Chip does not support chip erase */
#define SPI_NOR_SKIP_SFDP	BIT(13)	/* Skip parsing of SFDP tables */
#define USE_CLSR		BIT(14)	/* use CLSR command */
};

#define JEDEC_MFR(info)	((info)->id[0])

static const struct flash_info *spi_nor_match_id(const char *name);

/*
 * Read the status register, returning its value in the location
 * Return the status register value.
 * Returns negative if error occurred.
 */
static int read_sr(struct spi_nor *nor)
{
	int ret;
	u8 val;

	ret = nor->read_reg(nor, SPINOR_OP_RDSR, &val, 1);
	if (ret < 0) {
		pr_err("error %d reading SR\n", (int) ret);
		return ret;
	}

	return val;
}

/*
 * Read the flag status register, returning its value in the location
 * Return the status register value.
 * Returns negative if error occurred.
 */
static int read_fsr(struct spi_nor *nor)
{
	int ret;
	u8 val;

	ret = nor->read_reg(nor, SPINOR_OP_RDFSR, &val, 1);
	if (ret < 0) {
		pr_err("error %d reading FSR\n", ret);
		return ret;
	}

	return val;
}

/*
 * Read configuration register, returning its value in the
 * location. Return the configuration register value.
 * Returns negative if error occurred.
 */
static int read_cr(struct spi_nor *nor)
{
	int ret;
	u8 val;

	ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1);
	if (ret < 0) {
		dev_err(nor->dev, "error %d reading CR\n", ret);
		return ret;
	}

	return val;
}

/*
 * Write status register 1 byte
 * Returns negative if error occurred.
 */
static inline int write_sr(struct spi_nor *nor, u8 val)
{
	nor->cmd_buf[0] = val;
	return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1);
}

/*
 * Set write enable latch with Write Enable command.
 * Returns negative if error occurred.
 */
static inline int write_enable(struct spi_nor *nor)
{
	return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0);
}

/*
 * Send write disable instruction to the chip.
 */
static inline int write_disable(struct spi_nor *nor)
{
	return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0);
}

static inline struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd)
{
	return mtd->priv;
}


static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size)
{
	size_t i;

	for (i = 0; i < size; i++)
		if (table[i][0] == opcode)
			return table[i][1];

	/* No conversion found, keep input op code. */
	return opcode;
}

static inline u8 spi_nor_convert_3to4_read(u8 opcode)
{
	static const u8 spi_nor_3to4_read[][2] = {
		{ SPINOR_OP_READ,	SPINOR_OP_READ_4B },
		{ SPINOR_OP_READ_FAST,	SPINOR_OP_READ_FAST_4B },
		{ SPINOR_OP_READ_1_1_2,	SPINOR_OP_READ_1_1_2_4B },
		{ SPINOR_OP_READ_1_2_2,	SPINOR_OP_READ_1_2_2_4B },
		{ SPINOR_OP_READ_1_1_4,	SPINOR_OP_READ_1_1_4_4B },
		{ SPINOR_OP_READ_1_4_4,	SPINOR_OP_READ_1_4_4_4B },

		{ SPINOR_OP_READ_1_1_1_DTR,	SPINOR_OP_READ_1_1_1_DTR_4B },
		{ SPINOR_OP_READ_1_2_2_DTR,	SPINOR_OP_READ_1_2_2_DTR_4B },
		{ SPINOR_OP_READ_1_4_4_DTR,	SPINOR_OP_READ_1_4_4_DTR_4B },
	};

	return spi_nor_convert_opcode(opcode, spi_nor_3to4_read,
				      ARRAY_SIZE(spi_nor_3to4_read));
}

static inline u8 spi_nor_convert_3to4_program(u8 opcode)
{
	static const u8 spi_nor_3to4_program[][2] = {
		{ SPINOR_OP_PP,		SPINOR_OP_PP_4B },
		{ SPINOR_OP_PP_1_1_4,	SPINOR_OP_PP_1_1_4_4B },
		{ SPINOR_OP_PP_1_4_4,	SPINOR_OP_PP_1_4_4_4B },
	};

	return spi_nor_convert_opcode(opcode, spi_nor_3to4_program,
				      ARRAY_SIZE(spi_nor_3to4_program));
}

static inline u8 spi_nor_convert_3to4_erase(u8 opcode)
{
	static const u8 spi_nor_3to4_erase[][2] = {
		{ SPINOR_OP_BE_4K,	SPINOR_OP_BE_4K_4B },
		{ SPINOR_OP_BE_32K,	SPINOR_OP_BE_32K_4B },
		{ SPINOR_OP_SE,		SPINOR_OP_SE_4B },
	};

	return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase,
				      ARRAY_SIZE(spi_nor_3to4_erase));
}

static void spi_nor_set_4byte_opcodes(struct spi_nor *nor,
				      const struct flash_info *info)
{
	/* Do some manufacturer fixups first */
	switch (JEDEC_MFR(info)) {
	case SNOR_MFR_SPANSION:
		/* No small sector erase for 4-byte command set */
		nor->erase_opcode = SPINOR_OP_SE;
		nor->mtd.erasesize = info->sector_size;
		break;

	default:
		break;
	}

	nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode);
	nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode);
	nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode);
}

/* Enable/disable 4-byte addressing mode. */
static inline int set_4byte(struct spi_nor *nor, const struct flash_info *info,
			    int enable)
{
	int status;
	bool need_wren = false;
	u8 cmd;

	switch (JEDEC_MFR(info)) {
	case SNOR_MFR_MICRON:
		/* Some Micron need WREN command; all will accept it */
		need_wren = true;
	case SNOR_MFR_MACRONIX:
	case SNOR_MFR_WINBOND:
		if (need_wren)
			write_enable(nor);

		cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
		status = nor->write_reg(nor, cmd, NULL, 0);
		if (need_wren)
			write_disable(nor);

		return status;
	default:
		/* Spansion style */
		nor->cmd_buf[0] = enable << 7;
		return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1);
	}
}

static int s3an_sr_ready(struct spi_nor *nor)
{
	int ret;
	u8 val;

	ret = nor->read_reg(nor, SPINOR_OP_XRDSR, &val, 1);
	if (ret < 0) {
		dev_err(nor->dev, "error %d reading XRDSR\n", (int) ret);
		return ret;
	}

	return !!(val & XSR_RDY);
}

static inline int spi_nor_sr_ready(struct spi_nor *nor)
{
	int sr = read_sr(nor);
	if (sr < 0)
		return sr;

	if (nor->flags & SNOR_F_USE_CLSR && sr & (SR_E_ERR | SR_P_ERR)) {
		if (sr & SR_E_ERR)
			dev_err(nor->dev, "Erase Error occurred\n");
		else
			dev_err(nor->dev, "Programming Error occurred\n");

		nor->write_reg(nor, SPINOR_OP_CLSR, NULL, 0);
		return -EIO;
	}

	return !(sr & SR_WIP);
}

static inline int spi_nor_fsr_ready(struct spi_nor *nor)
{
	int fsr = read_fsr(nor);
	if (fsr < 0)
		return fsr;
	else
		return fsr & FSR_READY;
}

static int spi_nor_ready(struct spi_nor *nor)
{
	int sr, fsr;

	if (nor->flags & SNOR_F_READY_XSR_RDY)
		sr = s3an_sr_ready(nor);
	else
		sr = spi_nor_sr_ready(nor);
	if (sr < 0)
		return sr;
	fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1;
	if (fsr < 0)
		return fsr;
	return sr && fsr;
}

/*
 * Service routine to read status register until ready, or timeout occurs.
 * Returns non-zero if error.
 */
static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
						unsigned long timeout_jiffies)
{
	unsigned long deadline;
	int timeout = 0, ret;

	deadline = jiffies + timeout_jiffies;

	while (!timeout) {
		if (time_after_eq(jiffies, deadline))
			timeout = 1;

		ret = spi_nor_ready(nor);
		if (ret < 0)
			return ret;
		if (ret)
			return 0;

		cond_resched();
	}

	dev_err(nor->dev, "flash operation timed out\n");

	return -ETIMEDOUT;
}

static int spi_nor_wait_till_ready(struct spi_nor *nor)
{
	return spi_nor_wait_till_ready_with_timeout(nor,
						    DEFAULT_READY_WAIT_JIFFIES);
}

/*
 * Erase the whole flash memory
 *
 * Returns 0 if successful, non-zero otherwise.
 */
static int erase_chip(struct spi_nor *nor)
{
	dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd.size >> 10));

	return nor->write_reg(nor, SPINOR_OP_CHIP_ERASE, NULL, 0);
}

static int spi_nor_lock_and_prep(struct spi_nor *nor, enum spi_nor_ops ops)
{
	int ret = 0;

	mutex_lock(&nor->lock);

	if (nor->prepare) {
		ret = nor->prepare(nor, ops);
		if (ret) {
			dev_err(nor->dev, "failed in the preparation.\n");
			mutex_unlock(&nor->lock);
			return ret;
		}
	}
	return ret;
}

static void spi_nor_unlock_and_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
{
	if (nor->unprepare)
		nor->unprepare(nor, ops);
	mutex_unlock(&nor->lock);
}

/*
 * This code converts an address to the Default Address Mode, that has non
 * power of two page sizes. We must support this mode because it is the default
 * mode supported by Xilinx tools, it can access the whole flash area and
 * changing over to the Power-of-two mode is irreversible and corrupts the
 * original data.
 * Addr can safely be unsigned int, the biggest S3AN device is smaller than
 * 4 MiB.
 */
static loff_t spi_nor_s3an_addr_convert(struct spi_nor *nor, unsigned int addr)
{
	unsigned int offset;
	unsigned int page;

	offset = addr % nor->page_size;
	page = addr / nor->page_size;
	page <<= (nor->page_size > 512) ? 10 : 9;

	return page | offset;
}

/*
 * Initiate the erasure of a single sector
 */
static int spi_nor_erase_sector(struct spi_nor *nor, u32 addr)
{
	u8 buf[SPI_NOR_MAX_ADDR_WIDTH];
	int i;

	if (nor->flags & SNOR_F_S3AN_ADDR_DEFAULT)
		addr = spi_nor_s3an_addr_convert(nor, addr);

	if (nor->erase)
		return nor->erase(nor, addr);

	/*
	 * Default implementation, if driver doesn't have a specialized HW
	 * control
	 */
	for (i = nor->addr_width - 1; i >= 0; i--) {
		buf[i] = addr & 0xff;
		addr >>= 8;
	}

	return nor->write_reg(nor, nor->erase_opcode, buf, nor->addr_width);
}

/*
 * Erase an address range on the nor chip.  The address range may extend
 * one or more erase sectors.  Return an error is there is a problem erasing.
 */
static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	u32 addr, len;
	uint32_t rem;
	int ret;

	dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
			(long long)instr->len);

	div_u64_rem(instr->len, mtd->erasesize, &rem);
	if (rem)
		return -EINVAL;

	addr = instr->addr;
	len = instr->len;

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_ERASE);
	if (ret)
		return ret;

	/* whole-chip erase? */
	if (len == mtd->size && !(nor->flags & SNOR_F_NO_OP_CHIP_ERASE)) {
		unsigned long timeout;

		write_enable(nor);

		if (erase_chip(nor)) {
			ret = -EIO;
			goto erase_err;
		}

		/*
		 * Scale the timeout linearly with the size of the flash, with
		 * a minimum calibrated to an old 2MB flash. We could try to
		 * pull these from CFI/SFDP, but these values should be good
		 * enough for now.
		 */
		timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES,
			      CHIP_ERASE_2MB_READY_WAIT_JIFFIES *
			      (unsigned long)(mtd->size / SZ_2M));
		ret = spi_nor_wait_till_ready_with_timeout(nor, timeout);
		if (ret)
			goto erase_err;

	/* REVISIT in some cases we could speed up erasing large regions
	 * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K.  We may have set up
	 * to use "small sector erase", but that's not always optimal.
	 */

	/* "sector"-at-a-time erase */
	} else {
		while (len) {
			write_enable(nor);

			ret = spi_nor_erase_sector(nor, addr);
			if (ret)
				goto erase_err;

			addr += mtd->erasesize;
			len -= mtd->erasesize;

			ret = spi_nor_wait_till_ready(nor);
			if (ret)
				goto erase_err;
		}
	}

	write_disable(nor);

erase_err:
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);

	instr->state = ret ? MTD_ERASE_FAILED : MTD_ERASE_DONE;
	mtd_erase_callback(instr);

	return ret;
}

static void stm_get_locked_range(struct spi_nor *nor, u8 sr, loff_t *ofs,
				 uint64_t *len)
{
	struct mtd_info *mtd = &nor->mtd;
	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
	int shift = ffs(mask) - 1;
	int pow;

	if (!(sr & mask)) {
		/* No protection */
		*ofs = 0;
		*len = 0;
	} else {
		pow = ((sr & mask) ^ mask) >> shift;
		*len = mtd->size >> pow;
		if (nor->flags & SNOR_F_HAS_SR_TB && sr & SR_TB)
			*ofs = 0;
		else
			*ofs = mtd->size - *len;
	}
}

/*
 * Return 1 if the entire region is locked (if @locked is true) or unlocked (if
 * @locked is false); 0 otherwise
 */
static int stm_check_lock_status_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
				    u8 sr, bool locked)
{
	loff_t lock_offs;
	uint64_t lock_len;

	if (!len)
		return 1;

	stm_get_locked_range(nor, sr, &lock_offs, &lock_len);

	if (locked)
		/* Requested range is a sub-range of locked range */
		return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs);
	else
		/* Requested range does not overlap with locked range */
		return (ofs >= lock_offs + lock_len) || (ofs + len <= lock_offs);
}

static int stm_is_locked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
			    u8 sr)
{
	return stm_check_lock_status_sr(nor, ofs, len, sr, true);
}

static int stm_is_unlocked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
			      u8 sr)
{
	return stm_check_lock_status_sr(nor, ofs, len, sr, false);
}

/*
 * Lock a region of the flash. Compatible with ST Micro and similar flash.
 * Supports the block protection bits BP{0,1,2} in the status register
 * (SR). Does not support these features found in newer SR bitfields:
 *   - SEC: sector/block protect - only handle SEC=0 (block protect)
 *   - CMP: complement protect - only support CMP=0 (range is not complemented)
 *
 * Support for the following is provided conditionally for some flash:
 *   - TB: top/bottom protect
 *
 * Sample table portion for 8MB flash (Winbond w25q64fw):
 *
 *   SEC  |  TB   |  BP2  |  BP1  |  BP0  |  Prot Length  | Protected Portion
 *  --------------------------------------------------------------------------
 *    X   |   X   |   0   |   0   |   0   |  NONE         | NONE
 *    0   |   0   |   0   |   0   |   1   |  128 KB       | Upper 1/64
 *    0   |   0   |   0   |   1   |   0   |  256 KB       | Upper 1/32
 *    0   |   0   |   0   |   1   |   1   |  512 KB       | Upper 1/16
 *    0   |   0   |   1   |   0   |   0   |  1 MB         | Upper 1/8
 *    0   |   0   |   1   |   0   |   1   |  2 MB         | Upper 1/4
 *    0   |   0   |   1   |   1   |   0   |  4 MB         | Upper 1/2
 *    X   |   X   |   1   |   1   |   1   |  8 MB         | ALL
 *  ------|-------|-------|-------|-------|---------------|-------------------
 *    0   |   1   |   0   |   0   |   1   |  128 KB       | Lower 1/64
 *    0   |   1   |   0   |   1   |   0   |  256 KB       | Lower 1/32
 *    0   |   1   |   0   |   1   |   1   |  512 KB       | Lower 1/16
 *    0   |   1   |   1   |   0   |   0   |  1 MB         | Lower 1/8
 *    0   |   1   |   1   |   0   |   1   |  2 MB         | Lower 1/4
 *    0   |   1   |   1   |   1   |   0   |  4 MB         | Lower 1/2
 *
 * Returns negative on errors, 0 on success.
 */
static int stm_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
{
	struct mtd_info *mtd = &nor->mtd;
	int status_old, status_new;
	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
	u8 shift = ffs(mask) - 1, pow, val;
	loff_t lock_len;
	bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
	bool use_top;
	int ret;

	status_old = read_sr(nor);
	if (status_old < 0)
		return status_old;

	/* If nothing in our range is unlocked, we don't need to do anything */
	if (stm_is_locked_sr(nor, ofs, len, status_old))
		return 0;

	/* If anything below us is unlocked, we can't use 'bottom' protection */
	if (!stm_is_locked_sr(nor, 0, ofs, status_old))
		can_be_bottom = false;

	/* If anything above us is unlocked, we can't use 'top' protection */
	if (!stm_is_locked_sr(nor, ofs + len, mtd->size - (ofs + len),
				status_old))
		can_be_top = false;

	if (!can_be_bottom && !can_be_top)
		return -EINVAL;

	/* Prefer top, if both are valid */
	use_top = can_be_top;

	/* lock_len: length of region that should end up locked */
	if (use_top)
		lock_len = mtd->size - ofs;
	else
		lock_len = ofs + len;

	/*
	 * Need smallest pow such that:
	 *
	 *   1 / (2^pow) <= (len / size)
	 *
	 * so (assuming power-of-2 size) we do:
	 *
	 *   pow = ceil(log2(size / len)) = log2(size) - floor(log2(len))
	 */
	pow = ilog2(mtd->size) - ilog2(lock_len);
	val = mask - (pow << shift);
	if (val & ~mask)
		return -EINVAL;
	/* Don't "lock" with no region! */
	if (!(val & mask))
		return -EINVAL;

	status_new = (status_old & ~mask & ~SR_TB) | val;

	/* Disallow further writes if WP pin is asserted */
	status_new |= SR_SRWD;

	if (!use_top)
		status_new |= SR_TB;

	/* Don't bother if they're the same */
	if (status_new == status_old)
		return 0;

	/* Only modify protection if it will not unlock other areas */
	if ((status_new & mask) < (status_old & mask))
		return -EINVAL;

	write_enable(nor);
	ret = write_sr(nor, status_new);
	if (ret)
		return ret;
	return spi_nor_wait_till_ready(nor);
}

/*
 * Unlock a region of the flash. See stm_lock() for more info
 *
 * Returns negative on errors, 0 on success.
 */
static int stm_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
{
	struct mtd_info *mtd = &nor->mtd;
	int status_old, status_new;
	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
	u8 shift = ffs(mask) - 1, pow, val;
	loff_t lock_len;
	bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
	bool use_top;
	int ret;

	status_old = read_sr(nor);
	if (status_old < 0)
		return status_old;

	/* If nothing in our range is locked, we don't need to do anything */
	if (stm_is_unlocked_sr(nor, ofs, len, status_old))
		return 0;

	/* If anything below us is locked, we can't use 'top' protection */
	if (!stm_is_unlocked_sr(nor, 0, ofs, status_old))
		can_be_top = false;

	/* If anything above us is locked, we can't use 'bottom' protection */
	if (!stm_is_unlocked_sr(nor, ofs + len, mtd->size - (ofs + len),
				status_old))
		can_be_bottom = false;

	if (!can_be_bottom && !can_be_top)
		return -EINVAL;

	/* Prefer top, if both are valid */
	use_top = can_be_top;

	/* lock_len: length of region that should remain locked */
	if (use_top)
		lock_len = mtd->size - (ofs + len);
	else
		lock_len = ofs;

	/*
	 * Need largest pow such that:
	 *
	 *   1 / (2^pow) >= (len / size)
	 *
	 * so (assuming power-of-2 size) we do:
	 *
	 *   pow = floor(log2(size / len)) = log2(size) - ceil(log2(len))
	 */
	pow = ilog2(mtd->size) - order_base_2(lock_len);
	if (lock_len == 0) {
		val = 0; /* fully unlocked */
	} else {
		val = mask - (pow << shift);
		/* Some power-of-two sizes are not supported */
		if (val & ~mask)
			return -EINVAL;
	}

	status_new = (status_old & ~mask & ~SR_TB) | val;

	/* Don't protect status register if we're fully unlocked */
	if (lock_len == 0)
		status_new &= ~SR_SRWD;

	if (!use_top)
		status_new |= SR_TB;

	/* Don't bother if they're the same */
	if (status_new == status_old)
		return 0;

	/* Only modify protection if it will not lock other areas */
	if ((status_new & mask) > (status_old & mask))
		return -EINVAL;

	write_enable(nor);
	ret = write_sr(nor, status_new);
	if (ret)
		return ret;
	return spi_nor_wait_till_ready(nor);
}

/*
 * Check if a region of the flash is (completely) locked. See stm_lock() for
 * more info.
 *
 * Returns 1 if entire region is locked, 0 if any portion is unlocked, and
 * negative on errors.
 */
static int stm_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len)
{
	int status;

	status = read_sr(nor);
	if (status < 0)
		return status;

	return stm_is_locked_sr(nor, ofs, len, status);
}

static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	int ret;

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_LOCK);
	if (ret)
		return ret;

	ret = nor->flash_lock(nor, ofs, len);

	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_UNLOCK);
	return ret;
}

static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	int ret;

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
	if (ret)
		return ret;

	ret = nor->flash_unlock(nor, ofs, len);

	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
	return ret;
}

static int spi_nor_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	int ret;

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
	if (ret)
		return ret;

	ret = nor->flash_is_locked(nor, ofs, len);

	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
	return ret;
}

/* Used when the "_ext_id" is two bytes at most */
#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags)	\
		.id = {							\
			((_jedec_id) >> 16) & 0xff,			\
			((_jedec_id) >> 8) & 0xff,			\
			(_jedec_id) & 0xff,				\
			((_ext_id) >> 8) & 0xff,			\
			(_ext_id) & 0xff,				\
			},						\
		.id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),	\
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = 256,					\
		.flags = (_flags),

#define INFO6(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags)	\
		.id = {							\
			((_jedec_id) >> 16) & 0xff,			\
			((_jedec_id) >> 8) & 0xff,			\
			(_jedec_id) & 0xff,				\
			((_ext_id) >> 16) & 0xff,			\
			((_ext_id) >> 8) & 0xff,			\
			(_ext_id) & 0xff,				\
			},						\
		.id_len = 6,						\
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = 256,					\
		.flags = (_flags),

#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags)	\
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = (_page_size),				\
		.addr_width = (_addr_width),				\
		.flags = (_flags),

#define S3AN_INFO(_jedec_id, _n_sectors, _page_size)			\
		.id = {							\
			((_jedec_id) >> 16) & 0xff,			\
			((_jedec_id) >> 8) & 0xff,			\
			(_jedec_id) & 0xff				\
			},						\
		.id_len = 3,						\
		.sector_size = (8*_page_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = _page_size,				\
		.addr_width = 3,					\
		.flags = SPI_NOR_NO_FR | SPI_S3AN,

/* NOTE: double check command sets and memory organization when you add
 * more nor chips.  This current list focusses on newer chips, which
 * have been converging on command sets which including JEDEC ID.
 *
 * All newly added entries should describe *hardware* and should use SECT_4K
 * (or SECT_4K_PMC) if hardware supports erasing 4 KiB sectors. For usage
 * scenarios excluding small sectors there is config option that can be
 * disabled: CONFIG_MTD_SPI_NOR_USE_4K_SECTORS.
 * For historical (and compatibility) reasons (before we got above config) some
 * old entries may be missing 4K flag.
 */
static const struct flash_info spi_nor_ids[] = {
	/* Atmel -- some are (confusingly) marketed as "DataFlash" */
	{ "at25fs010",  INFO(0x1f6601, 0, 32 * 1024,   4, SECT_4K) },
	{ "at25fs040",  INFO(0x1f6604, 0, 64 * 1024,   8, SECT_4K) },

	{ "at25df041a", INFO(0x1f4401, 0, 64 * 1024,   8, SECT_4K) },
	{ "at25df321",  INFO(0x1f4700, 0, 64 * 1024,  64, SECT_4K) },
	{ "at25df321a", INFO(0x1f4701, 0, 64 * 1024,  64, SECT_4K) },
	{ "at25df641",  INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },

	{ "at26f004",   INFO(0x1f0400, 0, 64 * 1024,  8, SECT_4K) },
	{ "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
	{ "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
	{ "at26df321",  INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },

	{ "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) },

	/* EON -- en25xxx */
	{ "en25f32",    INFO(0x1c3116, 0, 64 * 1024,   64, SECT_4K) },
	{ "en25p32",    INFO(0x1c2016, 0, 64 * 1024,   64, 0) },
	{ "en25q32b",   INFO(0x1c3016, 0, 64 * 1024,   64, 0) },
	{ "en25p64",    INFO(0x1c2017, 0, 64 * 1024,  128, 0) },
	{ "en25q64",    INFO(0x1c3017, 0, 64 * 1024,  128, SECT_4K) },
	{ "en25qh128",  INFO(0x1c7018, 0, 64 * 1024,  256, 0) },
	{ "en25qh256",  INFO(0x1c7019, 0, 64 * 1024,  512, 0) },
	{ "en25s64",	INFO(0x1c3817, 0, 64 * 1024,  128, SECT_4K) },

	/* ESMT */
	{ "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K | SPI_NOR_HAS_LOCK) },
	{ "f25l32qa", INFO(0x8c4116, 0, 64 * 1024, 64, SECT_4K | SPI_NOR_HAS_LOCK) },
	{ "f25l64qa", INFO(0x8c4117, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_HAS_LOCK) },

	/* Everspin */
	{ "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "mr25h10",  CAT25_INFO(128 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "mr25h40",  CAT25_INFO(512 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },

	/* Fujitsu */
	{ "mb85rs1mt", INFO(0x047f27, 0, 128 * 1024, 1, SPI_NOR_NO_ERASE) },

	/* GigaDevice */
	{
		"gd25q16", INFO(0xc84015, 0, 64 * 1024,  32,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
	{
		"gd25q32", INFO(0xc84016, 0, 64 * 1024,  64,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
	{
		"gd25q64", INFO(0xc84017, 0, 64 * 1024, 128,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
	{
		"gd25lq64c", INFO(0xc86017, 0, 64 * 1024, 128,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
	{
		"gd25q128", INFO(0xc84018, 0, 64 * 1024, 256,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},

	/* Intel/Numonyx -- xxxs33b */
	{ "160s33b",  INFO(0x898911, 0, 64 * 1024,  32, 0) },
	{ "320s33b",  INFO(0x898912, 0, 64 * 1024,  64, 0) },
	{ "640s33b",  INFO(0x898913, 0, 64 * 1024, 128, 0) },

	/* ISSI */
	{ "is25cd512", INFO(0x7f9d20, 0, 32 * 1024,   2, SECT_4K) },

	/* Macronix */
	{ "mx25l512e",   INFO(0xc22010, 0, 64 * 1024,   1, SECT_4K) },
	{ "mx25l2005a",  INFO(0xc22012, 0, 64 * 1024,   4, SECT_4K) },
	{ "mx25l4005a",  INFO(0xc22013, 0, 64 * 1024,   8, SECT_4K) },
	{ "mx25l8005",   INFO(0xc22014, 0, 64 * 1024,  16, 0) },
	{ "mx25l1606e",  INFO(0xc22015, 0, 64 * 1024,  32, SECT_4K) },
	{ "mx25l3205d",  INFO(0xc22016, 0, 64 * 1024,  64, SECT_4K) },
	{ "mx25l3255e",  INFO(0xc29e16, 0, 64 * 1024,  64, SECT_4K) },
	{ "mx25l6405d",  INFO(0xc22017, 0, 64 * 1024, 128, SECT_4K) },
	{ "mx25u2033e",  INFO(0xc22532, 0, 64 * 1024,   4, SECT_4K) },
	{ "mx25u4035",   INFO(0xc22533, 0, 64 * 1024,   8, SECT_4K) },
	{ "mx25u8035",   INFO(0xc22534, 0, 64 * 1024,  16, SECT_4K) },
	{ "mx25u6435f",  INFO(0xc22537, 0, 64 * 1024, 128, SECT_4K) },
	{ "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
	{ "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
	{ "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "mx25u25635f", INFO(0xc22539, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_4B_OPCODES) },
	{ "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
	{ "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "mx66u51235f", INFO(0xc2253a, 0, 64 * 1024, 1024, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
	{ "mx66l1g45g",  INFO(0xc2201b, 0, 64 * 1024, 2048, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "mx66l1g55g",  INFO(0xc2261b, 0, 64 * 1024, 2048, SPI_NOR_QUAD_READ) },

	/* Micron */
	{ "n25q016a",	 INFO(0x20bb15, 0, 64 * 1024,   32, SECT_4K | SPI_NOR_QUAD_READ) },
	{ "n25q032",	 INFO(0x20ba16, 0, 64 * 1024,   64, SPI_NOR_QUAD_READ) },
	{ "n25q032a",	 INFO(0x20bb16, 0, 64 * 1024,   64, SPI_NOR_QUAD_READ) },
	{ "n25q064",     INFO(0x20ba17, 0, 64 * 1024,  128, SECT_4K | SPI_NOR_QUAD_READ) },
	{ "n25q064a",    INFO(0x20bb17, 0, 64 * 1024,  128, SECT_4K | SPI_NOR_QUAD_READ) },
	{ "n25q128a11",  INFO(0x20bb18, 0, 64 * 1024,  256, SECT_4K | SPI_NOR_QUAD_READ) },
	{ "n25q128a13",  INFO(0x20ba18, 0, 64 * 1024,  256, SECT_4K | SPI_NOR_QUAD_READ) },
	{ "n25q256a",    INFO(0x20ba19, 0, 64 * 1024,  512, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "n25q256ax1",  INFO(0x20bb19, 0, 64 * 1024,  512, SECT_4K | SPI_NOR_QUAD_READ) },
	{ "n25q512a",    INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
	{ "n25q512ax3",  INFO(0x20ba20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
	{ "n25q00",      INFO(0x20ba21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ | NO_CHIP_ERASE) },
	{ "n25q00a",     INFO(0x20bb21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ | NO_CHIP_ERASE) },

	/* PMC */
	{ "pm25lv512",   INFO(0,        0, 32 * 1024,    2, SECT_4K_PMC) },
	{ "pm25lv010",   INFO(0,        0, 32 * 1024,    4, SECT_4K_PMC) },
	{ "pm25lq032",   INFO(0x7f9d46, 0, 64 * 1024,   64, SECT_4K) },

	/* Spansion -- single (large) sector size only, at least
	 * for the chips listed here (without boot sectors).
	 */
	{ "s25sl032p",  INFO(0x010215, 0x4d00,  64 * 1024,  64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "s25sl064p",  INFO(0x010216, 0x4d00,  64 * 1024, 128, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, USE_CLSR) },
	{ "s25fl256s1", INFO(0x010219, 0x4d01,  64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
	{ "s25fl512s",  INFO(0x010220, 0x4d00, 256 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
	{ "s70fl01gs",  INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
	{ "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024,  64, 0) },
	{ "s25sl12801", INFO(0x012018, 0x0301,  64 * 1024, 256, 0) },
	{ "s25fl128s",  INFO6(0x012018, 0x4d0180, 64 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
	{ "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024,  64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
	{ "s25fl129p1", INFO(0x012018, 0x4d01,  64 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
	{ "s25sl004a",  INFO(0x010212,      0,  64 * 1024,   8, 0) },
	{ "s25sl008a",  INFO(0x010213,      0,  64 * 1024,  16, 0) },
	{ "s25sl016a",  INFO(0x010214,      0,  64 * 1024,  32, 0) },
	{ "s25sl032a",  INFO(0x010215,      0,  64 * 1024,  64, 0) },
	{ "s25sl064a",  INFO(0x010216,      0,  64 * 1024, 128, 0) },
	{ "s25fl004k",  INFO(0xef4013,      0,  64 * 1024,   8, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "s25fl008k",  INFO(0xef4014,      0,  64 * 1024,  16, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "s25fl016k",  INFO(0xef4015,      0,  64 * 1024,  32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "s25fl064k",  INFO(0xef4017,      0,  64 * 1024, 128, SECT_4K) },
	{ "s25fl116k",  INFO(0x014015,      0,  64 * 1024,  32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "s25fl132k",  INFO(0x014016,      0,  64 * 1024,  64, SECT_4K) },
	{ "s25fl164k",  INFO(0x014017,      0,  64 * 1024, 128, SECT_4K) },
	{ "s25fl204k",  INFO(0x014013,      0,  64 * 1024,   8, SECT_4K | SPI_NOR_DUAL_READ) },
	{ "s25fl208k",  INFO(0x014014,      0,  64 * 1024,  16, SECT_4K | SPI_NOR_DUAL_READ) },
	{ "s25fl064l",  INFO(0x016017,      0,  64 * 1024, 128, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },

	/* SST -- large erase sizes are "overlays", "sectors" are 4K */
	{ "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024,  8, SECT_4K | SST_WRITE) },
	{ "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
	{ "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) },
	{ "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) },
	{ "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) },
	{ "sst25wf512",  INFO(0xbf2501, 0, 64 * 1024,  1, SECT_4K | SST_WRITE) },
	{ "sst25wf010",  INFO(0xbf2502, 0, 64 * 1024,  2, SECT_4K | SST_WRITE) },
	{ "sst25wf020",  INFO(0xbf2503, 0, 64 * 1024,  4, SECT_4K | SST_WRITE) },
	{ "sst25wf020a", INFO(0x621612, 0, 64 * 1024,  4, SECT_4K) },
	{ "sst25wf040b", INFO(0x621613, 0, 64 * 1024,  8, SECT_4K) },
	{ "sst25wf040",  INFO(0xbf2504, 0, 64 * 1024,  8, SECT_4K | SST_WRITE) },
	{ "sst25wf080",  INFO(0xbf2505, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
	{ "sst26vf064b", INFO(0xbf2643, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },

	/* ST Microelectronics -- newer production may have feature updates */
	{ "m25p05",  INFO(0x202010,  0,  32 * 1024,   2, 0) },
	{ "m25p10",  INFO(0x202011,  0,  32 * 1024,   4, 0) },
	{ "m25p20",  INFO(0x202012,  0,  64 * 1024,   4, 0) },
	{ "m25p40",  INFO(0x202013,  0,  64 * 1024,   8, 0) },
	{ "m25p80",  INFO(0x202014,  0,  64 * 1024,  16, 0) },
	{ "m25p16",  INFO(0x202015,  0,  64 * 1024,  32, 0) },
	{ "m25p32",  INFO(0x202016,  0,  64 * 1024,  64, 0) },
	{ "m25p64",  INFO(0x202017,  0,  64 * 1024, 128, 0) },
	{ "m25p128", INFO(0x202018,  0, 256 * 1024,  64, 0) },

	{ "m25p05-nonjedec",  INFO(0, 0,  32 * 1024,   2, 0) },
	{ "m25p10-nonjedec",  INFO(0, 0,  32 * 1024,   4, 0) },
	{ "m25p20-nonjedec",  INFO(0, 0,  64 * 1024,   4, 0) },
	{ "m25p40-nonjedec",  INFO(0, 0,  64 * 1024,   8, 0) },
	{ "m25p80-nonjedec",  INFO(0, 0,  64 * 1024,  16, 0) },
	{ "m25p16-nonjedec",  INFO(0, 0,  64 * 1024,  32, 0) },
	{ "m25p32-nonjedec",  INFO(0, 0,  64 * 1024,  64, 0) },
	{ "m25p64-nonjedec",  INFO(0, 0,  64 * 1024, 128, 0) },
	{ "m25p128-nonjedec", INFO(0, 0, 256 * 1024,  64, 0) },

	{ "m45pe10", INFO(0x204011,  0, 64 * 1024,    2, 0) },
	{ "m45pe80", INFO(0x204014,  0, 64 * 1024,   16, 0) },
	{ "m45pe16", INFO(0x204015,  0, 64 * 1024,   32, 0) },

	{ "m25pe20", INFO(0x208012,  0, 64 * 1024,  4,       0) },
	{ "m25pe80", INFO(0x208014,  0, 64 * 1024, 16,       0) },
	{ "m25pe16", INFO(0x208015,  0, 64 * 1024, 32, SECT_4K) },

	{ "m25px16",    INFO(0x207115,  0, 64 * 1024, 32, SECT_4K) },
	{ "m25px32",    INFO(0x207116,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px32-s0", INFO(0x207316,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px32-s1", INFO(0x206316,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px64",    INFO(0x207117,  0, 64 * 1024, 128, 0) },
	{ "m25px80",    INFO(0x207114,  0, 64 * 1024, 16, 0) },

	/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
	{ "w25x05", INFO(0xef3010, 0, 64 * 1024,  1,  SECT_4K) },
	{ "w25x10", INFO(0xef3011, 0, 64 * 1024,  2,  SECT_4K) },
	{ "w25x20", INFO(0xef3012, 0, 64 * 1024,  4,  SECT_4K) },
	{ "w25x40", INFO(0xef3013, 0, 64 * 1024,  8,  SECT_4K) },
	{ "w25x80", INFO(0xef3014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25x16", INFO(0xef3015, 0, 64 * 1024,  32, SECT_4K) },
	{ "w25x32", INFO(0xef3016, 0, 64 * 1024,  64, SECT_4K) },
	{ "w25q20cl", INFO(0xef4012, 0, 64 * 1024,  4, SECT_4K) },
	{ "w25q20bw", INFO(0xef5012, 0, 64 * 1024,  4, SECT_4K) },
	{ "w25q20ew", INFO(0xef6012, 0, 64 * 1024,  4, SECT_4K) },
	{ "w25q32", INFO(0xef4016, 0, 64 * 1024,  64, SECT_4K) },
	{
		"w25q32dw", INFO(0xef6016, 0, 64 * 1024,  64,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
	{ "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
	{ "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
	{
		"w25q64dw", INFO(0xef6017, 0, 64 * 1024, 128,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
	{
		"w25q128fw", INFO(0xef6018, 0, 64 * 1024, 256,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
	{ "w25q80", INFO(0xef5014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25q80bl", INFO(0xef4014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
	{ "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "w25m512jv", INFO(0xef7119, 0, 64 * 1024, 1024,
			SECT_4K | SPI_NOR_QUAD_READ | SPI_NOR_DUAL_READ) },

	/* Catalyst / On Semiconductor -- non-JEDEC */
	{ "cat25c11", CAT25_INFO(  16, 8, 16, 1, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25c03", CAT25_INFO(  32, 8, 16, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25c09", CAT25_INFO( 128, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25c17", CAT25_INFO( 256, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25128", CAT25_INFO(2048, 8, 64, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },

	/* Xilinx S3AN Internal Flash */
	{ "3S50AN", S3AN_INFO(0x1f2200, 64, 264) },
	{ "3S200AN", S3AN_INFO(0x1f2400, 256, 264) },
	{ "3S400AN", S3AN_INFO(0x1f2400, 256, 264) },
	{ "3S700AN", S3AN_INFO(0x1f2500, 512, 264) },
	{ "3S1400AN", S3AN_INFO(0x1f2600, 512, 528) },
	{ },
};

static const struct flash_info *spi_nor_read_id(struct spi_nor *nor)
{
	int			tmp;
	u8			id[SPI_NOR_MAX_ID_LEN];
	const struct flash_info	*info;

	tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, SPI_NOR_MAX_ID_LEN);
	if (tmp < 0) {
		dev_dbg(nor->dev, "error %d reading JEDEC ID\n", tmp);
		return ERR_PTR(tmp);
	}

	for (tmp = 0; tmp < ARRAY_SIZE(spi_nor_ids) - 1; tmp++) {
		info = &spi_nor_ids[tmp];
		if (info->id_len) {
			if (!memcmp(info->id, id, info->id_len))
				return &spi_nor_ids[tmp];
		}
	}
	dev_err(nor->dev, "unrecognized JEDEC id bytes: %02x, %02x, %02x\n",
		id[0], id[1], id[2]);
	return ERR_PTR(-ENODEV);
}

static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
			size_t *retlen, u_char *buf)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	int ret;

	dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_READ);
	if (ret)
		return ret;

	while (len) {
		loff_t addr = from;

		if (nor->flags & SNOR_F_S3AN_ADDR_DEFAULT)
			addr = spi_nor_s3an_addr_convert(nor, addr);

		ret = nor->read(nor, addr, len, buf);
		if (ret == 0) {
			/* We shouldn't see 0-length reads */
			ret = -EIO;
			goto read_err;
		}
		if (ret < 0)
			goto read_err;

		WARN_ON(ret > len);
		*retlen += ret;
		buf += ret;
		from += ret;
		len -= ret;
	}
	ret = 0;

read_err:
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_READ);
	return ret;
}

static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
		size_t *retlen, const u_char *buf)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	size_t actual;
	int ret;

	dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
	if (ret)
		return ret;

	write_enable(nor);

	nor->sst_write_second = false;

	actual = to % 2;
	/* Start write from odd address. */
	if (actual) {
		nor->program_opcode = SPINOR_OP_BP;

		/* write one byte. */
		ret = nor->write(nor, to, 1, buf);
		if (ret < 0)
			goto sst_write_err;
		WARN(ret != 1, "While writing 1 byte written %i bytes\n",
		     (int)ret);
		ret = spi_nor_wait_till_ready(nor);
		if (ret)
			goto sst_write_err;
	}
	to += actual;

	/* Write out most of the data here. */
	for (; actual < len - 1; actual += 2) {
		nor->program_opcode = SPINOR_OP_AAI_WP;

		/* write two bytes. */
		ret = nor->write(nor, to, 2, buf + actual);
		if (ret < 0)
			goto sst_write_err;
		WARN(ret != 2, "While writing 2 bytes written %i bytes\n",
		     (int)ret);
		ret = spi_nor_wait_till_ready(nor);
		if (ret)
			goto sst_write_err;
		to += 2;
		nor->sst_write_second = true;
	}
	nor->sst_write_second = false;

	write_disable(nor);
	ret = spi_nor_wait_till_ready(nor);
	if (ret)
		goto sst_write_err;

	/* Write out trailing byte if it exists. */
	if (actual != len) {
		write_enable(nor);

		nor->program_opcode = SPINOR_OP_BP;
		ret = nor->write(nor, to, 1, buf + actual);
		if (ret < 0)
			goto sst_write_err;
		WARN(ret != 1, "While writing 1 byte written %i bytes\n",
		     (int)ret);
		ret = spi_nor_wait_till_ready(nor);
		if (ret)
			goto sst_write_err;
		write_disable(nor);
		actual += 1;
	}
sst_write_err:
	*retlen += actual;
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
	return ret;
}

/*
 * Write an address range to the nor chip.  Data must be written in
 * FLASH_PAGESIZE chunks.  The address range may be any size provided
 * it is within the physical boundaries.
 */
static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
	size_t *retlen, const u_char *buf)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	size_t page_offset, page_remain, i;
	ssize_t ret;

	dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
	if (ret)
		return ret;

	for (i = 0; i < len; ) {
		ssize_t written;
		loff_t addr = to + i;

		/*
		 * If page_size is a power of two, the offset can be quickly
		 * calculated with an AND operation. On the other cases we
		 * need to do a modulus operation (more expensive).
		 * Power of two numbers have only one bit set and we can use
		 * the instruction hweight32 to detect if we need to do a
		 * modulus (do_div()) or not.
		 */
		if (hweight32(nor->page_size) == 1) {
			page_offset = addr & (nor->page_size - 1);
		} else {
			uint64_t aux = addr;

			page_offset = do_div(aux, nor->page_size);
		}
		/* the size of data remaining on the first page */
		page_remain = min_t(size_t,
				    nor->page_size - page_offset, len - i);

		if (nor->flags & SNOR_F_S3AN_ADDR_DEFAULT)
			addr = spi_nor_s3an_addr_convert(nor, addr);

		write_enable(nor);
		ret = nor->write(nor, addr, page_remain, buf + i);
		if (ret < 0)
			goto write_err;
		written = ret;

		ret = spi_nor_wait_till_ready(nor);
		if (ret)
			goto write_err;
		*retlen += written;
		i += written;
		if (written != page_remain) {
			dev_err(nor->dev,
				"While writing %zu bytes written %zd bytes\n",
				page_remain, written);
			ret = -EIO;
			goto write_err;
		}
	}

write_err:
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
	return ret;
}

/**
 * macronix_quad_enable() - set QE bit in Status Register.
 * @nor:	pointer to a 'struct spi_nor'
 *
 * Set the Quad Enable (QE) bit in the Status Register.
 *
 * bit 6 of the Status Register is the QE bit for Macronix like QSPI memories.
 *
 * Return: 0 on success, -errno otherwise.
 */
static int macronix_quad_enable(struct spi_nor *nor)
{
	int ret, val;

	val = read_sr(nor);
	if (val < 0)
		return val;
	if (val & SR_QUAD_EN_MX)
		return 0;

	write_enable(nor);

	write_sr(nor, val | SR_QUAD_EN_MX);

	ret = spi_nor_wait_till_ready(nor);
	if (ret)
		return ret;

	ret = read_sr(nor);
	if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
		dev_err(nor->dev, "Macronix Quad bit not set\n");
		return -EINVAL;
	}

	return 0;
}

/*
 * Write status Register and configuration register with 2 bytes
 * The first byte will be written to the status register, while the
 * second byte will be written to the configuration register.
 * Return negative if error occurred.
 */
static int write_sr_cr(struct spi_nor *nor, u8 *sr_cr)
{
	int ret;

	write_enable(nor);

	ret = nor->write_reg(nor, SPINOR_OP_WRSR, sr_cr, 2);
	if (ret < 0) {
		dev_err(nor->dev,
			"error while writing configuration register\n");
		return -EINVAL;
	}

	ret = spi_nor_wait_till_ready(nor);
	if (ret) {
		dev_err(nor->dev,
			"timeout while writing configuration register\n");
		return ret;
	}

	return 0;
}

/**
 * spansion_quad_enable() - set QE bit in Configuraiton Register.
 * @nor:	pointer to a 'struct spi_nor'
 *
 * Set the Quad Enable (QE) bit in the Configuration Register.
 * This function is kept for legacy purpose because it has been used for a
 * long time without anybody complaining but it should be considered as
 * deprecated and maybe buggy.
 * First, this function doesn't care about the previous values of the Status
 * and Configuration Registers when it sets the QE bit (bit 1) in the
 * Configuration Register: all other bits are cleared, which may have unwanted
 * side effects like removing some block protections.
 * Secondly, it uses the Read Configuration Register (35h) instruction though
 * some very old and few memories don't support this instruction. If a pull-up
 * resistor is present on the MISO/IO1 line, we might still be able to pass the
 * "read back" test because the QSPI memory doesn't recognize the command,
 * so leaves the MISO/IO1 line state unchanged, hence read_cr() returns 0xFF.
 *
 * bit 1 of the Configuration Register is the QE bit for Spansion like QSPI
 * memories.
 *
 * Return: 0 on success, -errno otherwise.
 */
static int spansion_quad_enable(struct spi_nor *nor)
{
	u8 sr_cr[2] = {0, CR_QUAD_EN_SPAN};
	int ret;

	ret = write_sr_cr(nor, sr_cr);
	if (ret)
		return ret;

	/* read back and check it */
	ret = read_cr(nor);
	if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
		dev_err(nor->dev, "Spansion Quad bit not set\n");
		return -EINVAL;
	}

	return 0;
}

/**
 * spansion_no_read_cr_quad_enable() - set QE bit in Configuration Register.
 * @nor:	pointer to a 'struct spi_nor'
 *
 * Set the Quad Enable (QE) bit in the Configuration Register.
 * This function should be used with QSPI memories not supporting the Read
 * Configuration Register (35h) instruction.
 *
 * bit 1 of the Configuration Register is the QE bit for Spansion like QSPI
 * memories.
 *
 * Return: 0 on success, -errno otherwise.
 */
static int spansion_no_read_cr_quad_enable(struct spi_nor *nor)
{
	u8 sr_cr[2];
	int ret;

	/* Keep the current value of the Status Register. */
	ret = read_sr(nor);
	if (ret < 0) {
		dev_err(nor->dev, "error while reading status register\n");
		return -EINVAL;
	}
	sr_cr[0] = ret;
	sr_cr[1] = CR_QUAD_EN_SPAN;

	return write_sr_cr(nor, sr_cr);
}

/**
 * spansion_read_cr_quad_enable() - set QE bit in Configuration Register.
 * @nor:	pointer to a 'struct spi_nor'
 *
 * Set the Quad Enable (QE) bit in the Configuration Register.
 * This function should be used with QSPI memories supporting the Read
 * Configuration Register (35h) instruction.
 *
 * bit 1 of the Configuration Register is the QE bit for Spansion like QSPI
 * memories.
 *
 * Return: 0 on success, -errno otherwise.
 */
static int spansion_read_cr_quad_enable(struct spi_nor *nor)
{
	struct device *dev = nor->dev;
	u8 sr_cr[2];
	int ret;

	/* Check current Quad Enable bit value. */
	ret = read_cr(nor);
	if (ret < 0) {
		dev_err(dev, "error while reading configuration register\n");
		return -EINVAL;
	}

	if (ret & CR_QUAD_EN_SPAN)
		return 0;

	sr_cr[1] = ret | CR_QUAD_EN_SPAN;

	/* Keep the current value of the Status Register. */
	ret = read_sr(nor);
	if (ret < 0) {
		dev_err(dev, "error while reading status register\n");
		return -EINVAL;
	}
	sr_cr[0] = ret;

	ret = write_sr_cr(nor, sr_cr);
	if (ret)
		return ret;

	/* Read back and check it. */
	ret = read_cr(nor);
	if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
		dev_err(nor->dev, "Spansion Quad bit not set\n");
		return -EINVAL;
	}

	return 0;
}

/**
 * sr2_bit7_quad_enable() - set QE bit in Status Register 2.
 * @nor:	pointer to a 'struct spi_nor'
 *
 * Set the Quad Enable (QE) bit in the Status Register 2.
 *
 * This is one of the procedures to set the QE bit described in the SFDP
 * (JESD216 rev B) specification but no manufacturer using this procedure has
 * been identified yet, hence the name of the function.
 *
 * Return: 0 on success, -errno otherwise.
 */
static int sr2_bit7_quad_enable(struct spi_nor *nor)
{
	u8 sr2;
	int ret;

	/* Check current Quad Enable bit value. */
	ret = nor->read_reg(nor, SPINOR_OP_RDSR2, &sr2, 1);
	if (ret)
		return ret;
	if (sr2 & SR2_QUAD_EN_BIT7)
		return 0;

	/* Update the Quad Enable bit. */
	sr2 |= SR2_QUAD_EN_BIT7;

	write_enable(nor);

	ret = nor->write_reg(nor, SPINOR_OP_WRSR2, &sr2, 1);
	if (ret < 0) {
		dev_err(nor->dev, "error while writing status register 2\n");
		return -EINVAL;
	}

	ret = spi_nor_wait_till_ready(nor);
	if (ret < 0) {
		dev_err(nor->dev, "timeout while writing status register 2\n");
		return ret;
	}

	/* Read back and check it. */
	ret = nor->read_reg(nor, SPINOR_OP_RDSR2, &sr2, 1);
	if (!(ret > 0 && (sr2 & SR2_QUAD_EN_BIT7))) {
		dev_err(nor->dev, "SR2 Quad bit not set\n");
		return -EINVAL;
	}

	return 0;
}

static int spi_nor_check(struct spi_nor *nor)
{
	if (!nor->dev || !nor->read || !nor->write ||
		!nor->read_reg || !nor->write_reg) {
		pr_err("spi-nor: please fill all the necessary fields!\n");
		return -EINVAL;
	}

	return 0;
}

static int s3an_nor_scan(const struct flash_info *info, struct spi_nor *nor)
{
	int ret;
	u8 val;

	ret = nor->read_reg(nor, SPINOR_OP_XRDSR, &val, 1);
	if (ret < 0) {
		dev_err(nor->dev, "error %d reading XRDSR\n", (int) ret);
		return ret;
	}

	nor->erase_opcode = SPINOR_OP_XSE;
	nor->program_opcode = SPINOR_OP_XPP;
	nor->read_opcode = SPINOR_OP_READ;
	nor->flags |= SNOR_F_NO_OP_CHIP_ERASE;

	/*
	 * This flashes have a page size of 264 or 528 bytes (known as
	 * Default addressing mode). It can be changed to a more standard
	 * Power of two mode where the page size is 256/512. This comes
	 * with a price: there is 3% less of space, the data is corrupted
	 * and the page size cannot be changed back to default addressing
	 * mode.
	 *
	 * The current addressing mode can be read from the XRDSR register
	 * and should not be changed, because is a destructive operation.
	 */
	if (val & XSR_PAGESIZE) {
		/* Flash in Power of 2 mode */
		nor->page_size = (nor->page_size == 264) ? 256 : 512;
		nor->mtd.writebufsize = nor->page_size;
		nor->mtd.size = 8 * nor->page_size * info->n_sectors;
		nor->mtd.erasesize = 8 * nor->page_size;
	} else {
		/* Flash in Default addressing mode */
		nor->flags |= SNOR_F_S3AN_ADDR_DEFAULT;
	}

	return 0;
}

struct spi_nor_read_command {
	u8			num_mode_clocks;
	u8			num_wait_states;
	u8			opcode;
	enum spi_nor_protocol	proto;
};

struct spi_nor_pp_command {
	u8			opcode;
	enum spi_nor_protocol	proto;
};

enum spi_nor_read_command_index {
	SNOR_CMD_READ,
	SNOR_CMD_READ_FAST,
	SNOR_CMD_READ_1_1_1_DTR,

	/* Dual SPI */
	SNOR_CMD_READ_1_1_2,
	SNOR_CMD_READ_1_2_2,
	SNOR_CMD_READ_2_2_2,
	SNOR_CMD_READ_1_2_2_DTR,

	/* Quad SPI */
	SNOR_CMD_READ_1_1_4,
	SNOR_CMD_READ_1_4_4,
	SNOR_CMD_READ_4_4_4,
	SNOR_CMD_READ_1_4_4_DTR,

	/* Octo SPI */
	SNOR_CMD_READ_1_1_8,
	SNOR_CMD_READ_1_8_8,
	SNOR_CMD_READ_8_8_8,
	SNOR_CMD_READ_1_8_8_DTR,

	SNOR_CMD_READ_MAX
};

enum spi_nor_pp_command_index {
	SNOR_CMD_PP,

	/* Quad SPI */
	SNOR_CMD_PP_1_1_4,
	SNOR_CMD_PP_1_4_4,
	SNOR_CMD_PP_4_4_4,

	/* Octo SPI */
	SNOR_CMD_PP_1_1_8,
	SNOR_CMD_PP_1_8_8,
	SNOR_CMD_PP_8_8_8,

	SNOR_CMD_PP_MAX
};

struct spi_nor_flash_parameter {
	u64				size;
	u32				page_size;

	struct spi_nor_hwcaps		hwcaps;
	struct spi_nor_read_command	reads[SNOR_CMD_READ_MAX];
	struct spi_nor_pp_command	page_programs[SNOR_CMD_PP_MAX];

	int (*quad_enable)(struct spi_nor *nor);
};

static void
spi_nor_set_read_settings(struct spi_nor_read_command *read,
			  u8 num_mode_clocks,
			  u8 num_wait_states,
			  u8 opcode,
			  enum spi_nor_protocol proto)
{
	read->num_mode_clocks = num_mode_clocks;
	read->num_wait_states = num_wait_states;
	read->opcode = opcode;
	read->proto = proto;
}

static void
spi_nor_set_pp_settings(struct spi_nor_pp_command *pp,
			u8 opcode,
			enum spi_nor_protocol proto)
{
	pp->opcode = opcode;
	pp->proto = proto;
}

/*
 * Serial Flash Discoverable Parameters (SFDP) parsing.
 */

/**
 * spi_nor_read_sfdp() - read Serial Flash Discoverable Parameters.
 * @nor:	pointer to a 'struct spi_nor'
 * @addr:	offset in the SFDP area to start reading data from
 * @len:	number of bytes to read
 * @buf:	buffer where the SFDP data are copied into
 *
 * Whatever the actual numbers of bytes for address and dummy cycles are
 * for (Fast) Read commands, the Read SFDP (5Ah) instruction is always
 * followed by a 3-byte address and 8 dummy clock cycles.
 *
 * Return: 0 on success, -errno otherwise.
 */
static int spi_nor_read_sfdp(struct spi_nor *nor, u32 addr,
			     size_t len, void *buf)
{
	u8 addr_width, read_opcode, read_dummy;
	int ret;

	read_opcode = nor->read_opcode;
	addr_width = nor->addr_width;
	read_dummy = nor->read_dummy;

	nor->read_opcode = SPINOR_OP_RDSFDP;
	nor->addr_width = 3;
	nor->read_dummy = 8;

	while (len) {
		ret = nor->read(nor, addr, len, (u8 *)buf);
		if (!ret || ret > len) {
			ret = -EIO;
			goto read_err;
		}
		if (ret < 0)
			goto read_err;

		buf += ret;
		addr += ret;
		len -= ret;
	}
	ret = 0;

read_err:
	nor->read_opcode = read_opcode;
	nor->addr_width = addr_width;
	nor->read_dummy = read_dummy;

	return ret;
}

struct sfdp_parameter_header {
	u8		id_lsb;
	u8		minor;
	u8		major;
	u8		length; /* in double words */
	u8		parameter_table_pointer[3]; /* byte address */
	u8		id_msb;
};

#define SFDP_PARAM_HEADER_ID(p)	(((p)->id_msb << 8) | (p)->id_lsb)
#define SFDP_PARAM_HEADER_PTP(p) \
	(((p)->parameter_table_pointer[2] << 16) | \
	 ((p)->parameter_table_pointer[1] <<  8) | \
	 ((p)->parameter_table_pointer[0] <<  0))

#define SFDP_BFPT_ID		0xff00	/* Basic Flash Parameter Table */
#define SFDP_SECTOR_MAP_ID	0xff81	/* Sector Map Table */

#define SFDP_SIGNATURE		0x50444653U
#define SFDP_JESD216_MAJOR	1
#define SFDP_JESD216_MINOR	0
#define SFDP_JESD216A_MINOR	5
#define SFDP_JESD216B_MINOR	6

struct sfdp_header {
	u32		signature; /* Ox50444653U <=> "SFDP" */
	u8		minor;
	u8		major;
	u8		nph; /* 0-base number of parameter headers */
	u8		unused;

	/* Basic Flash Parameter Table. */
	struct sfdp_parameter_header	bfpt_header;
};

/* Basic Flash Parameter Table */

/*
 * JESD216 rev B defines a Basic Flash Parameter Table of 16 DWORDs.
 * They are indexed from 1 but C arrays are indexed from 0.
 */
#define BFPT_DWORD(i)		((i) - 1)
#define BFPT_DWORD_MAX		16

/* The first version of JESB216 defined only 9 DWORDs. */
#define BFPT_DWORD_MAX_JESD216			9

/* 1st DWORD. */
#define BFPT_DWORD1_FAST_READ_1_1_2		BIT(16)
#define BFPT_DWORD1_ADDRESS_BYTES_MASK		GENMASK(18, 17)
#define BFPT_DWORD1_ADDRESS_BYTES_3_ONLY	(0x0UL << 17)
#define BFPT_DWORD1_ADDRESS_BYTES_3_OR_4	(0x1UL << 17)
#define BFPT_DWORD1_ADDRESS_BYTES_4_ONLY	(0x2UL << 17)
#define BFPT_DWORD1_DTR				BIT(19)
#define BFPT_DWORD1_FAST_READ_1_2_2		BIT(20)
#define BFPT_DWORD1_FAST_READ_1_4_4		BIT(21)
#define BFPT_DWORD1_FAST_READ_1_1_4		BIT(22)

/* 5th DWORD. */
#define BFPT_DWORD5_FAST_READ_2_2_2		BIT(0)
#define BFPT_DWORD5_FAST_READ_4_4_4		BIT(4)

/* 11th DWORD. */
#define BFPT_DWORD11_PAGE_SIZE_SHIFT		4
#define BFPT_DWORD11_PAGE_SIZE_MASK		GENMASK(7, 4)

/* 15th DWORD. */

/*
 * (from JESD216 rev B)
 * Quad Enable Requirements (QER):
 * - 000b: Device does not have a QE bit. Device detects 1-1-4 and 1-4-4
 *         reads based on instruction. DQ3/HOLD# functions are hold during
 *         instruction phase.
 * - 001b: QE is bit 1 of status register 2. It is set via Write Status with
 *         two data bytes where bit 1 of the second byte is one.
 *         [...]
 *         Writing only one byte to the status register has the side-effect of
 *         clearing status register 2, including the QE bit. The 100b code is
 *         used if writing one byte to the status register does not modify
 *         status register 2.
 * - 010b: QE is bit 6 of status register 1. It is set via Write Status with
 *         one data byte where bit 6 is one.
 *         [...]
 * - 011b: QE is bit 7 of status register 2. It is set via Write status
 *         register 2 instruction 3Eh with one data byte where bit 7 is one.
 *         [...]
 *         The status register 2 is read using instruction 3Fh.
 * - 100b: QE is bit 1 of status register 2. It is set via Write Status with
 *         two data bytes where bit 1 of the second byte is one.
 *         [...]
 *         In contrast to the 001b code, writing one byte to the status
 *         register does not modify status register 2.
 * - 101b: QE is bit 1 of status register 2. Status register 1 is read using
 *         Read Status instruction 05h. Status register2 is read using
 *         instruction 35h. QE is set via Writ Status instruction 01h with
 *         two data bytes where bit 1 of the second byte is one.
 *         [...]
 */
#define BFPT_DWORD15_QER_MASK			GENMASK(22, 20)
#define BFPT_DWORD15_QER_NONE			(0x0UL << 20) /* Micron */
#define BFPT_DWORD15_QER_SR2_BIT1_BUGGY		(0x1UL << 20)
#define BFPT_DWORD15_QER_SR1_BIT6		(0x2UL << 20) /* Macronix */
#define BFPT_DWORD15_QER_SR2_BIT7		(0x3UL << 20)
#define BFPT_DWORD15_QER_SR2_BIT1_NO_RD		(0x4UL << 20)
#define BFPT_DWORD15_QER_SR2_BIT1		(0x5UL << 20) /* Spansion */

struct sfdp_bfpt {
	u32	dwords[BFPT_DWORD_MAX];
};

/* Fast Read settings. */

static inline void
spi_nor_set_read_settings_from_bfpt(struct spi_nor_read_command *read,
				    u16 half,
				    enum spi_nor_protocol proto)
{
	read->num_mode_clocks = (half >> 5) & 0x07;
	read->num_wait_states = (half >> 0) & 0x1f;
	read->opcode = (half >> 8) & 0xff;
	read->proto = proto;
}

struct sfdp_bfpt_read {
	/* The Fast Read x-y-z hardware capability in params->hwcaps.mask. */
	u32			hwcaps;

	/*
	 * The <supported_bit> bit in <supported_dword> BFPT DWORD tells us
	 * whether the Fast Read x-y-z command is supported.
	 */
	u32			supported_dword;
	u32			supported_bit;

	/*
	 * The half-word at offset <setting_shift> in <setting_dword> BFPT DWORD
	 * encodes the op code, the number of mode clocks and the number of wait
	 * states to be used by Fast Read x-y-z command.
	 */
	u32			settings_dword;
	u32			settings_shift;

	/* The SPI protocol for this Fast Read x-y-z command. */
	enum spi_nor_protocol	proto;
};

static const struct sfdp_bfpt_read sfdp_bfpt_reads[] = {
	/* Fast Read 1-1-2 */
	{
		SNOR_HWCAPS_READ_1_1_2,
		BFPT_DWORD(1), BIT(16),	/* Supported bit */
		BFPT_DWORD(4), 0,	/* Settings */
		SNOR_PROTO_1_1_2,
	},

	/* Fast Read 1-2-2 */
	{
		SNOR_HWCAPS_READ_1_2_2,
		BFPT_DWORD(1), BIT(20),	/* Supported bit */
		BFPT_DWORD(4), 16,	/* Settings */
		SNOR_PROTO_1_2_2,
	},

	/* Fast Read 2-2-2 */
	{
		SNOR_HWCAPS_READ_2_2_2,
		BFPT_DWORD(5),  BIT(0),	/* Supported bit */
		BFPT_DWORD(6), 16,	/* Settings */
		SNOR_PROTO_2_2_2,
	},

	/* Fast Read 1-1-4 */
	{
		SNOR_HWCAPS_READ_1_1_4,
		BFPT_DWORD(1), BIT(22),	/* Supported bit */
		BFPT_DWORD(3), 16,	/* Settings */
		SNOR_PROTO_1_1_4,
	},

	/* Fast Read 1-4-4 */
	{
		SNOR_HWCAPS_READ_1_4_4,
		BFPT_DWORD(1), BIT(21),	/* Supported bit */
		BFPT_DWORD(3), 0,	/* Settings */
		SNOR_PROTO_1_4_4,
	},

	/* Fast Read 4-4-4 */
	{
		SNOR_HWCAPS_READ_4_4_4,
		BFPT_DWORD(5), BIT(4),	/* Supported bit */
		BFPT_DWORD(7), 16,	/* Settings */
		SNOR_PROTO_4_4_4,
	},
};

struct sfdp_bfpt_erase {
	/*
	 * The half-word at offset <shift> in DWORD <dwoard> encodes the
	 * op code and erase sector size to be used by Sector Erase commands.
	 */
	u32			dword;
	u32			shift;
};

static const struct sfdp_bfpt_erase sfdp_bfpt_erases[] = {
	/* Erase Type 1 in DWORD8 bits[15:0] */
	{BFPT_DWORD(8), 0},

	/* Erase Type 2 in DWORD8 bits[31:16] */
	{BFPT_DWORD(8), 16},

	/* Erase Type 3 in DWORD9 bits[15:0] */
	{BFPT_DWORD(9), 0},

	/* Erase Type 4 in DWORD9 bits[31:16] */
	{BFPT_DWORD(9), 16},
};

static int spi_nor_hwcaps_read2cmd(u32 hwcaps);

/**
 * spi_nor_parse_bfpt() - read and parse the Basic Flash Parameter Table.
 * @nor:		pointer to a 'struct spi_nor'
 * @bfpt_header:	pointer to the 'struct sfdp_parameter_header' describing
 *			the Basic Flash Parameter Table length and version
 * @params:		pointer to the 'struct spi_nor_flash_parameter' to be
 *			filled
 *
 * The Basic Flash Parameter Table is the main and only mandatory table as
 * defined by the SFDP (JESD216) specification.
 * It provides us with the total size (memory density) of the data array and
 * the number of address bytes for Fast Read, Page Program and Sector Erase
 * commands.
 * For Fast READ commands, it also gives the number of mode clock cycles and
 * wait states (regrouped in the number of dummy clock cycles) for each
 * supported instruction op code.
 * For Page Program, the page size is now available since JESD216 rev A, however
 * the supported instruction op codes are still not provided.
 * For Sector Erase commands, this table stores the supported instruction op
 * codes and the associated sector sizes.
 * Finally, the Quad Enable Requirements (QER) are also available since JESD216
 * rev A. The QER bits encode the manufacturer dependent procedure to be
 * executed to set the Quad Enable (QE) bit in some internal register of the
 * Quad SPI memory. Indeed the QE bit, when it exists, must be set before
 * sending any Quad SPI command to the memory. Actually, setting the QE bit
 * tells the memory to reassign its WP# and HOLD#/RESET# pins to functions IO2
 * and IO3 hence enabling 4 (Quad) I/O lines.
 *
 * Return: 0 on success, -errno otherwise.
 */
static int spi_nor_parse_bfpt(struct spi_nor *nor,
			      const struct sfdp_parameter_header *bfpt_header,
			      struct spi_nor_flash_parameter *params)
{
	struct mtd_info *mtd = &nor->mtd;
	struct sfdp_bfpt bfpt;
	size_t len;
	int i, cmd, err;
	u32 addr;
	u16 half;

	/* JESD216 Basic Flash Parameter Table length is at least 9 DWORDs. */
	if (bfpt_header->length < BFPT_DWORD_MAX_JESD216)
		return -EINVAL;

	/* Read the Basic Flash Parameter Table. */
	len = min_t(size_t, sizeof(bfpt),
		    bfpt_header->length * sizeof(u32));
	addr = SFDP_PARAM_HEADER_PTP(bfpt_header);
	memset(&bfpt, 0, sizeof(bfpt));
	err = spi_nor_read_sfdp(nor,  addr, len, &bfpt);
	if (err < 0)
		return err;

	/* Fix endianness of the BFPT DWORDs. */
	for (i = 0; i < BFPT_DWORD_MAX; i++)
		bfpt.dwords[i] = le32_to_cpu(bfpt.dwords[i]);

	/* Number of address bytes. */
	switch (bfpt.dwords[BFPT_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK) {
	case BFPT_DWORD1_ADDRESS_BYTES_3_ONLY:
		nor->addr_width = 3;
		break;

	case BFPT_DWORD1_ADDRESS_BYTES_4_ONLY:
		nor->addr_width = 4;
		break;

	default:
		break;
	}

	/* Flash Memory Density (in bits). */
	params->size = bfpt.dwords[BFPT_DWORD(2)];
	if (params->size & BIT(31)) {
		params->size &= ~BIT(31);

		/*
		 * Prevent overflows on params->size. Anyway, a NOR of 2^64
		 * bits is unlikely to exist so this error probably means
		 * the BFPT we are reading is corrupted/wrong.
		 */
		if (params->size > 63)
			return -EINVAL;

		params->size = 1ULL << params->size;
	} else {
		params->size++;
	}
	params->size >>= 3; /* Convert to bytes. */

	/* Fast Read settings. */
	for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_reads); i++) {
		const struct sfdp_bfpt_read *rd = &sfdp_bfpt_reads[i];
		struct spi_nor_read_command *read;

		if (!(bfpt.dwords[rd->supported_dword] & rd->supported_bit)) {
			params->hwcaps.mask &= ~rd->hwcaps;
			continue;
		}

		params->hwcaps.mask |= rd->hwcaps;
		cmd = spi_nor_hwcaps_read2cmd(rd->hwcaps);
		read = &params->reads[cmd];
		half = bfpt.dwords[rd->settings_dword] >> rd->settings_shift;
		spi_nor_set_read_settings_from_bfpt(read, half, rd->proto);
	}

	/* Sector Erase settings. */
	for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_erases); i++) {
		const struct sfdp_bfpt_erase *er = &sfdp_bfpt_erases[i];
		u32 erasesize;
		u8 opcode;

		half = bfpt.dwords[er->dword] >> er->shift;
		erasesize = half & 0xff;

		/* erasesize == 0 means this Erase Type is not supported. */
		if (!erasesize)
			continue;

		erasesize = 1U << erasesize;
		opcode = (half >> 8) & 0xff;
#ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
		if (erasesize == SZ_4K) {
			nor->erase_opcode = opcode;
			mtd->erasesize = erasesize;
			break;
		}
#endif
		if (!mtd->erasesize || mtd->erasesize < erasesize) {
			nor->erase_opcode = opcode;
			mtd->erasesize = erasesize;
		}
	}

	/* Stop here if not JESD216 rev A or later. */
	if (bfpt_header->length < BFPT_DWORD_MAX)
		return 0;

	/* Page size: this field specifies 'N' so the page size = 2^N bytes. */
	params->page_size = bfpt.dwords[BFPT_DWORD(11)];
	params->page_size &= BFPT_DWORD11_PAGE_SIZE_MASK;
	params->page_size >>= BFPT_DWORD11_PAGE_SIZE_SHIFT;
	params->page_size = 1U << params->page_size;

	/* Quad Enable Requirements. */
	switch (bfpt.dwords[BFPT_DWORD(15)] & BFPT_DWORD15_QER_MASK) {
	case BFPT_DWORD15_QER_NONE:
		params->quad_enable = NULL;
		break;

	case BFPT_DWORD15_QER_SR2_BIT1_BUGGY:
	case BFPT_DWORD15_QER_SR2_BIT1_NO_RD:
		params->quad_enable = spansion_no_read_cr_quad_enable;
		break;

	case BFPT_DWORD15_QER_SR1_BIT6:
		params->quad_enable = macronix_quad_enable;
		break;

	case BFPT_DWORD15_QER_SR2_BIT7:
		params->quad_enable = sr2_bit7_quad_enable;
		break;

	case BFPT_DWORD15_QER_SR2_BIT1:
		params->quad_enable = spansion_read_cr_quad_enable;
		break;

	default:
		return -EINVAL;
	}

	return 0;
}

/**
 * spi_nor_parse_sfdp() - parse the Serial Flash Discoverable Parameters.
 * @nor:		pointer to a 'struct spi_nor'
 * @params:		pointer to the 'struct spi_nor_flash_parameter' to be
 *			filled
 *
 * The Serial Flash Discoverable Parameters are described by the JEDEC JESD216
 * specification. This is a standard which tends to supported by almost all
 * (Q)SPI memory manufacturers. Those hard-coded tables allow us to learn at
 * runtime the main parameters needed to perform basic SPI flash operations such
 * as Fast Read, Page Program or Sector Erase commands.
 *
 * Return: 0 on success, -errno otherwise.
 */
static int spi_nor_parse_sfdp(struct spi_nor *nor,
			      struct spi_nor_flash_parameter *params)
{
	const struct sfdp_parameter_header *param_header, *bfpt_header;
	struct sfdp_parameter_header *param_headers = NULL;
	struct sfdp_header header;
	struct device *dev = nor->dev;
	size_t psize;
	int i, err;

	/* Get the SFDP header. */
	err = spi_nor_read_sfdp(nor, 0, sizeof(header), &header);
	if (err < 0)
		return err;

	/* Check the SFDP header version. */
	if (le32_to_cpu(header.signature) != SFDP_SIGNATURE ||
	    header.major != SFDP_JESD216_MAJOR ||
	    header.minor < SFDP_JESD216_MINOR)
		return -EINVAL;

	/*
	 * Verify that the first and only mandatory parameter header is a
	 * Basic Flash Parameter Table header as specified in JESD216.
	 */
	bfpt_header = &header.bfpt_header;
	if (SFDP_PARAM_HEADER_ID(bfpt_header) != SFDP_BFPT_ID ||
	    bfpt_header->major != SFDP_JESD216_MAJOR)
		return -EINVAL;

	/*
	 * Allocate memory then read all parameter headers with a single
	 * Read SFDP command. These parameter headers will actually be parsed
	 * twice: a first time to get the latest revision of the basic flash
	 * parameter table, then a second time to handle the supported optional
	 * tables.
	 * Hence we read the parameter headers once for all to reduce the
	 * processing time. Also we use kmalloc() instead of devm_kmalloc()
	 * because we don't need to keep these parameter headers: the allocated
	 * memory is always released with kfree() before exiting this function.
	 */
	if (header.nph) {
		psize = header.nph * sizeof(*param_headers);

		param_headers = kmalloc(psize, GFP_KERNEL);
		if (!param_headers)
			return -ENOMEM;

		err = spi_nor_read_sfdp(nor, sizeof(header),
					psize, param_headers);
		if (err < 0) {
			dev_err(dev, "failed to read SFDP parameter headers\n");
			goto exit;
		}
	}

	/*
	 * Check other parameter headers to get the latest revision of
	 * the basic flash parameter table.
	 */
	for (i = 0; i < header.nph; i++) {
		param_header = &param_headers[i];

		if (SFDP_PARAM_HEADER_ID(param_header) == SFDP_BFPT_ID &&
		    param_header->major == SFDP_JESD216_MAJOR &&
		    (param_header->minor > bfpt_header->minor ||
		     (param_header->minor == bfpt_header->minor &&
		      param_header->length > bfpt_header->length)))
			bfpt_header = param_header;
	}

	err = spi_nor_parse_bfpt(nor, bfpt_header, params);
	if (err)
		goto exit;

	/* Parse other parameter headers. */
	for (i = 0; i < header.nph; i++) {
		param_header = &param_headers[i];

		switch (SFDP_PARAM_HEADER_ID(param_header)) {
		case SFDP_SECTOR_MAP_ID:
			dev_info(dev, "non-uniform erase sector maps are not supported yet.\n");
			break;

		default:
			break;
		}

		if (err)
			goto exit;
	}

exit:
	kfree(param_headers);
	return err;
}

static int spi_nor_init_params(struct spi_nor *nor,
			       const struct flash_info *info,
			       struct spi_nor_flash_parameter *params)
{
	/* Set legacy flash parameters as default. */
	memset(params, 0, sizeof(*params));

	/* Set SPI NOR sizes. */
	params->size = info->sector_size * info->n_sectors;
	params->page_size = info->page_size;

	/* (Fast) Read settings. */
	params->hwcaps.mask |= SNOR_HWCAPS_READ;
	spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ],
				  0, 0, SPINOR_OP_READ,
				  SNOR_PROTO_1_1_1);

	if (!(info->flags & SPI_NOR_NO_FR)) {
		params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_FAST],
					  0, 8, SPINOR_OP_READ_FAST,
					  SNOR_PROTO_1_1_1);
	}

	if (info->flags & SPI_NOR_DUAL_READ) {
		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_2],
					  0, 8, SPINOR_OP_READ_1_1_2,
					  SNOR_PROTO_1_1_2);
	}

	if (info->flags & SPI_NOR_QUAD_READ) {
		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_4],
					  0, 8, SPINOR_OP_READ_1_1_4,
					  SNOR_PROTO_1_1_4);
	}

	/* Page Program settings. */
	params->hwcaps.mask |= SNOR_HWCAPS_PP;
	spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP],
				SPINOR_OP_PP, SNOR_PROTO_1_1_1);

	/* Select the procedure to set the Quad Enable bit. */
	if (params->hwcaps.mask & (SNOR_HWCAPS_READ_QUAD |
				   SNOR_HWCAPS_PP_QUAD)) {
		switch (JEDEC_MFR(info)) {
		case SNOR_MFR_MACRONIX:
			params->quad_enable = macronix_quad_enable;
			break;

		case SNOR_MFR_MICRON:
			break;

		default:
			/* Kept only for backward compatibility purpose. */
			params->quad_enable = spansion_quad_enable;
			break;
		}
	}

	/* Override the parameters with data read from SFDP tables. */
	nor->addr_width = 0;
	nor->mtd.erasesize = 0;
	if ((info->flags & (SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)) &&
	    !(info->flags & SPI_NOR_SKIP_SFDP)) {
		struct spi_nor_flash_parameter sfdp_params;

		memcpy(&sfdp_params, params, sizeof(sfdp_params));
		if (spi_nor_parse_sfdp(nor, &sfdp_params)) {
			nor->addr_width = 0;
			nor->mtd.erasesize = 0;
		} else {
			memcpy(params, &sfdp_params, sizeof(*params));
		}
	}

	return 0;
}

static int spi_nor_hwcaps2cmd(u32 hwcaps, const int table[][2], size_t size)
{
	size_t i;

	for (i = 0; i < size; i++)
		if (table[i][0] == (int)hwcaps)
			return table[i][1];

	return -EINVAL;
}

static int spi_nor_hwcaps_read2cmd(u32 hwcaps)
{
	static const int hwcaps_read2cmd[][2] = {
		{ SNOR_HWCAPS_READ,		SNOR_CMD_READ },
		{ SNOR_HWCAPS_READ_FAST,	SNOR_CMD_READ_FAST },
		{ SNOR_HWCAPS_READ_1_1_1_DTR,	SNOR_CMD_READ_1_1_1_DTR },
		{ SNOR_HWCAPS_READ_1_1_2,	SNOR_CMD_READ_1_1_2 },
		{ SNOR_HWCAPS_READ_1_2_2,	SNOR_CMD_READ_1_2_2 },
		{ SNOR_HWCAPS_READ_2_2_2,	SNOR_CMD_READ_2_2_2 },
		{ SNOR_HWCAPS_READ_1_2_2_DTR,	SNOR_CMD_READ_1_2_2_DTR },
		{ SNOR_HWCAPS_READ_1_1_4,	SNOR_CMD_READ_1_1_4 },
		{ SNOR_HWCAPS_READ_1_4_4,	SNOR_CMD_READ_1_4_4 },
		{ SNOR_HWCAPS_READ_4_4_4,	SNOR_CMD_READ_4_4_4 },
		{ SNOR_HWCAPS_READ_1_4_4_DTR,	SNOR_CMD_READ_1_4_4_DTR },
		{ SNOR_HWCAPS_READ_1_1_8,	SNOR_CMD_READ_1_1_8 },
		{ SNOR_HWCAPS_READ_1_8_8,	SNOR_CMD_READ_1_8_8 },
		{ SNOR_HWCAPS_READ_8_8_8,	SNOR_CMD_READ_8_8_8 },
		{ SNOR_HWCAPS_READ_1_8_8_DTR,	SNOR_CMD_READ_1_8_8_DTR },
	};

	return spi_nor_hwcaps2cmd(hwcaps, hwcaps_read2cmd,
				  ARRAY_SIZE(hwcaps_read2cmd));
}

static int spi_nor_hwcaps_pp2cmd(u32 hwcaps)
{
	static const int hwcaps_pp2cmd[][2] = {
		{ SNOR_HWCAPS_PP,		SNOR_CMD_PP },
		{ SNOR_HWCAPS_PP_1_1_4,		SNOR_CMD_PP_1_1_4 },
		{ SNOR_HWCAPS_PP_1_4_4,		SNOR_CMD_PP_1_4_4 },
		{ SNOR_HWCAPS_PP_4_4_4,		SNOR_CMD_PP_4_4_4 },
		{ SNOR_HWCAPS_PP_1_1_8,		SNOR_CMD_PP_1_1_8 },
		{ SNOR_HWCAPS_PP_1_8_8,		SNOR_CMD_PP_1_8_8 },
		{ SNOR_HWCAPS_PP_8_8_8,		SNOR_CMD_PP_8_8_8 },
	};

	return spi_nor_hwcaps2cmd(hwcaps, hwcaps_pp2cmd,
				  ARRAY_SIZE(hwcaps_pp2cmd));
}

static int spi_nor_select_read(struct spi_nor *nor,
			       const struct spi_nor_flash_parameter *params,
			       u32 shared_hwcaps)
{
	int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_READ_MASK) - 1;
	const struct spi_nor_read_command *read;

	if (best_match < 0)
		return -EINVAL;

	cmd = spi_nor_hwcaps_read2cmd(BIT(best_match));
	if (cmd < 0)
		return -EINVAL;

	read = &params->reads[cmd];
	nor->read_opcode = read->opcode;
	nor->read_proto = read->proto;

	/*
	 * In the spi-nor framework, we don't need to make the difference
	 * between mode clock cycles and wait state clock cycles.
	 * Indeed, the value of the mode clock cycles is used by a QSPI
	 * flash memory to know whether it should enter or leave its 0-4-4
	 * (Continuous Read / XIP) mode.
	 * eXecution In Place is out of the scope of the mtd sub-system.
	 * Hence we choose to merge both mode and wait state clock cycles
	 * into the so called dummy clock cycles.
	 */
	nor->read_dummy = read->num_mode_clocks + read->num_wait_states;
	return 0;
}

static int spi_nor_select_pp(struct spi_nor *nor,
			     const struct spi_nor_flash_parameter *params,
			     u32 shared_hwcaps)
{
	int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_PP_MASK) - 1;
	const struct spi_nor_pp_command *pp;

	if (best_match < 0)
		return -EINVAL;

	cmd = spi_nor_hwcaps_pp2cmd(BIT(best_match));
	if (cmd < 0)
		return -EINVAL;

	pp = &params->page_programs[cmd];
	nor->program_opcode = pp->opcode;
	nor->write_proto = pp->proto;
	return 0;
}

static int spi_nor_select_erase(struct spi_nor *nor,
				const struct flash_info *info)
{
	struct mtd_info *mtd = &nor->mtd;

	/* Do nothing if already configured from SFDP. */
	if (mtd->erasesize)
		return 0;

#ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
	/* prefer "small sector" erase if possible */
	if (info->flags & SECT_4K) {
		nor->erase_opcode = SPINOR_OP_BE_4K;
		mtd->erasesize = 4096;
	} else if (info->flags & SECT_4K_PMC) {
		nor->erase_opcode = SPINOR_OP_BE_4K_PMC;
		mtd->erasesize = 4096;
	} else
#endif
	{
		nor->erase_opcode = SPINOR_OP_SE;
		mtd->erasesize = info->sector_size;
	}
	return 0;
}

static int spi_nor_setup(struct spi_nor *nor, const struct flash_info *info,
			 const struct spi_nor_flash_parameter *params,
			 const struct spi_nor_hwcaps *hwcaps)
{
	u32 ignored_mask, shared_mask;
	bool enable_quad_io;
	int err;

	/*
	 * Keep only the hardware capabilities supported by both the SPI
	 * controller and the SPI flash memory.
	 */
	shared_mask = hwcaps->mask & params->hwcaps.mask;

	/* SPI n-n-n protocols are not supported yet. */
	ignored_mask = (SNOR_HWCAPS_READ_2_2_2 |
			SNOR_HWCAPS_READ_4_4_4 |
			SNOR_HWCAPS_READ_8_8_8 |
			SNOR_HWCAPS_PP_4_4_4 |
			SNOR_HWCAPS_PP_8_8_8);
	if (shared_mask & ignored_mask) {
		dev_dbg(nor->dev,
			"SPI n-n-n protocols are not supported yet.\n");
		shared_mask &= ~ignored_mask;
	}

	/* Select the (Fast) Read command. */
	err = spi_nor_select_read(nor, params, shared_mask);
	if (err) {
		dev_err(nor->dev,
			"can't select read settings supported by both the SPI controller and memory.\n");
		return err;
	}

	/* Select the Page Program command. */
	err = spi_nor_select_pp(nor, params, shared_mask);
	if (err) {
		dev_err(nor->dev,
			"can't select write settings supported by both the SPI controller and memory.\n");
		return err;
	}

	/* Select the Sector Erase command. */
	err = spi_nor_select_erase(nor, info);
	if (err) {
		dev_err(nor->dev,
			"can't select erase settings supported by both the SPI controller and memory.\n");
		return err;
	}

	/* Enable Quad I/O if needed. */
	enable_quad_io = (spi_nor_get_protocol_width(nor->read_proto) == 4 ||
			  spi_nor_get_protocol_width(nor->write_proto) == 4);
	if (enable_quad_io && params->quad_enable) {
		err = params->quad_enable(nor);
		if (err) {
			dev_err(nor->dev, "quad mode not supported\n");
			return err;
		}
	}

	return 0;
}

int spi_nor_scan(struct spi_nor *nor, const char *name,
		 const struct spi_nor_hwcaps *hwcaps)
{
	struct spi_nor_flash_parameter params;
	const struct flash_info *info = NULL;
	struct device *dev = nor->dev;
	struct mtd_info *mtd = &nor->mtd;
	struct device_node *np = spi_nor_get_flash_node(nor);
	int ret;
	int i;

	ret = spi_nor_check(nor);
	if (ret)
		return ret;

	/* Reset SPI protocol for all commands. */
	nor->reg_proto = SNOR_PROTO_1_1_1;
	nor->read_proto = SNOR_PROTO_1_1_1;
	nor->write_proto = SNOR_PROTO_1_1_1;

	if (name)
		info = spi_nor_match_id(name);
	/* Try to auto-detect if chip name wasn't specified or not found */
	if (!info)
		info = spi_nor_read_id(nor);
	if (IS_ERR_OR_NULL(info))
		return -ENOENT;

	/*
	 * If caller has specified name of flash model that can normally be
	 * detected using JEDEC, let's verify it.
	 */
	if (name && info->id_len) {
		const struct flash_info *jinfo;

		jinfo = spi_nor_read_id(nor);
		if (IS_ERR(jinfo)) {
			return PTR_ERR(jinfo);
		} else if (jinfo != info) {
			/*
			 * JEDEC knows better, so overwrite platform ID. We
			 * can't trust partitions any longer, but we'll let
			 * mtd apply them anyway, since some partitions may be
			 * marked read-only, and we don't want to lose that
			 * information, even if it's not 100% accurate.
			 */
			dev_warn(dev, "found %s, expected %s\n",
				 jinfo->name, info->name);
			info = jinfo;
		}
	}

	mutex_init(&nor->lock);

	/*
	 * Make sure the XSR_RDY flag is set before calling
	 * spi_nor_wait_till_ready(). Xilinx S3AN share MFR
	 * with Atmel spi-nor
	 */
	if (info->flags & SPI_S3AN)
		nor->flags |=  SNOR_F_READY_XSR_RDY;

	/* Parse the Serial Flash Discoverable Parameters table. */
	ret = spi_nor_init_params(nor, info, &params);
	if (ret)
		return ret;

	/*
	 * Atmel, SST, Intel/Numonyx, and others serial NOR tend to power up
	 * with the software protection bits set
	 */

	if (JEDEC_MFR(info) == SNOR_MFR_ATMEL ||
	    JEDEC_MFR(info) == SNOR_MFR_INTEL ||
	    JEDEC_MFR(info) == SNOR_MFR_SST ||
	    info->flags & SPI_NOR_HAS_LOCK) {
		write_enable(nor);
		write_sr(nor, 0);
		spi_nor_wait_till_ready(nor);
	}

	if (!mtd->name)
		mtd->name = dev_name(dev);
	mtd->priv = nor;
	mtd->type = MTD_NORFLASH;
	mtd->writesize = 1;
	mtd->flags = MTD_CAP_NORFLASH;
	mtd->size = params.size;
	mtd->_erase = spi_nor_erase;
	mtd->_read = spi_nor_read;

	/* NOR protection support for STmicro/Micron chips and similar */
	if (JEDEC_MFR(info) == SNOR_MFR_MICRON ||
			info->flags & SPI_NOR_HAS_LOCK) {
		nor->flash_lock = stm_lock;
		nor->flash_unlock = stm_unlock;
		nor->flash_is_locked = stm_is_locked;
	}

	if (nor->flash_lock && nor->flash_unlock && nor->flash_is_locked) {
		mtd->_lock = spi_nor_lock;
		mtd->_unlock = spi_nor_unlock;
		mtd->_is_locked = spi_nor_is_locked;
	}

	/* sst nor chips use AAI word program */
	if (info->flags & SST_WRITE)
		mtd->_write = sst_write;
	else
		mtd->_write = spi_nor_write;

	if (info->flags & USE_FSR)
		nor->flags |= SNOR_F_USE_FSR;
	if (info->flags & SPI_NOR_HAS_TB)
		nor->flags |= SNOR_F_HAS_SR_TB;
	if (info->flags & NO_CHIP_ERASE)
		nor->flags |= SNOR_F_NO_OP_CHIP_ERASE;
	if (info->flags & USE_CLSR)
		nor->flags |= SNOR_F_USE_CLSR;

	if (info->flags & SPI_NOR_NO_ERASE)
		mtd->flags |= MTD_NO_ERASE;

	mtd->dev.parent = dev;
	nor->page_size = params.page_size;
	mtd->writebufsize = nor->page_size;

	if (np) {
		/* If we were instantiated by DT, use it */
		if (of_property_read_bool(np, "m25p,fast-read"))
			params.hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
		else
			params.hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST;
	} else {
		/* If we weren't instantiated by DT, default to fast-read */
		params.hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
	}

	/* Some devices cannot do fast-read, no matter what DT tells us */
	if (info->flags & SPI_NOR_NO_FR)
		params.hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST;

	/*
	 * Configure the SPI memory:
	 * - select op codes for (Fast) Read, Page Program and Sector Erase.
	 * - set the number of dummy cycles (mode cycles + wait states).
	 * - set the SPI protocols for register and memory accesses.
	 * - set the Quad Enable bit if needed (required by SPI x-y-4 protos).
	 */
	ret = spi_nor_setup(nor, info, &params, hwcaps);
	if (ret)
		return ret;

	if (nor->addr_width) {
		/* already configured from SFDP */
	} else if (info->addr_width) {
		nor->addr_width = info->addr_width;
	} else if (mtd->size > 0x1000000) {
		/* enable 4-byte addressing if the device exceeds 16MiB */
		nor->addr_width = 4;
		if (JEDEC_MFR(info) == SNOR_MFR_SPANSION ||
		    info->flags & SPI_NOR_4B_OPCODES)
			spi_nor_set_4byte_opcodes(nor, info);
		else
			set_4byte(nor, info, 1);
	} else {
		nor->addr_width = 3;
	}

	if (nor->addr_width > SPI_NOR_MAX_ADDR_WIDTH) {
		dev_err(dev, "address width is too large: %u\n",
			nor->addr_width);
		return -EINVAL;
	}

	if (info->flags & SPI_S3AN) {
		ret = s3an_nor_scan(info, nor);
		if (ret)
			return ret;
	}

	dev_info(dev, "%s (%lld Kbytes)\n", info->name,
			(long long)mtd->size >> 10);

	dev_dbg(dev,
		"mtd .name = %s, .size = 0x%llx (%lldMiB), "
		".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
		mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
		mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);

	if (mtd->numeraseregions)
		for (i = 0; i < mtd->numeraseregions; i++)
			dev_dbg(dev,
				"mtd.eraseregions[%d] = { .offset = 0x%llx, "
				".erasesize = 0x%.8x (%uKiB), "
				".numblocks = %d }\n",
				i, (long long)mtd->eraseregions[i].offset,
				mtd->eraseregions[i].erasesize,
				mtd->eraseregions[i].erasesize / 1024,
				mtd->eraseregions[i].numblocks);
	return 0;
}
EXPORT_SYMBOL_GPL(spi_nor_scan);

static const struct flash_info *spi_nor_match_id(const char *name)
{
	const struct flash_info *id = spi_nor_ids;

	while (id->name) {
		if (!strcmp(name, id->name))
			return id;
		id++;
	}
	return NULL;
}

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
MODULE_AUTHOR("Mike Lavender");
MODULE_DESCRIPTION("framework for SPI NOR");