summaryrefslogtreecommitdiffstats
path: root/drivers/net/dsa/bcm_sf2_cfp.c
blob: 043fd39793cc443b85889872f4f7a74d871eb1cf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
/*
 * Broadcom Starfighter 2 DSA switch CFP support
 *
 * Copyright (C) 2016, Broadcom
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

#include <linux/list.h>
#include <linux/ethtool.h>
#include <linux/if_ether.h>
#include <linux/in.h>
#include <linux/netdevice.h>
#include <net/dsa.h>
#include <linux/bitmap.h>

#include "bcm_sf2.h"
#include "bcm_sf2_regs.h"

struct cfp_udf_slice_layout {
	u8 slices[UDFS_PER_SLICE];
	u32 mask_value;
	u32 base_offset;
};

struct cfp_udf_layout {
	struct cfp_udf_slice_layout udfs[UDF_NUM_SLICES];
};

static const u8 zero_slice[UDFS_PER_SLICE] = { };

/* UDF slices layout for a TCPv4/UDPv4 specification */
static const struct cfp_udf_layout udf_tcpip4_layout = {
	.udfs = {
		[1] = {
			.slices = {
				/* End of L2, byte offset 12, src IP[0:15] */
				CFG_UDF_EOL2 | 6,
				/* End of L2, byte offset 14, src IP[16:31] */
				CFG_UDF_EOL2 | 7,
				/* End of L2, byte offset 16, dst IP[0:15] */
				CFG_UDF_EOL2 | 8,
				/* End of L2, byte offset 18, dst IP[16:31] */
				CFG_UDF_EOL2 | 9,
				/* End of L3, byte offset 0, src port */
				CFG_UDF_EOL3 | 0,
				/* End of L3, byte offset 2, dst port */
				CFG_UDF_EOL3 | 1,
				0, 0, 0
			},
			.mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
			.base_offset = CORE_UDF_0_A_0_8_PORT_0 + UDF_SLICE_OFFSET,
		},
	},
};

/* UDF slices layout for a TCPv6/UDPv6 specification */
static const struct cfp_udf_layout udf_tcpip6_layout = {
	.udfs = {
		[0] = {
			.slices = {
				/* End of L2, byte offset 8, src IP[0:15] */
				CFG_UDF_EOL2 | 4,
				/* End of L2, byte offset 10, src IP[16:31] */
				CFG_UDF_EOL2 | 5,
				/* End of L2, byte offset 12, src IP[32:47] */
				CFG_UDF_EOL2 | 6,
				/* End of L2, byte offset 14, src IP[48:63] */
				CFG_UDF_EOL2 | 7,
				/* End of L2, byte offset 16, src IP[64:79] */
				CFG_UDF_EOL2 | 8,
				/* End of L2, byte offset 18, src IP[80:95] */
				CFG_UDF_EOL2 | 9,
				/* End of L2, byte offset 20, src IP[96:111] */
				CFG_UDF_EOL2 | 10,
				/* End of L2, byte offset 22, src IP[112:127] */
				CFG_UDF_EOL2 | 11,
				/* End of L3, byte offset 0, src port */
				CFG_UDF_EOL3 | 0,
			},
			.mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
			.base_offset = CORE_UDF_0_B_0_8_PORT_0,
		},
		[3] = {
			.slices = {
				/* End of L2, byte offset 24, dst IP[0:15] */
				CFG_UDF_EOL2 | 12,
				/* End of L2, byte offset 26, dst IP[16:31] */
				CFG_UDF_EOL2 | 13,
				/* End of L2, byte offset 28, dst IP[32:47] */
				CFG_UDF_EOL2 | 14,
				/* End of L2, byte offset 30, dst IP[48:63] */
				CFG_UDF_EOL2 | 15,
				/* End of L2, byte offset 32, dst IP[64:79] */
				CFG_UDF_EOL2 | 16,
				/* End of L2, byte offset 34, dst IP[80:95] */
				CFG_UDF_EOL2 | 17,
				/* End of L2, byte offset 36, dst IP[96:111] */
				CFG_UDF_EOL2 | 18,
				/* End of L2, byte offset 38, dst IP[112:127] */
				CFG_UDF_EOL2 | 19,
				/* End of L3, byte offset 2, dst port */
				CFG_UDF_EOL3 | 1,
			},
			.mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
			.base_offset = CORE_UDF_0_D_0_11_PORT_0,
		},
	},
};

static inline unsigned int bcm_sf2_get_num_udf_slices(const u8 *layout)
{
	unsigned int i, count = 0;

	for (i = 0; i < UDFS_PER_SLICE; i++) {
		if (layout[i] != 0)
			count++;
	}

	return count;
}

static inline u32 udf_upper_bits(unsigned int num_udf)
{
	return GENMASK(num_udf - 1, 0) >> (UDFS_PER_SLICE - 1);
}

static inline u32 udf_lower_bits(unsigned int num_udf)
{
	return (u8)GENMASK(num_udf - 1, 0);
}

static unsigned int bcm_sf2_get_slice_number(const struct cfp_udf_layout *l,
					     unsigned int start)
{
	const struct cfp_udf_slice_layout *slice_layout;
	unsigned int slice_idx;

	for (slice_idx = start; slice_idx < UDF_NUM_SLICES; slice_idx++) {
		slice_layout = &l->udfs[slice_idx];
		if (memcmp(slice_layout->slices, zero_slice,
			   sizeof(zero_slice)))
			break;
	}

	return slice_idx;
}

static void bcm_sf2_cfp_udf_set(struct bcm_sf2_priv *priv,
				const struct cfp_udf_layout *layout,
				unsigned int slice_num)
{
	u32 offset = layout->udfs[slice_num].base_offset;
	unsigned int i;

	for (i = 0; i < UDFS_PER_SLICE; i++)
		core_writel(priv, layout->udfs[slice_num].slices[i],
			    offset + i * 4);
}

static int bcm_sf2_cfp_op(struct bcm_sf2_priv *priv, unsigned int op)
{
	unsigned int timeout = 1000;
	u32 reg;

	reg = core_readl(priv, CORE_CFP_ACC);
	reg &= ~(OP_SEL_MASK | RAM_SEL_MASK);
	reg |= OP_STR_DONE | op;
	core_writel(priv, reg, CORE_CFP_ACC);

	do {
		reg = core_readl(priv, CORE_CFP_ACC);
		if (!(reg & OP_STR_DONE))
			break;

		cpu_relax();
	} while (timeout--);

	if (!timeout)
		return -ETIMEDOUT;

	return 0;
}

static inline void bcm_sf2_cfp_rule_addr_set(struct bcm_sf2_priv *priv,
					     unsigned int addr)
{
	u32 reg;

	WARN_ON(addr >= priv->num_cfp_rules);

	reg = core_readl(priv, CORE_CFP_ACC);
	reg &= ~(XCESS_ADDR_MASK << XCESS_ADDR_SHIFT);
	reg |= addr << XCESS_ADDR_SHIFT;
	core_writel(priv, reg, CORE_CFP_ACC);
}

static inline unsigned int bcm_sf2_cfp_rule_size(struct bcm_sf2_priv *priv)
{
	/* Entry #0 is reserved */
	return priv->num_cfp_rules - 1;
}

static int bcm_sf2_cfp_act_pol_set(struct bcm_sf2_priv *priv,
				   unsigned int rule_index,
				   unsigned int port_num,
				   unsigned int queue_num,
				   bool fwd_map_change)
{
	int ret;
	u32 reg;

	/* Replace ARL derived destination with DST_MAP derived, define
	 * which port and queue this should be forwarded to.
	 */
	if (fwd_map_change)
		reg = CHANGE_FWRD_MAP_IB_REP_ARL |
		      BIT(port_num + DST_MAP_IB_SHIFT) |
		      CHANGE_TC | queue_num << NEW_TC_SHIFT;
	else
		reg = 0;

	core_writel(priv, reg, CORE_ACT_POL_DATA0);

	/* Set classification ID that needs to be put in Broadcom tag */
	core_writel(priv, rule_index << CHAIN_ID_SHIFT, CORE_ACT_POL_DATA1);

	core_writel(priv, 0, CORE_ACT_POL_DATA2);

	/* Configure policer RAM now */
	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | ACT_POL_RAM);
	if (ret) {
		pr_err("Policer entry at %d failed\n", rule_index);
		return ret;
	}

	/* Disable the policer */
	core_writel(priv, POLICER_MODE_DISABLE, CORE_RATE_METER0);

	/* Now the rate meter */
	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | RATE_METER_RAM);
	if (ret) {
		pr_err("Meter entry at %d failed\n", rule_index);
		return ret;
	}

	return 0;
}

static void bcm_sf2_cfp_slice_ipv4(struct bcm_sf2_priv *priv,
				   struct ethtool_tcpip4_spec *v4_spec,
				   unsigned int slice_num,
				   bool mask)
{
	u32 reg, offset;

	/* C-Tag		[31:24]
	 * UDF_n_A8		[23:8]
	 * UDF_n_A7		[7:0]
	 */
	reg = 0;
	if (mask)
		offset = CORE_CFP_MASK_PORT(4);
	else
		offset = CORE_CFP_DATA_PORT(4);
	core_writel(priv, reg, offset);

	/* UDF_n_A7		[31:24]
	 * UDF_n_A6		[23:8]
	 * UDF_n_A5		[7:0]
	 */
	reg = be16_to_cpu(v4_spec->pdst) >> 8;
	if (mask)
		offset = CORE_CFP_MASK_PORT(3);
	else
		offset = CORE_CFP_DATA_PORT(3);
	core_writel(priv, reg, offset);

	/* UDF_n_A5		[31:24]
	 * UDF_n_A4		[23:8]
	 * UDF_n_A3		[7:0]
	 */
	reg = (be16_to_cpu(v4_spec->pdst) & 0xff) << 24 |
	      (u32)be16_to_cpu(v4_spec->psrc) << 8 |
	      (be32_to_cpu(v4_spec->ip4dst) & 0x0000ff00) >> 8;
	if (mask)
		offset = CORE_CFP_MASK_PORT(2);
	else
		offset = CORE_CFP_DATA_PORT(2);
	core_writel(priv, reg, offset);

	/* UDF_n_A3		[31:24]
	 * UDF_n_A2		[23:8]
	 * UDF_n_A1		[7:0]
	 */
	reg = (u32)(be32_to_cpu(v4_spec->ip4dst) & 0xff) << 24 |
	      (u32)(be32_to_cpu(v4_spec->ip4dst) >> 16) << 8 |
	      (be32_to_cpu(v4_spec->ip4src) & 0x0000ff00) >> 8;
	if (mask)
		offset = CORE_CFP_MASK_PORT(1);
	else
		offset = CORE_CFP_DATA_PORT(1);
	core_writel(priv, reg, offset);

	/* UDF_n_A1		[31:24]
	 * UDF_n_A0		[23:8]
	 * Reserved		[7:4]
	 * Slice ID		[3:2]
	 * Slice valid		[1:0]
	 */
	reg = (u32)(be32_to_cpu(v4_spec->ip4src) & 0xff) << 24 |
	      (u32)(be32_to_cpu(v4_spec->ip4src) >> 16) << 8 |
	      SLICE_NUM(slice_num) | SLICE_VALID;
	if (mask)
		offset = CORE_CFP_MASK_PORT(0);
	else
		offset = CORE_CFP_DATA_PORT(0);
	core_writel(priv, reg, offset);
}

static int bcm_sf2_cfp_ipv4_rule_set(struct bcm_sf2_priv *priv, int port,
				     unsigned int port_num,
				     unsigned int queue_num,
				     struct ethtool_rx_flow_spec *fs)
{
	struct ethtool_tcpip4_spec *v4_spec, *v4_m_spec;
	const struct cfp_udf_layout *layout;
	unsigned int slice_num, rule_index;
	u8 ip_proto, ip_frag;
	u8 num_udf;
	u32 reg;
	int ret;

	switch (fs->flow_type & ~FLOW_EXT) {
	case TCP_V4_FLOW:
		ip_proto = IPPROTO_TCP;
		v4_spec = &fs->h_u.tcp_ip4_spec;
		v4_m_spec = &fs->m_u.tcp_ip4_spec;
		break;
	case UDP_V4_FLOW:
		ip_proto = IPPROTO_UDP;
		v4_spec = &fs->h_u.udp_ip4_spec;
		v4_m_spec = &fs->m_u.udp_ip4_spec;
		break;
	default:
		return -EINVAL;
	}

	ip_frag = be32_to_cpu(fs->m_ext.data[0]);

	/* Locate the first rule available */
	if (fs->location == RX_CLS_LOC_ANY)
		rule_index = find_first_zero_bit(priv->cfp.used,
						 bcm_sf2_cfp_rule_size(priv));
	else
		rule_index = fs->location;

	layout = &udf_tcpip4_layout;
	/* We only use one UDF slice for now */
	slice_num = bcm_sf2_get_slice_number(layout, 0);
	if (slice_num == UDF_NUM_SLICES)
		return -EINVAL;

	num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);

	/* Apply the UDF layout for this filter */
	bcm_sf2_cfp_udf_set(priv, layout, slice_num);

	/* Apply to all packets received through this port */
	core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));

	/* Source port map match */
	core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));

	/* S-Tag status		[31:30]
	 * C-Tag status		[29:28]
	 * L2 framing		[27:26]
	 * L3 framing		[25:24]
	 * IP ToS		[23:16]
	 * IP proto		[15:08]
	 * IP Fragm		[7]
	 * Non 1st frag		[6]
	 * IP Authen		[5]
	 * TTL range		[4:3]
	 * PPPoE session	[2]
	 * Reserved		[1]
	 * UDF_Valid[8]		[0]
	 */
	core_writel(priv, v4_spec->tos << IPTOS_SHIFT |
		    ip_proto << IPPROTO_SHIFT | ip_frag << IP_FRAG_SHIFT |
		    udf_upper_bits(num_udf),
		    CORE_CFP_DATA_PORT(6));

	/* Mask with the specific layout for IPv4 packets */
	core_writel(priv, layout->udfs[slice_num].mask_value |
		    udf_upper_bits(num_udf), CORE_CFP_MASK_PORT(6));

	/* UDF_Valid[7:0]	[31:24]
	 * S-Tag		[23:8]
	 * C-Tag		[7:0]
	 */
	core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_DATA_PORT(5));

	/* Mask all but valid UDFs */
	core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_MASK_PORT(5));

	/* Program the match and the mask */
	bcm_sf2_cfp_slice_ipv4(priv, v4_spec, slice_num, false);
	bcm_sf2_cfp_slice_ipv4(priv, v4_m_spec, SLICE_NUM_MASK, true);

	/* Insert into TCAM now */
	bcm_sf2_cfp_rule_addr_set(priv, rule_index);

	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
	if (ret) {
		pr_err("TCAM entry at addr %d failed\n", rule_index);
		return ret;
	}

	/* Insert into Action and policer RAMs now */
	ret = bcm_sf2_cfp_act_pol_set(priv, rule_index, port_num,
				      queue_num, true);
	if (ret)
		return ret;

	/* Turn on CFP for this rule now */
	reg = core_readl(priv, CORE_CFP_CTL_REG);
	reg |= BIT(port);
	core_writel(priv, reg, CORE_CFP_CTL_REG);

	/* Flag the rule as being used and return it */
	set_bit(rule_index, priv->cfp.used);
	set_bit(rule_index, priv->cfp.unique);
	fs->location = rule_index;

	return 0;
}

static void bcm_sf2_cfp_slice_ipv6(struct bcm_sf2_priv *priv,
				   const __be32 *ip6_addr, const __be16 port,
				   unsigned int slice_num)
{
	u32 reg, tmp, val;

	/* C-Tag		[31:24]
	 * UDF_n_B8		[23:8]	(port)
	 * UDF_n_B7 (upper)	[7:0]	(addr[15:8])
	 */
	reg = be32_to_cpu(ip6_addr[3]);
	val = (u32)be16_to_cpu(port) << 8 | ((reg >> 8) & 0xff);
	core_writel(priv, val, CORE_CFP_DATA_PORT(4));

	/* UDF_n_B7 (lower)	[31:24]	(addr[7:0])
	 * UDF_n_B6		[23:8] (addr[31:16])
	 * UDF_n_B5 (upper)	[7:0] (addr[47:40])
	 */
	tmp = be32_to_cpu(ip6_addr[2]);
	val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
	      ((tmp >> 8) & 0xff);
	core_writel(priv, val, CORE_CFP_DATA_PORT(3));

	/* UDF_n_B5 (lower)	[31:24] (addr[39:32])
	 * UDF_n_B4		[23:8] (addr[63:48])
	 * UDF_n_B3 (upper)	[7:0] (addr[79:72])
	 */
	reg = be32_to_cpu(ip6_addr[1]);
	val = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
	      ((reg >> 8) & 0xff);
	core_writel(priv, val, CORE_CFP_DATA_PORT(2));

	/* UDF_n_B3 (lower)	[31:24] (addr[71:64])
	 * UDF_n_B2		[23:8] (addr[95:80])
	 * UDF_n_B1 (upper)	[7:0] (addr[111:104])
	 */
	tmp = be32_to_cpu(ip6_addr[0]);
	val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
	      ((tmp >> 8) & 0xff);
	core_writel(priv, val, CORE_CFP_DATA_PORT(1));

	/* UDF_n_B1 (lower)	[31:24] (addr[103:96])
	 * UDF_n_B0		[23:8] (addr[127:112])
	 * Reserved		[7:4]
	 * Slice ID		[3:2]
	 * Slice valid		[1:0]
	 */
	reg = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
	       SLICE_NUM(slice_num) | SLICE_VALID;
	core_writel(priv, reg, CORE_CFP_DATA_PORT(0));

	/* All other UDFs should be matched with the filter */
	core_writel(priv, 0x00ffffff, CORE_CFP_MASK_PORT(4));
	core_writel(priv, 0xffffffff, CORE_CFP_MASK_PORT(3));
	core_writel(priv, 0xffffffff, CORE_CFP_MASK_PORT(2));
	core_writel(priv, 0xffffffff, CORE_CFP_MASK_PORT(1));
	core_writel(priv, 0xffffff0f, CORE_CFP_MASK_PORT(0));
}

static int bcm_sf2_cfp_ipv6_rule_set(struct bcm_sf2_priv *priv, int port,
				     unsigned int port_num,
				     unsigned int queue_num,
				     struct ethtool_rx_flow_spec *fs)
{
	unsigned int slice_num, rule_index[2];
	struct ethtool_tcpip6_spec *v6_spec;
	const struct cfp_udf_layout *layout;
	u8 ip_proto, ip_frag;
	int ret = 0;
	u8 num_udf;
	u32 reg;

	switch (fs->flow_type & ~FLOW_EXT) {
	case TCP_V6_FLOW:
		ip_proto = IPPROTO_TCP;
		v6_spec = &fs->h_u.tcp_ip6_spec;
		break;
	case UDP_V6_FLOW:
		ip_proto = IPPROTO_UDP;
		v6_spec = &fs->h_u.udp_ip6_spec;
		break;
	default:
		return -EINVAL;
	}

	ip_frag = be32_to_cpu(fs->m_ext.data[0]);

	layout = &udf_tcpip6_layout;
	slice_num = bcm_sf2_get_slice_number(layout, 0);
	if (slice_num == UDF_NUM_SLICES)
		return -EINVAL;

	num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);

	/* Negotiate two indexes, one for the second half which we are chained
	 * from, which is what we will return to user-space, and a second one
	 * which is used to store its first half. That first half does not
	 * allow any choice of placement, so it just needs to find the next
	 * available bit. We return the second half as fs->location because
	 * that helps with the rule lookup later on since the second half is
	 * chained from its first half, we can easily identify IPv6 CFP rules
	 * by looking whether they carry a CHAIN_ID.
	 *
	 * We also want the second half to have a lower rule_index than its
	 * first half because the HW search is by incrementing addresses.
	 */
	if (fs->location == RX_CLS_LOC_ANY)
		rule_index[0] = find_first_zero_bit(priv->cfp.used,
						    bcm_sf2_cfp_rule_size(priv));
	else
		rule_index[0] = fs->location;

	/* Flag it as used (cleared on error path) such that we can immediately
	 * obtain a second one to chain from.
	 */
	set_bit(rule_index[0], priv->cfp.used);

	rule_index[1] = find_first_zero_bit(priv->cfp.used,
					    bcm_sf2_cfp_rule_size(priv));
	if (rule_index[1] > bcm_sf2_cfp_rule_size(priv)) {
		ret = -ENOSPC;
		goto out_err;
	}

	/* Apply the UDF layout for this filter */
	bcm_sf2_cfp_udf_set(priv, layout, slice_num);

	/* Apply to all packets received through this port */
	core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));

	/* Source port map match */
	core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));

	/* S-Tag status		[31:30]
	 * C-Tag status		[29:28]
	 * L2 framing		[27:26]
	 * L3 framing		[25:24]
	 * IP ToS		[23:16]
	 * IP proto		[15:08]
	 * IP Fragm		[7]
	 * Non 1st frag		[6]
	 * IP Authen		[5]
	 * TTL range		[4:3]
	 * PPPoE session	[2]
	 * Reserved		[1]
	 * UDF_Valid[8]		[0]
	 */
	reg = 1 << L3_FRAMING_SHIFT | ip_proto << IPPROTO_SHIFT |
		ip_frag << IP_FRAG_SHIFT | udf_upper_bits(num_udf);
	core_writel(priv, reg, CORE_CFP_DATA_PORT(6));

	/* Mask with the specific layout for IPv6 packets including
	 * UDF_Valid[8]
	 */
	reg = layout->udfs[slice_num].mask_value | udf_upper_bits(num_udf);
	core_writel(priv, reg, CORE_CFP_MASK_PORT(6));

	/* UDF_Valid[7:0]	[31:24]
	 * S-Tag		[23:8]
	 * C-Tag		[7:0]
	 */
	core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_DATA_PORT(5));

	/* Mask all but valid UDFs */
	core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_MASK_PORT(5));

	/* Slice the IPv6 source address and port */
	bcm_sf2_cfp_slice_ipv6(priv, v6_spec->ip6src, v6_spec->psrc, slice_num);

	/* Insert into TCAM now because we need to insert a second rule */
	bcm_sf2_cfp_rule_addr_set(priv, rule_index[0]);

	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
	if (ret) {
		pr_err("TCAM entry at addr %d failed\n", rule_index[0]);
		goto out_err;
	}

	/* Insert into Action and policer RAMs now */
	ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[0], port_num,
				      queue_num, false);
	if (ret)
		goto out_err;

	/* Now deal with the second slice to chain this rule */
	slice_num = bcm_sf2_get_slice_number(layout, slice_num + 1);
	if (slice_num == UDF_NUM_SLICES) {
		ret = -EINVAL;
		goto out_err;
	}

	num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);

	/* Apply the UDF layout for this filter */
	bcm_sf2_cfp_udf_set(priv, layout, slice_num);

	/* Chained rule, source port match is coming from the rule we are
	 * chained from.
	 */
	core_writel(priv, 0, CORE_CFP_DATA_PORT(7));
	core_writel(priv, 0, CORE_CFP_MASK_PORT(7));

	/*
	 * CHAIN ID		[31:24] chain to previous slice
	 * Reserved		[23:20]
	 * UDF_Valid[11:8]	[19:16]
	 * UDF_Valid[7:0]	[15:8]
	 * UDF_n_D11		[7:0]
	 */
	reg = rule_index[0] << 24 | udf_upper_bits(num_udf) << 16 |
		udf_lower_bits(num_udf) << 8;
	core_writel(priv, reg, CORE_CFP_DATA_PORT(6));

	/* Mask all except chain ID, UDF Valid[8] and UDF Valid[7:0] */
	reg = XCESS_ADDR_MASK << 24 | udf_upper_bits(num_udf) << 16 |
		udf_lower_bits(num_udf) << 8;
	core_writel(priv, reg, CORE_CFP_MASK_PORT(6));

	/* Don't care */
	core_writel(priv, 0, CORE_CFP_DATA_PORT(5));

	/* Mask all */
	core_writel(priv, 0, CORE_CFP_MASK_PORT(5));

	bcm_sf2_cfp_slice_ipv6(priv, v6_spec->ip6dst, v6_spec->pdst, slice_num);

	/* Insert into TCAM now */
	bcm_sf2_cfp_rule_addr_set(priv, rule_index[1]);

	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
	if (ret) {
		pr_err("TCAM entry at addr %d failed\n", rule_index[1]);
		goto out_err;
	}

	/* Insert into Action and policer RAMs now, set chain ID to
	 * the one we are chained to
	 */
	ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[0], port_num,
				      queue_num, true);
	if (ret)
		goto out_err;

	/* Turn on CFP for this rule now */
	reg = core_readl(priv, CORE_CFP_CTL_REG);
	reg |= BIT(port);
	core_writel(priv, reg, CORE_CFP_CTL_REG);

	/* Flag the second half rule as being used now, return it as the
	 * location, and flag it as unique while dumping rules
	 */
	set_bit(rule_index[1], priv->cfp.used);
	set_bit(rule_index[1], priv->cfp.unique);
	fs->location = rule_index[1];

	return ret;

out_err:
	clear_bit(rule_index[0], priv->cfp.used);
	return ret;
}

static int bcm_sf2_cfp_rule_set(struct dsa_switch *ds, int port,
				struct ethtool_rx_flow_spec *fs)
{
	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
	unsigned int queue_num, port_num;
	int ret = -EINVAL;

	/* Check for unsupported extensions */
	if ((fs->flow_type & FLOW_EXT) && (fs->m_ext.vlan_etype ||
	     fs->m_ext.data[1]))
		return -EINVAL;

	if (fs->location != RX_CLS_LOC_ANY &&
	    test_bit(fs->location, priv->cfp.used))
		return -EBUSY;

	if (fs->location != RX_CLS_LOC_ANY &&
	    fs->location > bcm_sf2_cfp_rule_size(priv))
		return -EINVAL;

	/* We do not support discarding packets, check that the
	 * destination port is enabled and that we are within the
	 * number of ports supported by the switch
	 */
	port_num = fs->ring_cookie / SF2_NUM_EGRESS_QUEUES;

	if (fs->ring_cookie == RX_CLS_FLOW_DISC ||
	    !(BIT(port_num) & ds->enabled_port_mask) ||
	    port_num >= priv->hw_params.num_ports)
		return -EINVAL;
	/*
	 * We have a small oddity where Port 6 just does not have a
	 * valid bit here (so we substract by one).
	 */
	queue_num = fs->ring_cookie % SF2_NUM_EGRESS_QUEUES;
	if (port_num >= 7)
		port_num -= 1;

	switch (fs->flow_type & ~FLOW_EXT) {
	case TCP_V4_FLOW:
	case UDP_V4_FLOW:
		ret = bcm_sf2_cfp_ipv4_rule_set(priv, port, port_num,
						queue_num, fs);
		break;
	case TCP_V6_FLOW:
	case UDP_V6_FLOW:
		ret = bcm_sf2_cfp_ipv6_rule_set(priv, port, port_num,
						queue_num, fs);
		break;
	default:
		break;
	}

	return ret;
}

static int bcm_sf2_cfp_rule_del_one(struct bcm_sf2_priv *priv, int port,
				    u32 loc, u32 *next_loc)
{
	int ret;
	u32 reg;

	/* Refuse deletion of unused rules, and the default reserved rule */
	if (!test_bit(loc, priv->cfp.used) || loc == 0)
		return -EINVAL;

	/* Indicate which rule we want to read */
	bcm_sf2_cfp_rule_addr_set(priv, loc);

	ret =  bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
	if (ret)
		return ret;

	/* Check if this is possibly an IPv6 rule that would
	 * indicate we need to delete its companion rule
	 * as well
	 */
	reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
	if (next_loc)
		*next_loc = (reg >> 24) & CHAIN_ID_MASK;

	/* Clear its valid bits */
	reg = core_readl(priv, CORE_CFP_DATA_PORT(0));
	reg &= ~SLICE_VALID;
	core_writel(priv, reg, CORE_CFP_DATA_PORT(0));

	/* Write back this entry into the TCAM now */
	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
	if (ret)
		return ret;

	clear_bit(loc, priv->cfp.used);
	clear_bit(loc, priv->cfp.unique);

	return 0;
}

static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port,
				u32 loc)
{
	u32 next_loc = 0;
	int ret;

	ret = bcm_sf2_cfp_rule_del_one(priv, port, loc, &next_loc);
	if (ret)
		return ret;

	/* If this was an IPv6 rule, delete is companion rule too */
	if (next_loc)
		ret = bcm_sf2_cfp_rule_del_one(priv, port, next_loc, NULL);

	return ret;
}

static void bcm_sf2_invert_masks(struct ethtool_rx_flow_spec *flow)
{
	unsigned int i;

	for (i = 0; i < sizeof(flow->m_u); i++)
		flow->m_u.hdata[i] ^= 0xff;

	flow->m_ext.vlan_etype ^= cpu_to_be16(~0);
	flow->m_ext.vlan_tci ^= cpu_to_be16(~0);
	flow->m_ext.data[0] ^= cpu_to_be32(~0);
	flow->m_ext.data[1] ^= cpu_to_be32(~0);
}

static int bcm_sf2_cfp_unslice_ipv4(struct bcm_sf2_priv *priv,
				    struct ethtool_tcpip4_spec *v4_spec,
				    bool mask)
{
	u32 reg, offset, ipv4;
	u16 src_dst_port;

	if (mask)
		offset = CORE_CFP_MASK_PORT(3);
	else
		offset = CORE_CFP_DATA_PORT(3);

	reg = core_readl(priv, offset);
	/* src port [15:8] */
	src_dst_port = reg << 8;

	if (mask)
		offset = CORE_CFP_MASK_PORT(2);
	else
		offset = CORE_CFP_DATA_PORT(2);

	reg = core_readl(priv, offset);
	/* src port [7:0] */
	src_dst_port |= (reg >> 24);

	v4_spec->pdst = cpu_to_be16(src_dst_port);
	v4_spec->psrc = cpu_to_be16((u16)(reg >> 8));

	/* IPv4 dst [15:8] */
	ipv4 = (reg & 0xff) << 8;

	if (mask)
		offset = CORE_CFP_MASK_PORT(1);
	else
		offset = CORE_CFP_DATA_PORT(1);

	reg = core_readl(priv, offset);
	/* IPv4 dst [31:16] */
	ipv4 |= ((reg >> 8) & 0xffff) << 16;
	/* IPv4 dst [7:0] */
	ipv4 |= (reg >> 24) & 0xff;
	v4_spec->ip4dst = cpu_to_be32(ipv4);

	/* IPv4 src [15:8] */
	ipv4 = (reg & 0xff) << 8;

	if (mask)
		offset = CORE_CFP_MASK_PORT(0);
	else
		offset = CORE_CFP_DATA_PORT(0);
	reg = core_readl(priv, offset);

	/* Once the TCAM is programmed, the mask reflects the slice number
	 * being matched, don't bother checking it when reading back the
	 * mask spec
	 */
	if (!mask && !(reg & SLICE_VALID))
		return -EINVAL;

	/* IPv4 src [7:0] */
	ipv4 |= (reg >> 24) & 0xff;
	/* IPv4 src [31:16] */
	ipv4 |= ((reg >> 8) & 0xffff) << 16;
	v4_spec->ip4src = cpu_to_be32(ipv4);

	return 0;
}

static int bcm_sf2_cfp_ipv4_rule_get(struct bcm_sf2_priv *priv, int port,
				     struct ethtool_rx_flow_spec *fs)
{
	struct ethtool_tcpip4_spec *v4_spec = NULL, *v4_m_spec = NULL;
	u32 reg;
	int ret;

	reg = core_readl(priv, CORE_CFP_DATA_PORT(6));

	switch ((reg & IPPROTO_MASK) >> IPPROTO_SHIFT) {
	case IPPROTO_TCP:
		fs->flow_type = TCP_V4_FLOW;
		v4_spec = &fs->h_u.tcp_ip4_spec;
		v4_m_spec = &fs->m_u.tcp_ip4_spec;
		break;
	case IPPROTO_UDP:
		fs->flow_type = UDP_V4_FLOW;
		v4_spec = &fs->h_u.udp_ip4_spec;
		v4_m_spec = &fs->m_u.udp_ip4_spec;
		break;
	default:
		return -EINVAL;
	}

	fs->m_ext.data[0] = cpu_to_be32((reg >> IP_FRAG_SHIFT) & 1);
	v4_spec->tos = (reg >> IPTOS_SHIFT) & IPTOS_MASK;

	ret = bcm_sf2_cfp_unslice_ipv4(priv, v4_spec, false);
	if (ret)
		return ret;

	return bcm_sf2_cfp_unslice_ipv4(priv, v4_m_spec, true);
}

static int bcm_sf2_cfp_unslice_ipv6(struct bcm_sf2_priv *priv,
				     __be32 *ip6_addr, __be16 *port,
				     __be32 *ip6_mask, __be16 *port_mask)
{
	u32 reg, tmp;

	/* C-Tag		[31:24]
	 * UDF_n_B8		[23:8] (port)
	 * UDF_n_B7 (upper)	[7:0] (addr[15:8])
	 */
	reg = core_readl(priv, CORE_CFP_DATA_PORT(4));
	*port = cpu_to_be32(reg) >> 8;
	*port_mask = cpu_to_be16(~0);
	tmp = (u32)(reg & 0xff) << 8;

	/* UDF_n_B7 (lower)	[31:24] (addr[7:0])
	 * UDF_n_B6		[23:8] (addr[31:16])
	 * UDF_n_B5 (upper)	[7:0] (addr[47:40])
	 */
	reg = core_readl(priv, CORE_CFP_DATA_PORT(3));
	tmp |= (reg >> 24) & 0xff;
	tmp |= (u32)((reg >> 8) << 16);
	ip6_mask[3] = cpu_to_be32(~0);
	ip6_addr[3] = cpu_to_be32(tmp);
	tmp = (u32)(reg & 0xff) << 8;

	/* UDF_n_B5 (lower)	[31:24] (addr[39:32])
	 * UDF_n_B4		[23:8] (addr[63:48])
	 * UDF_n_B3 (upper)	[7:0] (addr[79:72])
	 */
	reg = core_readl(priv, CORE_CFP_DATA_PORT(2));
	tmp |= (reg >> 24) & 0xff;
	tmp |= (u32)((reg >> 8) << 16);
	ip6_mask[2] = cpu_to_be32(~0);
	ip6_addr[2] = cpu_to_be32(tmp);
	tmp = (u32)(reg & 0xff) << 8;

	/* UDF_n_B3 (lower)	[31:24] (addr[71:64])
	 * UDF_n_B2		[23:8] (addr[95:80])
	 * UDF_n_B1 (upper)	[7:0] (addr[111:104])
	 */
	reg = core_readl(priv, CORE_CFP_DATA_PORT(1));
	tmp |= (reg >> 24) & 0xff;
	tmp |= (u32)((reg >> 8) << 16);
	ip6_mask[1] = cpu_to_be32(~0);
	ip6_addr[1] = cpu_to_be32(tmp);
	tmp = (u32)(reg & 0xff) << 8;

	/* UDF_n_B1 (lower)	[31:24] (addr[103:96])
	 * UDF_n_B0		[23:8] (addr[127:112])
	 * Reserved		[7:4]
	 * Slice ID		[3:2]
	 * Slice valid		[1:0]
	 */
	reg = core_readl(priv, CORE_CFP_DATA_PORT(0));
	tmp |= (reg >> 24) & 0xff;
	tmp |= (u32)((reg >> 8) << 16);
	ip6_mask[0] = cpu_to_be32(~0);
	ip6_addr[0] = cpu_to_be32(tmp);

	if (!(reg & SLICE_VALID))
		return -EINVAL;

	return 0;
}

static int bcm_sf2_cfp_ipv6_rule_get(struct bcm_sf2_priv *priv, int port,
				     struct ethtool_rx_flow_spec *fs,
				     u32 next_loc)
{
	struct ethtool_tcpip6_spec *v6_spec = NULL, *v6_m_spec = NULL;
	u32 reg;
	int ret;

	/* UDPv6 and TCPv6 both use ethtool_tcpip6_spec so we are fine
	 * assuming tcp_ip6_spec here being an union.
	 */
	v6_spec = &fs->h_u.tcp_ip6_spec;
	v6_m_spec = &fs->m_u.tcp_ip6_spec;

	/* Read the second half first */
	ret = bcm_sf2_cfp_unslice_ipv6(priv, v6_spec->ip6dst, &v6_spec->pdst,
				       v6_m_spec->ip6dst, &v6_m_spec->pdst);
	if (ret)
		return ret;

	/* Read last to avoid next entry clobbering the results during search
	 * operations. We would not have the port enabled for this rule, so
	 * don't bother checking it.
	 */
	(void)core_readl(priv, CORE_CFP_DATA_PORT(7));

	/* The slice number is valid, so read the rule we are chained from now
	 * which is our first half.
	 */
	bcm_sf2_cfp_rule_addr_set(priv, next_loc);
	ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
	if (ret)
		return ret;

	reg = core_readl(priv, CORE_CFP_DATA_PORT(6));

	switch ((reg & IPPROTO_MASK) >> IPPROTO_SHIFT) {
	case IPPROTO_TCP:
		fs->flow_type = TCP_V6_FLOW;
		break;
	case IPPROTO_UDP:
		fs->flow_type = UDP_V6_FLOW;
		break;
	default:
		return -EINVAL;
	}

	return bcm_sf2_cfp_unslice_ipv6(priv, v6_spec->ip6src, &v6_spec->psrc,
					v6_m_spec->ip6src, &v6_m_spec->psrc);
}

static int bcm_sf2_cfp_rule_get(struct bcm_sf2_priv *priv, int port,
				struct ethtool_rxnfc *nfc)
{
	u32 reg, ipv4_or_chain_id;
	unsigned int queue_num;
	int ret;

	bcm_sf2_cfp_rule_addr_set(priv, nfc->fs.location);

	ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | ACT_POL_RAM);
	if (ret)
		return ret;

	reg = core_readl(priv, CORE_ACT_POL_DATA0);

	ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
	if (ret)
		return ret;

	/* Extract the destination port */
	nfc->fs.ring_cookie = fls((reg >> DST_MAP_IB_SHIFT) &
				  DST_MAP_IB_MASK) - 1;

	/* There is no Port 6, so we compensate for that here */
	if (nfc->fs.ring_cookie >= 6)
		nfc->fs.ring_cookie++;
	nfc->fs.ring_cookie *= SF2_NUM_EGRESS_QUEUES;

	/* Extract the destination queue */
	queue_num = (reg >> NEW_TC_SHIFT) & NEW_TC_MASK;
	nfc->fs.ring_cookie += queue_num;

	/* Extract the L3_FRAMING or CHAIN_ID */
	reg = core_readl(priv, CORE_CFP_DATA_PORT(6));

	/* With IPv6 rules this would contain a non-zero chain ID since
	 * we reserve entry 0 and it cannot be used. So if we read 0 here
	 * this means an IPv4 rule.
	 */
	ipv4_or_chain_id = (reg >> L3_FRAMING_SHIFT) & 0xff;
	if (ipv4_or_chain_id == 0)
		ret = bcm_sf2_cfp_ipv4_rule_get(priv, port, &nfc->fs);
	else
		ret = bcm_sf2_cfp_ipv6_rule_get(priv, port, &nfc->fs,
						ipv4_or_chain_id);
	if (ret)
		return ret;

	/* Read last to avoid next entry clobbering the results during search
	 * operations
	 */
	reg = core_readl(priv, CORE_CFP_DATA_PORT(7));
	if (!(reg & 1 << port))
		return -EINVAL;

	bcm_sf2_invert_masks(&nfc->fs);

	/* Put the TCAM size here */
	nfc->data = bcm_sf2_cfp_rule_size(priv);

	return 0;
}

/* We implement the search doing a TCAM search operation */
static int bcm_sf2_cfp_rule_get_all(struct bcm_sf2_priv *priv,
				    int port, struct ethtool_rxnfc *nfc,
				    u32 *rule_locs)
{
	unsigned int index = 1, rules_cnt = 0;

	for_each_set_bit_from(index, priv->cfp.unique, priv->num_cfp_rules) {
		rule_locs[rules_cnt] = index;
		rules_cnt++;
	}

	/* Put the TCAM size here */
	nfc->data = bcm_sf2_cfp_rule_size(priv);
	nfc->rule_cnt = rules_cnt;

	return 0;
}

int bcm_sf2_get_rxnfc(struct dsa_switch *ds, int port,
		      struct ethtool_rxnfc *nfc, u32 *rule_locs)
{
	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
	int ret = 0;

	mutex_lock(&priv->cfp.lock);

	switch (nfc->cmd) {
	case ETHTOOL_GRXCLSRLCNT:
		/* Subtract the default, unusable rule */
		nfc->rule_cnt = bitmap_weight(priv->cfp.unique,
					      priv->num_cfp_rules) - 1;
		/* We support specifying rule locations */
		nfc->data |= RX_CLS_LOC_SPECIAL;
		break;
	case ETHTOOL_GRXCLSRULE:
		ret = bcm_sf2_cfp_rule_get(priv, port, nfc);
		break;
	case ETHTOOL_GRXCLSRLALL:
		ret = bcm_sf2_cfp_rule_get_all(priv, port, nfc, rule_locs);
		break;
	default:
		ret = -EOPNOTSUPP;
		break;
	}

	mutex_unlock(&priv->cfp.lock);

	return ret;
}

int bcm_sf2_set_rxnfc(struct dsa_switch *ds, int port,
		      struct ethtool_rxnfc *nfc)
{
	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
	int ret = 0;

	mutex_lock(&priv->cfp.lock);

	switch (nfc->cmd) {
	case ETHTOOL_SRXCLSRLINS:
		ret = bcm_sf2_cfp_rule_set(ds, port, &nfc->fs);
		break;

	case ETHTOOL_SRXCLSRLDEL:
		ret = bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location);
		break;
	default:
		ret = -EOPNOTSUPP;
		break;
	}

	mutex_unlock(&priv->cfp.lock);

	return ret;
}

int bcm_sf2_cfp_rst(struct bcm_sf2_priv *priv)
{
	unsigned int timeout = 1000;
	u32 reg;

	reg = core_readl(priv, CORE_CFP_ACC);
	reg |= TCAM_RESET;
	core_writel(priv, reg, CORE_CFP_ACC);

	do {
		reg = core_readl(priv, CORE_CFP_ACC);
		if (!(reg & TCAM_RESET))
			break;

		cpu_relax();
	} while (timeout--);

	if (!timeout)
		return -ETIMEDOUT;

	return 0;
}