1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
|
// SPDX-License-Identifier: (GPL-2.0 OR MIT)
/*
* DSA driver for:
* Hirschmann Hellcreek TSN switch.
*
* Copyright (C) 2019,2020 Hochschule Offenburg
* Copyright (C) 2019,2020 Linutronix GmbH
* Authors: Kamil Alkhouri <kamil.alkhouri@hs-offenburg.de>
* Kurt Kanzenbach <kurt@linutronix.de>
*/
#include <linux/ptp_clock_kernel.h>
#include "hellcreek.h"
#include "hellcreek_ptp.h"
#include "hellcreek_hwtstamp.h"
u16 hellcreek_ptp_read(struct hellcreek *hellcreek, unsigned int offset)
{
return readw(hellcreek->ptp_base + offset);
}
void hellcreek_ptp_write(struct hellcreek *hellcreek, u16 data,
unsigned int offset)
{
writew(data, hellcreek->ptp_base + offset);
}
/* Get nanoseconds from PTP clock */
static u64 hellcreek_ptp_clock_read(struct hellcreek *hellcreek)
{
u16 nsl, nsh;
/* Take a snapshot */
hellcreek_ptp_write(hellcreek, PR_COMMAND_C_SS, PR_COMMAND_C);
/* The time of the day is saved as 96 bits. However, due to hardware
* limitations the seconds are not or only partly kept in the PTP
* core. Currently only three bits for the seconds are available. That's
* why only the nanoseconds are used and the seconds are tracked in
* software. Anyway due to internal locking all five registers should be
* read.
*/
nsh = hellcreek_ptp_read(hellcreek, PR_SS_SYNC_DATA_C);
nsh = hellcreek_ptp_read(hellcreek, PR_SS_SYNC_DATA_C);
nsh = hellcreek_ptp_read(hellcreek, PR_SS_SYNC_DATA_C);
nsh = hellcreek_ptp_read(hellcreek, PR_SS_SYNC_DATA_C);
nsl = hellcreek_ptp_read(hellcreek, PR_SS_SYNC_DATA_C);
return (u64)nsl | ((u64)nsh << 16);
}
static u64 __hellcreek_ptp_gettime(struct hellcreek *hellcreek)
{
u64 ns;
ns = hellcreek_ptp_clock_read(hellcreek);
if (ns < hellcreek->last_ts)
hellcreek->seconds++;
hellcreek->last_ts = ns;
ns += hellcreek->seconds * NSEC_PER_SEC;
return ns;
}
/* Retrieve the seconds parts in nanoseconds for a packet timestamped with @ns.
* There has to be a check whether an overflow occurred between the packet
* arrival and now. If so use the correct seconds (-1) for calculating the
* packet arrival time.
*/
u64 hellcreek_ptp_gettime_seconds(struct hellcreek *hellcreek, u64 ns)
{
u64 s;
__hellcreek_ptp_gettime(hellcreek);
if (hellcreek->last_ts > ns)
s = hellcreek->seconds * NSEC_PER_SEC;
else
s = (hellcreek->seconds - 1) * NSEC_PER_SEC;
return s;
}
static int hellcreek_ptp_gettime(struct ptp_clock_info *ptp,
struct timespec64 *ts)
{
struct hellcreek *hellcreek = ptp_to_hellcreek(ptp);
u64 ns;
mutex_lock(&hellcreek->ptp_lock);
ns = __hellcreek_ptp_gettime(hellcreek);
mutex_unlock(&hellcreek->ptp_lock);
*ts = ns_to_timespec64(ns);
return 0;
}
static int hellcreek_ptp_settime(struct ptp_clock_info *ptp,
const struct timespec64 *ts)
{
struct hellcreek *hellcreek = ptp_to_hellcreek(ptp);
u16 secl, nsh, nsl;
secl = ts->tv_sec & 0xffff;
nsh = ((u32)ts->tv_nsec & 0xffff0000) >> 16;
nsl = ts->tv_nsec & 0xffff;
mutex_lock(&hellcreek->ptp_lock);
/* Update overflow data structure */
hellcreek->seconds = ts->tv_sec;
hellcreek->last_ts = ts->tv_nsec;
/* Set time in clock */
hellcreek_ptp_write(hellcreek, 0x00, PR_CLOCK_WRITE_C);
hellcreek_ptp_write(hellcreek, 0x00, PR_CLOCK_WRITE_C);
hellcreek_ptp_write(hellcreek, secl, PR_CLOCK_WRITE_C);
hellcreek_ptp_write(hellcreek, nsh, PR_CLOCK_WRITE_C);
hellcreek_ptp_write(hellcreek, nsl, PR_CLOCK_WRITE_C);
mutex_unlock(&hellcreek->ptp_lock);
return 0;
}
static int hellcreek_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
{
struct hellcreek *hellcreek = ptp_to_hellcreek(ptp);
u16 negative = 0, addendh, addendl;
u32 addend;
u64 adj;
if (scaled_ppm < 0) {
negative = 1;
scaled_ppm = -scaled_ppm;
}
/* IP-Core adjusts the nominal frequency by adding or subtracting 1 ns
* from the 8 ns (period of the oscillator) every time the accumulator
* register overflows. The value stored in the addend register is added
* to the accumulator register every 8 ns.
*
* addend value = (2^30 * accumulator_overflow_rate) /
* oscillator_frequency
* where:
*
* oscillator_frequency = 125 MHz
* accumulator_overflow_rate = 125 MHz * scaled_ppm * 2^-16 * 10^-6 * 8
*/
adj = scaled_ppm;
adj <<= 11;
addend = (u32)div_u64(adj, 15625);
addendh = (addend & 0xffff0000) >> 16;
addendl = addend & 0xffff;
negative = (negative << 15) & 0x8000;
mutex_lock(&hellcreek->ptp_lock);
/* Set drift register */
hellcreek_ptp_write(hellcreek, negative, PR_CLOCK_DRIFT_C);
hellcreek_ptp_write(hellcreek, 0x00, PR_CLOCK_DRIFT_C);
hellcreek_ptp_write(hellcreek, 0x00, PR_CLOCK_DRIFT_C);
hellcreek_ptp_write(hellcreek, addendh, PR_CLOCK_DRIFT_C);
hellcreek_ptp_write(hellcreek, addendl, PR_CLOCK_DRIFT_C);
mutex_unlock(&hellcreek->ptp_lock);
return 0;
}
static int hellcreek_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
{
struct hellcreek *hellcreek = ptp_to_hellcreek(ptp);
u16 negative = 0, counth, countl;
u32 count_val;
/* If the offset is larger than IP-Core slow offset resources. Don't
* consider slow adjustment. Rather, add the offset directly to the
* current time
*/
if (abs(delta) > MAX_SLOW_OFFSET_ADJ) {
struct timespec64 now, then = ns_to_timespec64(delta);
hellcreek_ptp_gettime(ptp, &now);
now = timespec64_add(now, then);
hellcreek_ptp_settime(ptp, &now);
return 0;
}
if (delta < 0) {
negative = 1;
delta = -delta;
}
/* 'count_val' does not exceed the maximum register size (2^30) */
count_val = div_s64(delta, MAX_NS_PER_STEP);
counth = (count_val & 0xffff0000) >> 16;
countl = count_val & 0xffff;
negative = (negative << 15) & 0x8000;
mutex_lock(&hellcreek->ptp_lock);
/* Set offset write register */
hellcreek_ptp_write(hellcreek, negative, PR_CLOCK_OFFSET_C);
hellcreek_ptp_write(hellcreek, MAX_NS_PER_STEP, PR_CLOCK_OFFSET_C);
hellcreek_ptp_write(hellcreek, MIN_CLK_CYCLES_BETWEEN_STEPS,
PR_CLOCK_OFFSET_C);
hellcreek_ptp_write(hellcreek, countl, PR_CLOCK_OFFSET_C);
hellcreek_ptp_write(hellcreek, counth, PR_CLOCK_OFFSET_C);
mutex_unlock(&hellcreek->ptp_lock);
return 0;
}
static int hellcreek_ptp_enable(struct ptp_clock_info *ptp,
struct ptp_clock_request *rq, int on)
{
return -EOPNOTSUPP;
}
static void hellcreek_ptp_overflow_check(struct work_struct *work)
{
struct delayed_work *dw = to_delayed_work(work);
struct hellcreek *hellcreek;
hellcreek = dw_overflow_to_hellcreek(dw);
mutex_lock(&hellcreek->ptp_lock);
__hellcreek_ptp_gettime(hellcreek);
mutex_unlock(&hellcreek->ptp_lock);
schedule_delayed_work(&hellcreek->overflow_work,
HELLCREEK_OVERFLOW_PERIOD);
}
static enum led_brightness hellcreek_get_brightness(struct hellcreek *hellcreek,
int led)
{
return (hellcreek->status_out & led) ? 1 : 0;
}
static void hellcreek_set_brightness(struct hellcreek *hellcreek, int led,
enum led_brightness b)
{
mutex_lock(&hellcreek->ptp_lock);
if (b)
hellcreek->status_out |= led;
else
hellcreek->status_out &= ~led;
hellcreek_ptp_write(hellcreek, hellcreek->status_out, STATUS_OUT);
mutex_unlock(&hellcreek->ptp_lock);
}
static void hellcreek_led_sync_good_set(struct led_classdev *ldev,
enum led_brightness b)
{
struct hellcreek *hellcreek = led_to_hellcreek(ldev, led_sync_good);
hellcreek_set_brightness(hellcreek, STATUS_OUT_SYNC_GOOD, b);
}
static enum led_brightness hellcreek_led_sync_good_get(struct led_classdev *ldev)
{
struct hellcreek *hellcreek = led_to_hellcreek(ldev, led_sync_good);
return hellcreek_get_brightness(hellcreek, STATUS_OUT_SYNC_GOOD);
}
static void hellcreek_led_is_gm_set(struct led_classdev *ldev,
enum led_brightness b)
{
struct hellcreek *hellcreek = led_to_hellcreek(ldev, led_is_gm);
hellcreek_set_brightness(hellcreek, STATUS_OUT_IS_GM, b);
}
static enum led_brightness hellcreek_led_is_gm_get(struct led_classdev *ldev)
{
struct hellcreek *hellcreek = led_to_hellcreek(ldev, led_is_gm);
return hellcreek_get_brightness(hellcreek, STATUS_OUT_IS_GM);
}
/* There two available LEDs internally called sync_good and is_gm. However, the
* user might want to use a different label and specify the default state. Take
* those properties from device tree.
*/
static int hellcreek_led_setup(struct hellcreek *hellcreek)
{
struct device_node *leds, *led = NULL;
enum led_default_state state;
const char *label;
int ret = -EINVAL;
of_node_get(hellcreek->dev->of_node);
leds = of_find_node_by_name(hellcreek->dev->of_node, "leds");
if (!leds) {
dev_err(hellcreek->dev, "No LEDs specified in device tree!\n");
return ret;
}
hellcreek->status_out = 0;
led = of_get_next_available_child(leds, led);
if (!led) {
dev_err(hellcreek->dev, "First LED not specified!\n");
goto out;
}
ret = of_property_read_string(led, "label", &label);
hellcreek->led_sync_good.name = ret ? "sync_good" : label;
state = led_init_default_state_get(of_fwnode_handle(led));
switch (state) {
case LEDS_DEFSTATE_ON:
hellcreek->led_sync_good.brightness = 1;
break;
case LEDS_DEFSTATE_KEEP:
hellcreek->led_sync_good.brightness =
hellcreek_get_brightness(hellcreek, STATUS_OUT_SYNC_GOOD);
break;
default:
hellcreek->led_sync_good.brightness = 0;
}
hellcreek->led_sync_good.max_brightness = 1;
hellcreek->led_sync_good.brightness_set = hellcreek_led_sync_good_set;
hellcreek->led_sync_good.brightness_get = hellcreek_led_sync_good_get;
led = of_get_next_available_child(leds, led);
if (!led) {
dev_err(hellcreek->dev, "Second LED not specified!\n");
ret = -EINVAL;
goto out;
}
ret = of_property_read_string(led, "label", &label);
hellcreek->led_is_gm.name = ret ? "is_gm" : label;
state = led_init_default_state_get(of_fwnode_handle(led));
switch (state) {
case LEDS_DEFSTATE_ON:
hellcreek->led_is_gm.brightness = 1;
break;
case LEDS_DEFSTATE_KEEP:
hellcreek->led_is_gm.brightness =
hellcreek_get_brightness(hellcreek, STATUS_OUT_IS_GM);
break;
default:
hellcreek->led_is_gm.brightness = 0;
}
hellcreek->led_is_gm.max_brightness = 1;
hellcreek->led_is_gm.brightness_set = hellcreek_led_is_gm_set;
hellcreek->led_is_gm.brightness_get = hellcreek_led_is_gm_get;
/* Set initial state */
if (hellcreek->led_sync_good.brightness == 1)
hellcreek_set_brightness(hellcreek, STATUS_OUT_SYNC_GOOD, 1);
if (hellcreek->led_is_gm.brightness == 1)
hellcreek_set_brightness(hellcreek, STATUS_OUT_IS_GM, 1);
/* Register both leds */
led_classdev_register(hellcreek->dev, &hellcreek->led_sync_good);
led_classdev_register(hellcreek->dev, &hellcreek->led_is_gm);
ret = 0;
out:
of_node_put(leds);
return ret;
}
int hellcreek_ptp_setup(struct hellcreek *hellcreek)
{
u16 status;
int ret;
/* Set up the overflow work */
INIT_DELAYED_WORK(&hellcreek->overflow_work,
hellcreek_ptp_overflow_check);
/* Setup PTP clock */
hellcreek->ptp_clock_info.owner = THIS_MODULE;
snprintf(hellcreek->ptp_clock_info.name,
sizeof(hellcreek->ptp_clock_info.name),
dev_name(hellcreek->dev));
/* IP-Core can add up to 0.5 ns per 8 ns cycle, which means
* accumulator_overflow_rate shall not exceed 62.5 MHz (which adjusts
* the nominal frequency by 6.25%)
*/
hellcreek->ptp_clock_info.max_adj = 62500000;
hellcreek->ptp_clock_info.n_alarm = 0;
hellcreek->ptp_clock_info.n_pins = 0;
hellcreek->ptp_clock_info.n_ext_ts = 0;
hellcreek->ptp_clock_info.n_per_out = 0;
hellcreek->ptp_clock_info.pps = 0;
hellcreek->ptp_clock_info.adjfine = hellcreek_ptp_adjfine;
hellcreek->ptp_clock_info.adjtime = hellcreek_ptp_adjtime;
hellcreek->ptp_clock_info.gettime64 = hellcreek_ptp_gettime;
hellcreek->ptp_clock_info.settime64 = hellcreek_ptp_settime;
hellcreek->ptp_clock_info.enable = hellcreek_ptp_enable;
hellcreek->ptp_clock_info.do_aux_work = hellcreek_hwtstamp_work;
hellcreek->ptp_clock = ptp_clock_register(&hellcreek->ptp_clock_info,
hellcreek->dev);
if (IS_ERR(hellcreek->ptp_clock))
return PTR_ERR(hellcreek->ptp_clock);
/* Enable the offset correction process, if no offset correction is
* already taking place
*/
status = hellcreek_ptp_read(hellcreek, PR_CLOCK_STATUS_C);
if (!(status & PR_CLOCK_STATUS_C_OFS_ACT))
hellcreek_ptp_write(hellcreek,
status | PR_CLOCK_STATUS_C_ENA_OFS,
PR_CLOCK_STATUS_C);
/* Enable the drift correction process */
hellcreek_ptp_write(hellcreek, status | PR_CLOCK_STATUS_C_ENA_DRIFT,
PR_CLOCK_STATUS_C);
/* LED setup */
ret = hellcreek_led_setup(hellcreek);
if (ret) {
if (hellcreek->ptp_clock)
ptp_clock_unregister(hellcreek->ptp_clock);
return ret;
}
schedule_delayed_work(&hellcreek->overflow_work,
HELLCREEK_OVERFLOW_PERIOD);
return 0;
}
void hellcreek_ptp_free(struct hellcreek *hellcreek)
{
led_classdev_unregister(&hellcreek->led_is_gm);
led_classdev_unregister(&hellcreek->led_sync_good);
cancel_delayed_work_sync(&hellcreek->overflow_work);
if (hellcreek->ptp_clock)
ptp_clock_unregister(hellcreek->ptp_clock);
hellcreek->ptp_clock = NULL;
}
|