summaryrefslogtreecommitdiffstats
path: root/drivers/net/e1000e/lib.c
blob: f664fc03aa2be4767a90ca3398c964eed3dad64b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
/*******************************************************************************

  Intel PRO/1000 Linux driver
  Copyright(c) 1999 - 2008 Intel Corporation.

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  Linux NICS <linux.nics@intel.com>
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

#include "e1000.h"

enum e1000_mng_mode {
	e1000_mng_mode_none = 0,
	e1000_mng_mode_asf,
	e1000_mng_mode_pt,
	e1000_mng_mode_ipmi,
	e1000_mng_mode_host_if_only
};

#define E1000_FACTPS_MNGCG		0x20000000

/* Intel(R) Active Management Technology signature */
#define E1000_IAMT_SIGNATURE		0x544D4149

/**
 *  e1000e_get_bus_info_pcie - Get PCIe bus information
 *  @hw: pointer to the HW structure
 *
 *  Determines and stores the system bus information for a particular
 *  network interface.  The following bus information is determined and stored:
 *  bus speed, bus width, type (PCIe), and PCIe function.
 **/
s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw)
{
	struct e1000_bus_info *bus = &hw->bus;
	struct e1000_adapter *adapter = hw->adapter;
	u32 status;
	u16 pcie_link_status, pci_header_type, cap_offset;

	cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
	if (!cap_offset) {
		bus->width = e1000_bus_width_unknown;
	} else {
		pci_read_config_word(adapter->pdev,
				     cap_offset + PCIE_LINK_STATUS,
				     &pcie_link_status);
		bus->width = (enum e1000_bus_width)((pcie_link_status &
						     PCIE_LINK_WIDTH_MASK) >>
						    PCIE_LINK_WIDTH_SHIFT);
	}

	pci_read_config_word(adapter->pdev, PCI_HEADER_TYPE_REGISTER,
			     &pci_header_type);
	if (pci_header_type & PCI_HEADER_TYPE_MULTIFUNC) {
		status = er32(STATUS);
		bus->func = (status & E1000_STATUS_FUNC_MASK)
			    >> E1000_STATUS_FUNC_SHIFT;
	} else {
		bus->func = 0;
	}

	return 0;
}

/**
 *  e1000e_write_vfta - Write value to VLAN filter table
 *  @hw: pointer to the HW structure
 *  @offset: register offset in VLAN filter table
 *  @value: register value written to VLAN filter table
 *
 *  Writes value at the given offset in the register array which stores
 *  the VLAN filter table.
 **/
void e1000e_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
{
	E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
	e1e_flush();
}

/**
 *  e1000e_init_rx_addrs - Initialize receive address's
 *  @hw: pointer to the HW structure
 *  @rar_count: receive address registers
 *
 *  Setups the receive address registers by setting the base receive address
 *  register to the devices MAC address and clearing all the other receive
 *  address registers to 0.
 **/
void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
{
	u32 i;

	/* Setup the receive address */
	e_dbg("Programming MAC Address into RAR[0]\n");

	e1000e_rar_set(hw, hw->mac.addr, 0);

	/* Zero out the other (rar_entry_count - 1) receive addresses */
	e_dbg("Clearing RAR[1-%u]\n", rar_count-1);
	for (i = 1; i < rar_count; i++) {
		E1000_WRITE_REG_ARRAY(hw, E1000_RA, (i << 1), 0);
		e1e_flush();
		E1000_WRITE_REG_ARRAY(hw, E1000_RA, ((i << 1) + 1), 0);
		e1e_flush();
	}
}

/**
 *  e1000e_rar_set - Set receive address register
 *  @hw: pointer to the HW structure
 *  @addr: pointer to the receive address
 *  @index: receive address array register
 *
 *  Sets the receive address array register at index to the address passed
 *  in by addr.
 **/
void e1000e_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
{
	u32 rar_low, rar_high;

	/*
	 * HW expects these in little endian so we reverse the byte order
	 * from network order (big endian) to little endian
	 */
	rar_low = ((u32) addr[0] |
		   ((u32) addr[1] << 8) |
		    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));

	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));

	rar_high |= E1000_RAH_AV;

	E1000_WRITE_REG_ARRAY(hw, E1000_RA, (index << 1), rar_low);
	E1000_WRITE_REG_ARRAY(hw, E1000_RA, ((index << 1) + 1), rar_high);
}

/**
 *  e1000_hash_mc_addr - Generate a multicast hash value
 *  @hw: pointer to the HW structure
 *  @mc_addr: pointer to a multicast address
 *
 *  Generates a multicast address hash value which is used to determine
 *  the multicast filter table array address and new table value.  See
 *  e1000_mta_set_generic()
 **/
static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
{
	u32 hash_value, hash_mask;
	u8 bit_shift = 0;

	/* Register count multiplied by bits per register */
	hash_mask = (hw->mac.mta_reg_count * 32) - 1;

	/*
	 * For a mc_filter_type of 0, bit_shift is the number of left-shifts
	 * where 0xFF would still fall within the hash mask.
	 */
	while (hash_mask >> bit_shift != 0xFF)
		bit_shift++;

	/*
	 * The portion of the address that is used for the hash table
	 * is determined by the mc_filter_type setting.
	 * The algorithm is such that there is a total of 8 bits of shifting.
	 * The bit_shift for a mc_filter_type of 0 represents the number of
	 * left-shifts where the MSB of mc_addr[5] would still fall within
	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
	 * of 8 bits of shifting, then mc_addr[4] will shift right the
	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
	 * cases are a variation of this algorithm...essentially raising the
	 * number of bits to shift mc_addr[5] left, while still keeping the
	 * 8-bit shifting total.
	 *
	 * For example, given the following Destination MAC Address and an
	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
	 * we can see that the bit_shift for case 0 is 4.  These are the hash
	 * values resulting from each mc_filter_type...
	 * [0] [1] [2] [3] [4] [5]
	 * 01  AA  00  12  34  56
	 * LSB		 MSB
	 *
	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
	 */
	switch (hw->mac.mc_filter_type) {
	default:
	case 0:
		break;
	case 1:
		bit_shift += 1;
		break;
	case 2:
		bit_shift += 2;
		break;
	case 3:
		bit_shift += 4;
		break;
	}

	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
				  (((u16) mc_addr[5]) << bit_shift)));

	return hash_value;
}

/**
 *  e1000e_update_mc_addr_list_generic - Update Multicast addresses
 *  @hw: pointer to the HW structure
 *  @mc_addr_list: array of multicast addresses to program
 *  @mc_addr_count: number of multicast addresses to program
 *  @rar_used_count: the first RAR register free to program
 *  @rar_count: total number of supported Receive Address Registers
 *
 *  Updates the Receive Address Registers and Multicast Table Array.
 *  The caller must have a packed mc_addr_list of multicast addresses.
 *  The parameter rar_count will usually be hw->mac.rar_entry_count
 *  unless there are workarounds that change this.
 **/
void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw,
					u8 *mc_addr_list, u32 mc_addr_count,
					u32 rar_used_count, u32 rar_count)
{
	u32 i;
	u32 *mcarray = kzalloc(hw->mac.mta_reg_count * sizeof(u32), GFP_ATOMIC);

	if (!mcarray) {
		printk(KERN_ERR "multicast array memory allocation failed\n");
		return;
	}

	/*
	 * Load the first set of multicast addresses into the exact
	 * filters (RAR).  If there are not enough to fill the RAR
	 * array, clear the filters.
	 */
	for (i = rar_used_count; i < rar_count; i++) {
		if (mc_addr_count) {
			e1000e_rar_set(hw, mc_addr_list, i);
			mc_addr_count--;
			mc_addr_list += ETH_ALEN;
		} else {
			E1000_WRITE_REG_ARRAY(hw, E1000_RA, i << 1, 0);
			e1e_flush();
			E1000_WRITE_REG_ARRAY(hw, E1000_RA, (i << 1) + 1, 0);
			e1e_flush();
		}
	}

	/* Load any remaining multicast addresses into the hash table. */
	for (; mc_addr_count > 0; mc_addr_count--) {
		u32 hash_value, hash_reg, hash_bit, mta;
		hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
		e_dbg("Hash value = 0x%03X\n", hash_value);
		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
		hash_bit = hash_value & 0x1F;
		mta = (1 << hash_bit);
		mcarray[hash_reg] |= mta;
		mc_addr_list += ETH_ALEN;
	}

	/* write the hash table completely */
	for (i = 0; i < hw->mac.mta_reg_count; i++)
		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, mcarray[i]);

	e1e_flush();
	kfree(mcarray);
}

/**
 *  e1000e_clear_hw_cntrs_base - Clear base hardware counters
 *  @hw: pointer to the HW structure
 *
 *  Clears the base hardware counters by reading the counter registers.
 **/
void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw)
{
	u32 temp;

	temp = er32(CRCERRS);
	temp = er32(SYMERRS);
	temp = er32(MPC);
	temp = er32(SCC);
	temp = er32(ECOL);
	temp = er32(MCC);
	temp = er32(LATECOL);
	temp = er32(COLC);
	temp = er32(DC);
	temp = er32(SEC);
	temp = er32(RLEC);
	temp = er32(XONRXC);
	temp = er32(XONTXC);
	temp = er32(XOFFRXC);
	temp = er32(XOFFTXC);
	temp = er32(FCRUC);
	temp = er32(GPRC);
	temp = er32(BPRC);
	temp = er32(MPRC);
	temp = er32(GPTC);
	temp = er32(GORCL);
	temp = er32(GORCH);
	temp = er32(GOTCL);
	temp = er32(GOTCH);
	temp = er32(RNBC);
	temp = er32(RUC);
	temp = er32(RFC);
	temp = er32(ROC);
	temp = er32(RJC);
	temp = er32(TORL);
	temp = er32(TORH);
	temp = er32(TOTL);
	temp = er32(TOTH);
	temp = er32(TPR);
	temp = er32(TPT);
	temp = er32(MPTC);
	temp = er32(BPTC);
}

/**
 *  e1000e_check_for_copper_link - Check for link (Copper)
 *  @hw: pointer to the HW structure
 *
 *  Checks to see of the link status of the hardware has changed.  If a
 *  change in link status has been detected, then we read the PHY registers
 *  to get the current speed/duplex if link exists.
 **/
s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	s32 ret_val;
	bool link;

	/*
	 * We only want to go out to the PHY registers to see if Auto-Neg
	 * has completed and/or if our link status has changed.  The
	 * get_link_status flag is set upon receiving a Link Status
	 * Change or Rx Sequence Error interrupt.
	 */
	if (!mac->get_link_status)
		return 0;

	/*
	 * First we want to see if the MII Status Register reports
	 * link.  If so, then we want to get the current speed/duplex
	 * of the PHY.
	 */
	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
	if (ret_val)
		return ret_val;

	if (!link)
		return ret_val; /* No link detected */

	mac->get_link_status = 0;

	/*
	 * Check if there was DownShift, must be checked
	 * immediately after link-up
	 */
	e1000e_check_downshift(hw);

	/*
	 * If we are forcing speed/duplex, then we simply return since
	 * we have already determined whether we have link or not.
	 */
	if (!mac->autoneg) {
		ret_val = -E1000_ERR_CONFIG;
		return ret_val;
	}

	/*
	 * Auto-Neg is enabled.  Auto Speed Detection takes care
	 * of MAC speed/duplex configuration.  So we only need to
	 * configure Collision Distance in the MAC.
	 */
	e1000e_config_collision_dist(hw);

	/*
	 * Configure Flow Control now that Auto-Neg has completed.
	 * First, we need to restore the desired flow control
	 * settings because we may have had to re-autoneg with a
	 * different link partner.
	 */
	ret_val = e1000e_config_fc_after_link_up(hw);
	if (ret_val) {
		e_dbg("Error configuring flow control\n");
	}

	return ret_val;
}

/**
 *  e1000e_check_for_fiber_link - Check for link (Fiber)
 *  @hw: pointer to the HW structure
 *
 *  Checks for link up on the hardware.  If link is not up and we have
 *  a signal, then we need to force link up.
 **/
s32 e1000e_check_for_fiber_link(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 rxcw;
	u32 ctrl;
	u32 status;
	s32 ret_val;

	ctrl = er32(CTRL);
	status = er32(STATUS);
	rxcw = er32(RXCW);

	/*
	 * If we don't have link (auto-negotiation failed or link partner
	 * cannot auto-negotiate), the cable is plugged in (we have signal),
	 * and our link partner is not trying to auto-negotiate with us (we
	 * are receiving idles or data), we need to force link up. We also
	 * need to give auto-negotiation time to complete, in case the cable
	 * was just plugged in. The autoneg_failed flag does this.
	 */
	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
	if ((ctrl & E1000_CTRL_SWDPIN1) && (!(status & E1000_STATUS_LU)) &&
	    (!(rxcw & E1000_RXCW_C))) {
		if (mac->autoneg_failed == 0) {
			mac->autoneg_failed = 1;
			return 0;
		}
		e_dbg("NOT RXing /C/, disable AutoNeg and force link.\n");

		/* Disable auto-negotiation in the TXCW register */
		ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));

		/* Force link-up and also force full-duplex. */
		ctrl = er32(CTRL);
		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
		ew32(CTRL, ctrl);

		/* Configure Flow Control after forcing link up. */
		ret_val = e1000e_config_fc_after_link_up(hw);
		if (ret_val) {
			e_dbg("Error configuring flow control\n");
			return ret_val;
		}
	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
		/*
		 * If we are forcing link and we are receiving /C/ ordered
		 * sets, re-enable auto-negotiation in the TXCW register
		 * and disable forced link in the Device Control register
		 * in an attempt to auto-negotiate with our link partner.
		 */
		e_dbg("RXing /C/, enable AutoNeg and stop forcing link.\n");
		ew32(TXCW, mac->txcw);
		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));

		mac->serdes_has_link = true;
	}

	return 0;
}

/**
 *  e1000e_check_for_serdes_link - Check for link (Serdes)
 *  @hw: pointer to the HW structure
 *
 *  Checks for link up on the hardware.  If link is not up and we have
 *  a signal, then we need to force link up.
 **/
s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 rxcw;
	u32 ctrl;
	u32 status;
	s32 ret_val;

	ctrl = er32(CTRL);
	status = er32(STATUS);
	rxcw = er32(RXCW);

	/*
	 * If we don't have link (auto-negotiation failed or link partner
	 * cannot auto-negotiate), and our link partner is not trying to
	 * auto-negotiate with us (we are receiving idles or data),
	 * we need to force link up. We also need to give auto-negotiation
	 * time to complete.
	 */
	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
	if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
		if (mac->autoneg_failed == 0) {
			mac->autoneg_failed = 1;
			return 0;
		}
		e_dbg("NOT RXing /C/, disable AutoNeg and force link.\n");

		/* Disable auto-negotiation in the TXCW register */
		ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));

		/* Force link-up and also force full-duplex. */
		ctrl = er32(CTRL);
		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
		ew32(CTRL, ctrl);

		/* Configure Flow Control after forcing link up. */
		ret_val = e1000e_config_fc_after_link_up(hw);
		if (ret_val) {
			e_dbg("Error configuring flow control\n");
			return ret_val;
		}
	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
		/*
		 * If we are forcing link and we are receiving /C/ ordered
		 * sets, re-enable auto-negotiation in the TXCW register
		 * and disable forced link in the Device Control register
		 * in an attempt to auto-negotiate with our link partner.
		 */
		e_dbg("RXing /C/, enable AutoNeg and stop forcing link.\n");
		ew32(TXCW, mac->txcw);
		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));

		mac->serdes_has_link = true;
	} else if (!(E1000_TXCW_ANE & er32(TXCW))) {
		/*
		 * If we force link for non-auto-negotiation switch, check
		 * link status based on MAC synchronization for internal
		 * serdes media type.
		 */
		/* SYNCH bit and IV bit are sticky. */
		udelay(10);
		rxcw = er32(RXCW);
		if (rxcw & E1000_RXCW_SYNCH) {
			if (!(rxcw & E1000_RXCW_IV)) {
				mac->serdes_has_link = true;
				e_dbg("SERDES: Link up - forced.\n");
			}
		} else {
			mac->serdes_has_link = false;
			e_dbg("SERDES: Link down - force failed.\n");
		}
	}

	if (E1000_TXCW_ANE & er32(TXCW)) {
		status = er32(STATUS);
		if (status & E1000_STATUS_LU) {
			/* SYNCH bit and IV bit are sticky, so reread rxcw.  */
			udelay(10);
			rxcw = er32(RXCW);
			if (rxcw & E1000_RXCW_SYNCH) {
				if (!(rxcw & E1000_RXCW_IV)) {
					mac->serdes_has_link = true;
					e_dbg("SERDES: Link up - autoneg "
					   "completed sucessfully.\n");
				} else {
					mac->serdes_has_link = false;
					e_dbg("SERDES: Link down - invalid"
					   "codewords detected in autoneg.\n");
				}
			} else {
				mac->serdes_has_link = false;
				e_dbg("SERDES: Link down - no sync.\n");
			}
		} else {
			mac->serdes_has_link = false;
			e_dbg("SERDES: Link down - autoneg failed\n");
		}
	}

	return 0;
}

/**
 *  e1000_set_default_fc_generic - Set flow control default values
 *  @hw: pointer to the HW structure
 *
 *  Read the EEPROM for the default values for flow control and store the
 *  values.
 **/
static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 nvm_data;

	/*
	 * Read and store word 0x0F of the EEPROM. This word contains bits
	 * that determine the hardware's default PAUSE (flow control) mode,
	 * a bit that determines whether the HW defaults to enabling or
	 * disabling auto-negotiation, and the direction of the
	 * SW defined pins. If there is no SW over-ride of the flow
	 * control setting, then the variable hw->fc will
	 * be initialized based on a value in the EEPROM.
	 */
	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);

	if (ret_val) {
		e_dbg("NVM Read Error\n");
		return ret_val;
	}

	if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
		hw->fc.requested_mode = e1000_fc_none;
	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
		 NVM_WORD0F_ASM_DIR)
		hw->fc.requested_mode = e1000_fc_tx_pause;
	else
		hw->fc.requested_mode = e1000_fc_full;

	return 0;
}

/**
 *  e1000e_setup_link - Setup flow control and link settings
 *  @hw: pointer to the HW structure
 *
 *  Determines which flow control settings to use, then configures flow
 *  control.  Calls the appropriate media-specific link configuration
 *  function.  Assuming the adapter has a valid link partner, a valid link
 *  should be established.  Assumes the hardware has previously been reset
 *  and the transmitter and receiver are not enabled.
 **/
s32 e1000e_setup_link(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	s32 ret_val;

	/*
	 * In the case of the phy reset being blocked, we already have a link.
	 * We do not need to set it up again.
	 */
	if (e1000_check_reset_block(hw))
		return 0;

	/*
	 * If requested flow control is set to default, set flow control
	 * based on the EEPROM flow control settings.
	 */
	if (hw->fc.requested_mode == e1000_fc_default) {
		ret_val = e1000_set_default_fc_generic(hw);
		if (ret_val)
			return ret_val;
	}

	/*
	 * Save off the requested flow control mode for use later.  Depending
	 * on the link partner's capabilities, we may or may not use this mode.
	 */
	hw->fc.current_mode = hw->fc.requested_mode;

	e_dbg("After fix-ups FlowControl is now = %x\n",
		hw->fc.current_mode);

	/* Call the necessary media_type subroutine to configure the link. */
	ret_val = mac->ops.setup_physical_interface(hw);
	if (ret_val)
		return ret_val;

	/*
	 * Initialize the flow control address, type, and PAUSE timer
	 * registers to their default values.  This is done even if flow
	 * control is disabled, because it does not hurt anything to
	 * initialize these registers.
	 */
	e_dbg("Initializing the Flow Control address, type and timer regs\n");
	ew32(FCT, FLOW_CONTROL_TYPE);
	ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
	ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);

	ew32(FCTTV, hw->fc.pause_time);

	return e1000e_set_fc_watermarks(hw);
}

/**
 *  e1000_commit_fc_settings_generic - Configure flow control
 *  @hw: pointer to the HW structure
 *
 *  Write the flow control settings to the Transmit Config Word Register (TXCW)
 *  base on the flow control settings in e1000_mac_info.
 **/
static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 txcw;

	/*
	 * Check for a software override of the flow control settings, and
	 * setup the device accordingly.  If auto-negotiation is enabled, then
	 * software will have to set the "PAUSE" bits to the correct value in
	 * the Transmit Config Word Register (TXCW) and re-start auto-
	 * negotiation.  However, if auto-negotiation is disabled, then
	 * software will have to manually configure the two flow control enable
	 * bits in the CTRL register.
	 *
	 * The possible values of the "fc" parameter are:
	 *      0:  Flow control is completely disabled
	 *      1:  Rx flow control is enabled (we can receive pause frames,
	 *	  but not send pause frames).
	 *      2:  Tx flow control is enabled (we can send pause frames but we
	 *	  do not support receiving pause frames).
	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
	 */
	switch (hw->fc.current_mode) {
	case e1000_fc_none:
		/* Flow control completely disabled by a software over-ride. */
		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
		break;
	case e1000_fc_rx_pause:
		/*
		 * Rx Flow control is enabled and Tx Flow control is disabled
		 * by a software over-ride. Since there really isn't a way to
		 * advertise that we are capable of Rx Pause ONLY, we will
		 * advertise that we support both symmetric and asymmetric Rx
		 * PAUSE.  Later, we will disable the adapter's ability to send
		 * PAUSE frames.
		 */
		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
		break;
	case e1000_fc_tx_pause:
		/*
		 * Tx Flow control is enabled, and Rx Flow control is disabled,
		 * by a software over-ride.
		 */
		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
		break;
	case e1000_fc_full:
		/*
		 * Flow control (both Rx and Tx) is enabled by a software
		 * over-ride.
		 */
		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
		break;
	default:
		e_dbg("Flow control param set incorrectly\n");
		return -E1000_ERR_CONFIG;
		break;
	}

	ew32(TXCW, txcw);
	mac->txcw = txcw;

	return 0;
}

/**
 *  e1000_poll_fiber_serdes_link_generic - Poll for link up
 *  @hw: pointer to the HW structure
 *
 *  Polls for link up by reading the status register, if link fails to come
 *  up with auto-negotiation, then the link is forced if a signal is detected.
 **/
static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 i, status;
	s32 ret_val;

	/*
	 * If we have a signal (the cable is plugged in, or assumed true for
	 * serdes media) then poll for a "Link-Up" indication in the Device
	 * Status Register.  Time-out if a link isn't seen in 500 milliseconds
	 * seconds (Auto-negotiation should complete in less than 500
	 * milliseconds even if the other end is doing it in SW).
	 */
	for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
		msleep(10);
		status = er32(STATUS);
		if (status & E1000_STATUS_LU)
			break;
	}
	if (i == FIBER_LINK_UP_LIMIT) {
		e_dbg("Never got a valid link from auto-neg!!!\n");
		mac->autoneg_failed = 1;
		/*
		 * AutoNeg failed to achieve a link, so we'll call
		 * mac->check_for_link. This routine will force the
		 * link up if we detect a signal. This will allow us to
		 * communicate with non-autonegotiating link partners.
		 */
		ret_val = mac->ops.check_for_link(hw);
		if (ret_val) {
			e_dbg("Error while checking for link\n");
			return ret_val;
		}
		mac->autoneg_failed = 0;
	} else {
		mac->autoneg_failed = 0;
		e_dbg("Valid Link Found\n");
	}

	return 0;
}

/**
 *  e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes
 *  @hw: pointer to the HW structure
 *
 *  Configures collision distance and flow control for fiber and serdes
 *  links.  Upon successful setup, poll for link.
 **/
s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw)
{
	u32 ctrl;
	s32 ret_val;

	ctrl = er32(CTRL);

	/* Take the link out of reset */
	ctrl &= ~E1000_CTRL_LRST;

	e1000e_config_collision_dist(hw);

	ret_val = e1000_commit_fc_settings_generic(hw);
	if (ret_val)
		return ret_val;

	/*
	 * Since auto-negotiation is enabled, take the link out of reset (the
	 * link will be in reset, because we previously reset the chip). This
	 * will restart auto-negotiation.  If auto-negotiation is successful
	 * then the link-up status bit will be set and the flow control enable
	 * bits (RFCE and TFCE) will be set according to their negotiated value.
	 */
	e_dbg("Auto-negotiation enabled\n");

	ew32(CTRL, ctrl);
	e1e_flush();
	msleep(1);

	/*
	 * For these adapters, the SW definable pin 1 is set when the optics
	 * detect a signal.  If we have a signal, then poll for a "Link-Up"
	 * indication.
	 */
	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
	    (er32(CTRL) & E1000_CTRL_SWDPIN1)) {
		ret_val = e1000_poll_fiber_serdes_link_generic(hw);
	} else {
		e_dbg("No signal detected\n");
	}

	return 0;
}

/**
 *  e1000e_config_collision_dist - Configure collision distance
 *  @hw: pointer to the HW structure
 *
 *  Configures the collision distance to the default value and is used
 *  during link setup. Currently no func pointer exists and all
 *  implementations are handled in the generic version of this function.
 **/
void e1000e_config_collision_dist(struct e1000_hw *hw)
{
	u32 tctl;

	tctl = er32(TCTL);

	tctl &= ~E1000_TCTL_COLD;
	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;

	ew32(TCTL, tctl);
	e1e_flush();
}

/**
 *  e1000e_set_fc_watermarks - Set flow control high/low watermarks
 *  @hw: pointer to the HW structure
 *
 *  Sets the flow control high/low threshold (watermark) registers.  If
 *  flow control XON frame transmission is enabled, then set XON frame
 *  transmission as well.
 **/
s32 e1000e_set_fc_watermarks(struct e1000_hw *hw)
{
	u32 fcrtl = 0, fcrth = 0;

	/*
	 * Set the flow control receive threshold registers.  Normally,
	 * these registers will be set to a default threshold that may be
	 * adjusted later by the driver's runtime code.  However, if the
	 * ability to transmit pause frames is not enabled, then these
	 * registers will be set to 0.
	 */
	if (hw->fc.current_mode & e1000_fc_tx_pause) {
		/*
		 * We need to set up the Receive Threshold high and low water
		 * marks as well as (optionally) enabling the transmission of
		 * XON frames.
		 */
		fcrtl = hw->fc.low_water;
		fcrtl |= E1000_FCRTL_XONE;
		fcrth = hw->fc.high_water;
	}
	ew32(FCRTL, fcrtl);
	ew32(FCRTH, fcrth);

	return 0;
}

/**
 *  e1000e_force_mac_fc - Force the MAC's flow control settings
 *  @hw: pointer to the HW structure
 *
 *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
 *  device control register to reflect the adapter settings.  TFCE and RFCE
 *  need to be explicitly set by software when a copper PHY is used because
 *  autonegotiation is managed by the PHY rather than the MAC.  Software must
 *  also configure these bits when link is forced on a fiber connection.
 **/
s32 e1000e_force_mac_fc(struct e1000_hw *hw)
{
	u32 ctrl;

	ctrl = er32(CTRL);

	/*
	 * Because we didn't get link via the internal auto-negotiation
	 * mechanism (we either forced link or we got link via PHY
	 * auto-neg), we have to manually enable/disable transmit an
	 * receive flow control.
	 *
	 * The "Case" statement below enables/disable flow control
	 * according to the "hw->fc.current_mode" parameter.
	 *
	 * The possible values of the "fc" parameter are:
	 *      0:  Flow control is completely disabled
	 *      1:  Rx flow control is enabled (we can receive pause
	 *	  frames but not send pause frames).
	 *      2:  Tx flow control is enabled (we can send pause frames
	 *	  frames but we do not receive pause frames).
	 *      3:  Both Rx and Tx flow control (symmetric) is enabled.
	 *  other:  No other values should be possible at this point.
	 */
	e_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);

	switch (hw->fc.current_mode) {
	case e1000_fc_none:
		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
		break;
	case e1000_fc_rx_pause:
		ctrl &= (~E1000_CTRL_TFCE);
		ctrl |= E1000_CTRL_RFCE;
		break;
	case e1000_fc_tx_pause:
		ctrl &= (~E1000_CTRL_RFCE);
		ctrl |= E1000_CTRL_TFCE;
		break;
	case e1000_fc_full:
		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
		break;
	default:
		e_dbg("Flow control param set incorrectly\n");
		return -E1000_ERR_CONFIG;
	}

	ew32(CTRL, ctrl);

	return 0;
}

/**
 *  e1000e_config_fc_after_link_up - Configures flow control after link
 *  @hw: pointer to the HW structure
 *
 *  Checks the status of auto-negotiation after link up to ensure that the
 *  speed and duplex were not forced.  If the link needed to be forced, then
 *  flow control needs to be forced also.  If auto-negotiation is enabled
 *  and did not fail, then we configure flow control based on our link
 *  partner.
 **/
s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	s32 ret_val = 0;
	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
	u16 speed, duplex;

	/*
	 * Check for the case where we have fiber media and auto-neg failed
	 * so we had to force link.  In this case, we need to force the
	 * configuration of the MAC to match the "fc" parameter.
	 */
	if (mac->autoneg_failed) {
		if (hw->phy.media_type == e1000_media_type_fiber ||
		    hw->phy.media_type == e1000_media_type_internal_serdes)
			ret_val = e1000e_force_mac_fc(hw);
	} else {
		if (hw->phy.media_type == e1000_media_type_copper)
			ret_val = e1000e_force_mac_fc(hw);
	}

	if (ret_val) {
		e_dbg("Error forcing flow control settings\n");
		return ret_val;
	}

	/*
	 * Check for the case where we have copper media and auto-neg is
	 * enabled.  In this case, we need to check and see if Auto-Neg
	 * has completed, and if so, how the PHY and link partner has
	 * flow control configured.
	 */
	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
		/*
		 * Read the MII Status Register and check to see if AutoNeg
		 * has completed.  We read this twice because this reg has
		 * some "sticky" (latched) bits.
		 */
		ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
		if (ret_val)
			return ret_val;
		ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
		if (ret_val)
			return ret_val;

		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
			e_dbg("Copper PHY and Auto Neg "
				 "has not completed.\n");
			return ret_val;
		}

		/*
		 * The AutoNeg process has completed, so we now need to
		 * read both the Auto Negotiation Advertisement
		 * Register (Address 4) and the Auto_Negotiation Base
		 * Page Ability Register (Address 5) to determine how
		 * flow control was negotiated.
		 */
		ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg);
		if (ret_val)
			return ret_val;
		ret_val = e1e_rphy(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg);
		if (ret_val)
			return ret_val;

		/*
		 * Two bits in the Auto Negotiation Advertisement Register
		 * (Address 4) and two bits in the Auto Negotiation Base
		 * Page Ability Register (Address 5) determine flow control
		 * for both the PHY and the link partner.  The following
		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
		 * 1999, describes these PAUSE resolution bits and how flow
		 * control is determined based upon these settings.
		 * NOTE:  DC = Don't Care
		 *
		 *   LOCAL DEVICE  |   LINK PARTNER
		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
		 *-------|---------|-------|---------|--------------------
		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
		 *   0   |    1    |   0   |   DC    | e1000_fc_none
		 *   0   |    1    |   1   |    0    | e1000_fc_none
		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
		 *   1   |    0    |   0   |   DC    | e1000_fc_none
		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
		 *   1   |    1    |   0   |    0    | e1000_fc_none
		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
		 *
		 *
		 * Are both PAUSE bits set to 1?  If so, this implies
		 * Symmetric Flow Control is enabled at both ends.  The
		 * ASM_DIR bits are irrelevant per the spec.
		 *
		 * For Symmetric Flow Control:
		 *
		 *   LOCAL DEVICE  |   LINK PARTNER
		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
		 *-------|---------|-------|---------|--------------------
		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
		 *
		 */
		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
			/*
			 * Now we need to check if the user selected Rx ONLY
			 * of pause frames.  In this case, we had to advertise
			 * FULL flow control because we could not advertise Rx
			 * ONLY. Hence, we must now check to see if we need to
			 * turn OFF  the TRANSMISSION of PAUSE frames.
			 */
			if (hw->fc.requested_mode == e1000_fc_full) {
				hw->fc.current_mode = e1000_fc_full;
				e_dbg("Flow Control = FULL.\r\n");
			} else {
				hw->fc.current_mode = e1000_fc_rx_pause;
				e_dbg("Flow Control = "
					 "RX PAUSE frames only.\r\n");
			}
		}
		/*
		 * For receiving PAUSE frames ONLY.
		 *
		 *   LOCAL DEVICE  |   LINK PARTNER
		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
		 *-------|---------|-------|---------|--------------------
		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
		 *
		 */
		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
			  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
			  (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
			  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
			hw->fc.current_mode = e1000_fc_tx_pause;
			e_dbg("Flow Control = Tx PAUSE frames only.\r\n");
		}
		/*
		 * For transmitting PAUSE frames ONLY.
		 *
		 *   LOCAL DEVICE  |   LINK PARTNER
		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
		 *-------|---------|-------|---------|--------------------
		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
		 *
		 */
		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
			 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
			hw->fc.current_mode = e1000_fc_rx_pause;
			e_dbg("Flow Control = Rx PAUSE frames only.\r\n");
		} else {
			/*
			 * Per the IEEE spec, at this point flow control
			 * should be disabled.
			 */
			hw->fc.current_mode = e1000_fc_none;
			e_dbg("Flow Control = NONE.\r\n");
		}

		/*
		 * Now we need to do one last check...  If we auto-
		 * negotiated to HALF DUPLEX, flow control should not be
		 * enabled per IEEE 802.3 spec.
		 */
		ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
		if (ret_val) {
			e_dbg("Error getting link speed and duplex\n");
			return ret_val;
		}

		if (duplex == HALF_DUPLEX)
			hw->fc.current_mode = e1000_fc_none;

		/*
		 * Now we call a subroutine to actually force the MAC
		 * controller to use the correct flow control settings.
		 */
		ret_val = e1000e_force_mac_fc(hw);
		if (ret_val) {
			e_dbg("Error forcing flow control settings\n");
			return ret_val;
		}
	}

	return 0;
}

/**
 *  e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex
 *  @hw: pointer to the HW structure
 *  @speed: stores the current speed
 *  @duplex: stores the current duplex
 *
 *  Read the status register for the current speed/duplex and store the current
 *  speed and duplex for copper connections.
 **/
s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, u16 *duplex)
{
	u32 status;

	status = er32(STATUS);
	if (status & E1000_STATUS_SPEED_1000) {
		*speed = SPEED_1000;
		e_dbg("1000 Mbs, ");
	} else if (status & E1000_STATUS_SPEED_100) {
		*speed = SPEED_100;
		e_dbg("100 Mbs, ");
	} else {
		*speed = SPEED_10;
		e_dbg("10 Mbs, ");
	}

	if (status & E1000_STATUS_FD) {
		*duplex = FULL_DUPLEX;
		e_dbg("Full Duplex\n");
	} else {
		*duplex = HALF_DUPLEX;
		e_dbg("Half Duplex\n");
	}

	return 0;
}

/**
 *  e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex
 *  @hw: pointer to the HW structure
 *  @speed: stores the current speed
 *  @duplex: stores the current duplex
 *
 *  Sets the speed and duplex to gigabit full duplex (the only possible option)
 *  for fiber/serdes links.
 **/
s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed, u16 *duplex)
{
	*speed = SPEED_1000;
	*duplex = FULL_DUPLEX;

	return 0;
}

/**
 *  e1000e_get_hw_semaphore - Acquire hardware semaphore
 *  @hw: pointer to the HW structure
 *
 *  Acquire the HW semaphore to access the PHY or NVM
 **/
s32 e1000e_get_hw_semaphore(struct e1000_hw *hw)
{
	u32 swsm;
	s32 timeout = hw->nvm.word_size + 1;
	s32 i = 0;

	/* Get the SW semaphore */
	while (i < timeout) {
		swsm = er32(SWSM);
		if (!(swsm & E1000_SWSM_SMBI))
			break;

		udelay(50);
		i++;
	}

	if (i == timeout) {
		e_dbg("Driver can't access device - SMBI bit is set.\n");
		return -E1000_ERR_NVM;
	}

	/* Get the FW semaphore. */
	for (i = 0; i < timeout; i++) {
		swsm = er32(SWSM);
		ew32(SWSM, swsm | E1000_SWSM_SWESMBI);

		/* Semaphore acquired if bit latched */
		if (er32(SWSM) & E1000_SWSM_SWESMBI)
			break;

		udelay(50);
	}

	if (i == timeout) {
		/* Release semaphores */
		e1000e_put_hw_semaphore(hw);
		e_dbg("Driver can't access the NVM\n");
		return -E1000_ERR_NVM;
	}

	return 0;
}

/**
 *  e1000e_put_hw_semaphore - Release hardware semaphore
 *  @hw: pointer to the HW structure
 *
 *  Release hardware semaphore used to access the PHY or NVM
 **/
void e1000e_put_hw_semaphore(struct e1000_hw *hw)
{
	u32 swsm;

	swsm = er32(SWSM);
	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
	ew32(SWSM, swsm);
}

/**
 *  e1000e_get_auto_rd_done - Check for auto read completion
 *  @hw: pointer to the HW structure
 *
 *  Check EEPROM for Auto Read done bit.
 **/
s32 e1000e_get_auto_rd_done(struct e1000_hw *hw)
{
	s32 i = 0;

	while (i < AUTO_READ_DONE_TIMEOUT) {
		if (er32(EECD) & E1000_EECD_AUTO_RD)
			break;
		msleep(1);
		i++;
	}

	if (i == AUTO_READ_DONE_TIMEOUT) {
		e_dbg("Auto read by HW from NVM has not completed.\n");
		return -E1000_ERR_RESET;
	}

	return 0;
}

/**
 *  e1000e_valid_led_default - Verify a valid default LED config
 *  @hw: pointer to the HW structure
 *  @data: pointer to the NVM (EEPROM)
 *
 *  Read the EEPROM for the current default LED configuration.  If the
 *  LED configuration is not valid, set to a valid LED configuration.
 **/
s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data)
{
	s32 ret_val;

	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
	if (ret_val) {
		e_dbg("NVM Read Error\n");
		return ret_val;
	}

	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
		*data = ID_LED_DEFAULT;

	return 0;
}

/**
 *  e1000e_id_led_init -
 *  @hw: pointer to the HW structure
 *
 **/
s32 e1000e_id_led_init(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	s32 ret_val;
	const u32 ledctl_mask = 0x000000FF;
	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
	u16 data, i, temp;
	const u16 led_mask = 0x0F;

	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
	if (ret_val)
		return ret_val;

	mac->ledctl_default = er32(LEDCTL);
	mac->ledctl_mode1 = mac->ledctl_default;
	mac->ledctl_mode2 = mac->ledctl_default;

	for (i = 0; i < 4; i++) {
		temp = (data >> (i << 2)) & led_mask;
		switch (temp) {
		case ID_LED_ON1_DEF2:
		case ID_LED_ON1_ON2:
		case ID_LED_ON1_OFF2:
			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
			mac->ledctl_mode1 |= ledctl_on << (i << 3);
			break;
		case ID_LED_OFF1_DEF2:
		case ID_LED_OFF1_ON2:
		case ID_LED_OFF1_OFF2:
			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
			mac->ledctl_mode1 |= ledctl_off << (i << 3);
			break;
		default:
			/* Do nothing */
			break;
		}
		switch (temp) {
		case ID_LED_DEF1_ON2:
		case ID_LED_ON1_ON2:
		case ID_LED_OFF1_ON2:
			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
			mac->ledctl_mode2 |= ledctl_on << (i << 3);
			break;
		case ID_LED_DEF1_OFF2:
		case ID_LED_ON1_OFF2:
		case ID_LED_OFF1_OFF2:
			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
			mac->ledctl_mode2 |= ledctl_off << (i << 3);
			break;
		default:
			/* Do nothing */
			break;
		}
	}

	return 0;
}

/**
 *  e1000e_setup_led_generic - Configures SW controllable LED
 *  @hw: pointer to the HW structure
 *
 *  This prepares the SW controllable LED for use and saves the current state
 *  of the LED so it can be later restored.
 **/
s32 e1000e_setup_led_generic(struct e1000_hw *hw)
{
	u32 ledctl;

	if (hw->mac.ops.setup_led != e1000e_setup_led_generic) {
		return -E1000_ERR_CONFIG;
	}

	if (hw->phy.media_type == e1000_media_type_fiber) {
		ledctl = er32(LEDCTL);
		hw->mac.ledctl_default = ledctl;
		/* Turn off LED0 */
		ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
		            E1000_LEDCTL_LED0_BLINK |
		            E1000_LEDCTL_LED0_MODE_MASK);
		ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
		           E1000_LEDCTL_LED0_MODE_SHIFT);
		ew32(LEDCTL, ledctl);
	} else if (hw->phy.media_type == e1000_media_type_copper) {
		ew32(LEDCTL, hw->mac.ledctl_mode1);
	}

	return 0;
}

/**
 *  e1000e_cleanup_led_generic - Set LED config to default operation
 *  @hw: pointer to the HW structure
 *
 *  Remove the current LED configuration and set the LED configuration
 *  to the default value, saved from the EEPROM.
 **/
s32 e1000e_cleanup_led_generic(struct e1000_hw *hw)
{
	ew32(LEDCTL, hw->mac.ledctl_default);
	return 0;
}

/**
 *  e1000e_blink_led - Blink LED
 *  @hw: pointer to the HW structure
 *
 *  Blink the LEDs which are set to be on.
 **/
s32 e1000e_blink_led(struct e1000_hw *hw)
{
	u32 ledctl_blink = 0;
	u32 i;

	if (hw->phy.media_type == e1000_media_type_fiber) {
		/* always blink LED0 for PCI-E fiber */
		ledctl_blink = E1000_LEDCTL_LED0_BLINK |
		     (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
	} else {
		/*
		 * set the blink bit for each LED that's "on" (0x0E)
		 * in ledctl_mode2
		 */
		ledctl_blink = hw->mac.ledctl_mode2;
		for (i = 0; i < 4; i++)
			if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
			    E1000_LEDCTL_MODE_LED_ON)
				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
						 (i * 8));
	}

	ew32(LEDCTL, ledctl_blink);

	return 0;
}

/**
 *  e1000e_led_on_generic - Turn LED on
 *  @hw: pointer to the HW structure
 *
 *  Turn LED on.
 **/
s32 e1000e_led_on_generic(struct e1000_hw *hw)
{
	u32 ctrl;

	switch (hw->phy.media_type) {
	case e1000_media_type_fiber:
		ctrl = er32(CTRL);
		ctrl &= ~E1000_CTRL_SWDPIN0;
		ctrl |= E1000_CTRL_SWDPIO0;
		ew32(CTRL, ctrl);
		break;
	case e1000_media_type_copper:
		ew32(LEDCTL, hw->mac.ledctl_mode2);
		break;
	default:
		break;
	}

	return 0;
}

/**
 *  e1000e_led_off_generic - Turn LED off
 *  @hw: pointer to the HW structure
 *
 *  Turn LED off.
 **/
s32 e1000e_led_off_generic(struct e1000_hw *hw)
{
	u32 ctrl;

	switch (hw->phy.media_type) {
	case e1000_media_type_fiber:
		ctrl = er32(CTRL);
		ctrl |= E1000_CTRL_SWDPIN0;
		ctrl |= E1000_CTRL_SWDPIO0;
		ew32(CTRL, ctrl);
		break;
	case e1000_media_type_copper:
		ew32(LEDCTL, hw->mac.ledctl_mode1);
		break;
	default:
		break;
	}

	return 0;
}

/**
 *  e1000e_set_pcie_no_snoop - Set PCI-express capabilities
 *  @hw: pointer to the HW structure
 *  @no_snoop: bitmap of snoop events
 *
 *  Set the PCI-express register to snoop for events enabled in 'no_snoop'.
 **/
void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop)
{
	u32 gcr;

	if (no_snoop) {
		gcr = er32(GCR);
		gcr &= ~(PCIE_NO_SNOOP_ALL);
		gcr |= no_snoop;
		ew32(GCR, gcr);
	}
}

/**
 *  e1000e_disable_pcie_master - Disables PCI-express master access
 *  @hw: pointer to the HW structure
 *
 *  Returns 0 if successful, else returns -10
 *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
 *  the master requests to be disabled.
 *
 *  Disables PCI-Express master access and verifies there are no pending
 *  requests.
 **/
s32 e1000e_disable_pcie_master(struct e1000_hw *hw)
{
	u32 ctrl;
	s32 timeout = MASTER_DISABLE_TIMEOUT;

	ctrl = er32(CTRL);
	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
	ew32(CTRL, ctrl);

	while (timeout) {
		if (!(er32(STATUS) &
		      E1000_STATUS_GIO_MASTER_ENABLE))
			break;
		udelay(100);
		timeout--;
	}

	if (!timeout) {
		e_dbg("Master requests are pending.\n");
		return -E1000_ERR_MASTER_REQUESTS_PENDING;
	}

	return 0;
}

/**
 *  e1000e_reset_adaptive - Reset Adaptive Interframe Spacing
 *  @hw: pointer to the HW structure
 *
 *  Reset the Adaptive Interframe Spacing throttle to default values.
 **/
void e1000e_reset_adaptive(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;

	mac->current_ifs_val = 0;
	mac->ifs_min_val = IFS_MIN;
	mac->ifs_max_val = IFS_MAX;
	mac->ifs_step_size = IFS_STEP;
	mac->ifs_ratio = IFS_RATIO;

	mac->in_ifs_mode = 0;
	ew32(AIT, 0);
}

/**
 *  e1000e_update_adaptive - Update Adaptive Interframe Spacing
 *  @hw: pointer to the HW structure
 *
 *  Update the Adaptive Interframe Spacing Throttle value based on the
 *  time between transmitted packets and time between collisions.
 **/
void e1000e_update_adaptive(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;

	if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
		if (mac->tx_packet_delta > MIN_NUM_XMITS) {
			mac->in_ifs_mode = 1;
			if (mac->current_ifs_val < mac->ifs_max_val) {
				if (!mac->current_ifs_val)
					mac->current_ifs_val = mac->ifs_min_val;
				else
					mac->current_ifs_val +=
						mac->ifs_step_size;
				ew32(AIT, mac->current_ifs_val);
			}
		}
	} else {
		if (mac->in_ifs_mode &&
		    (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
			mac->current_ifs_val = 0;
			mac->in_ifs_mode = 0;
			ew32(AIT, 0);
		}
	}
}

/**
 *  e1000_raise_eec_clk - Raise EEPROM clock
 *  @hw: pointer to the HW structure
 *  @eecd: pointer to the EEPROM
 *
 *  Enable/Raise the EEPROM clock bit.
 **/
static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
{
	*eecd = *eecd | E1000_EECD_SK;
	ew32(EECD, *eecd);
	e1e_flush();
	udelay(hw->nvm.delay_usec);
}

/**
 *  e1000_lower_eec_clk - Lower EEPROM clock
 *  @hw: pointer to the HW structure
 *  @eecd: pointer to the EEPROM
 *
 *  Clear/Lower the EEPROM clock bit.
 **/
static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
{
	*eecd = *eecd & ~E1000_EECD_SK;
	ew32(EECD, *eecd);
	e1e_flush();
	udelay(hw->nvm.delay_usec);
}

/**
 *  e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
 *  @hw: pointer to the HW structure
 *  @data: data to send to the EEPROM
 *  @count: number of bits to shift out
 *
 *  We need to shift 'count' bits out to the EEPROM.  So, the value in the
 *  "data" parameter will be shifted out to the EEPROM one bit at a time.
 *  In order to do this, "data" must be broken down into bits.
 **/
static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	u32 eecd = er32(EECD);
	u32 mask;

	mask = 0x01 << (count - 1);
	if (nvm->type == e1000_nvm_eeprom_spi)
		eecd |= E1000_EECD_DO;

	do {
		eecd &= ~E1000_EECD_DI;

		if (data & mask)
			eecd |= E1000_EECD_DI;

		ew32(EECD, eecd);
		e1e_flush();

		udelay(nvm->delay_usec);

		e1000_raise_eec_clk(hw, &eecd);
		e1000_lower_eec_clk(hw, &eecd);

		mask >>= 1;
	} while (mask);

	eecd &= ~E1000_EECD_DI;
	ew32(EECD, eecd);
}

/**
 *  e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
 *  @hw: pointer to the HW structure
 *  @count: number of bits to shift in
 *
 *  In order to read a register from the EEPROM, we need to shift 'count' bits
 *  in from the EEPROM.  Bits are "shifted in" by raising the clock input to
 *  the EEPROM (setting the SK bit), and then reading the value of the data out
 *  "DO" bit.  During this "shifting in" process the data in "DI" bit should
 *  always be clear.
 **/
static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
{
	u32 eecd;
	u32 i;
	u16 data;

	eecd = er32(EECD);

	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
	data = 0;

	for (i = 0; i < count; i++) {
		data <<= 1;
		e1000_raise_eec_clk(hw, &eecd);

		eecd = er32(EECD);

		eecd &= ~E1000_EECD_DI;
		if (eecd & E1000_EECD_DO)
			data |= 1;

		e1000_lower_eec_clk(hw, &eecd);
	}

	return data;
}

/**
 *  e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion
 *  @hw: pointer to the HW structure
 *  @ee_reg: EEPROM flag for polling
 *
 *  Polls the EEPROM status bit for either read or write completion based
 *  upon the value of 'ee_reg'.
 **/
s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
{
	u32 attempts = 100000;
	u32 i, reg = 0;

	for (i = 0; i < attempts; i++) {
		if (ee_reg == E1000_NVM_POLL_READ)
			reg = er32(EERD);
		else
			reg = er32(EEWR);

		if (reg & E1000_NVM_RW_REG_DONE)
			return 0;

		udelay(5);
	}

	return -E1000_ERR_NVM;
}

/**
 *  e1000e_acquire_nvm - Generic request for access to EEPROM
 *  @hw: pointer to the HW structure
 *
 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
 *  Return successful if access grant bit set, else clear the request for
 *  EEPROM access and return -E1000_ERR_NVM (-1).
 **/
s32 e1000e_acquire_nvm(struct e1000_hw *hw)
{
	u32 eecd = er32(EECD);
	s32 timeout = E1000_NVM_GRANT_ATTEMPTS;

	ew32(EECD, eecd | E1000_EECD_REQ);
	eecd = er32(EECD);

	while (timeout) {
		if (eecd & E1000_EECD_GNT)
			break;
		udelay(5);
		eecd = er32(EECD);
		timeout--;
	}

	if (!timeout) {
		eecd &= ~E1000_EECD_REQ;
		ew32(EECD, eecd);
		e_dbg("Could not acquire NVM grant\n");
		return -E1000_ERR_NVM;
	}

	return 0;
}

/**
 *  e1000_standby_nvm - Return EEPROM to standby state
 *  @hw: pointer to the HW structure
 *
 *  Return the EEPROM to a standby state.
 **/
static void e1000_standby_nvm(struct e1000_hw *hw)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	u32 eecd = er32(EECD);

	if (nvm->type == e1000_nvm_eeprom_spi) {
		/* Toggle CS to flush commands */
		eecd |= E1000_EECD_CS;
		ew32(EECD, eecd);
		e1e_flush();
		udelay(nvm->delay_usec);
		eecd &= ~E1000_EECD_CS;
		ew32(EECD, eecd);
		e1e_flush();
		udelay(nvm->delay_usec);
	}
}

/**
 *  e1000_stop_nvm - Terminate EEPROM command
 *  @hw: pointer to the HW structure
 *
 *  Terminates the current command by inverting the EEPROM's chip select pin.
 **/
static void e1000_stop_nvm(struct e1000_hw *hw)
{
	u32 eecd;

	eecd = er32(EECD);
	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
		/* Pull CS high */
		eecd |= E1000_EECD_CS;
		e1000_lower_eec_clk(hw, &eecd);
	}
}

/**
 *  e1000e_release_nvm - Release exclusive access to EEPROM
 *  @hw: pointer to the HW structure
 *
 *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
 **/
void e1000e_release_nvm(struct e1000_hw *hw)
{
	u32 eecd;

	e1000_stop_nvm(hw);

	eecd = er32(EECD);
	eecd &= ~E1000_EECD_REQ;
	ew32(EECD, eecd);
}

/**
 *  e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
 *  @hw: pointer to the HW structure
 *
 *  Setups the EEPROM for reading and writing.
 **/
static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	u32 eecd = er32(EECD);
	u16 timeout = 0;
	u8 spi_stat_reg;

	if (nvm->type == e1000_nvm_eeprom_spi) {
		/* Clear SK and CS */
		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
		ew32(EECD, eecd);
		udelay(1);
		timeout = NVM_MAX_RETRY_SPI;

		/*
		 * Read "Status Register" repeatedly until the LSB is cleared.
		 * The EEPROM will signal that the command has been completed
		 * by clearing bit 0 of the internal status register.  If it's
		 * not cleared within 'timeout', then error out.
		 */
		while (timeout) {
			e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
						 hw->nvm.opcode_bits);
			spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
			if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
				break;

			udelay(5);
			e1000_standby_nvm(hw);
			timeout--;
		}

		if (!timeout) {
			e_dbg("SPI NVM Status error\n");
			return -E1000_ERR_NVM;
		}
	}

	return 0;
}

/**
 *  e1000e_read_nvm_eerd - Reads EEPROM using EERD register
 *  @hw: pointer to the HW structure
 *  @offset: offset of word in the EEPROM to read
 *  @words: number of words to read
 *  @data: word read from the EEPROM
 *
 *  Reads a 16 bit word from the EEPROM using the EERD register.
 **/
s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	u32 i, eerd = 0;
	s32 ret_val = 0;

	/*
	 * A check for invalid values:  offset too large, too many words,
	 * too many words for the offset, and not enough words.
	 */
	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
	    (words == 0)) {
		e_dbg("nvm parameter(s) out of bounds\n");
		return -E1000_ERR_NVM;
	}

	for (i = 0; i < words; i++) {
		eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
		       E1000_NVM_RW_REG_START;

		ew32(EERD, eerd);
		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
		if (ret_val)
			break;

		data[i] = (er32(EERD) >> E1000_NVM_RW_REG_DATA);
	}

	return ret_val;
}

/**
 *  e1000e_write_nvm_spi - Write to EEPROM using SPI
 *  @hw: pointer to the HW structure
 *  @offset: offset within the EEPROM to be written to
 *  @words: number of words to write
 *  @data: 16 bit word(s) to be written to the EEPROM
 *
 *  Writes data to EEPROM at offset using SPI interface.
 *
 *  If e1000e_update_nvm_checksum is not called after this function , the
 *  EEPROM will most likely contain an invalid checksum.
 **/
s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	s32 ret_val;
	u16 widx = 0;

	/*
	 * A check for invalid values:  offset too large, too many words,
	 * and not enough words.
	 */
	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
	    (words == 0)) {
		e_dbg("nvm parameter(s) out of bounds\n");
		return -E1000_ERR_NVM;
	}

	ret_val = nvm->ops.acquire(hw);
	if (ret_val)
		return ret_val;

	msleep(10);

	while (widx < words) {
		u8 write_opcode = NVM_WRITE_OPCODE_SPI;

		ret_val = e1000_ready_nvm_eeprom(hw);
		if (ret_val) {
			nvm->ops.release(hw);
			return ret_val;
		}

		e1000_standby_nvm(hw);

		/* Send the WRITE ENABLE command (8 bit opcode) */
		e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
					 nvm->opcode_bits);

		e1000_standby_nvm(hw);

		/*
		 * Some SPI eeproms use the 8th address bit embedded in the
		 * opcode
		 */
		if ((nvm->address_bits == 8) && (offset >= 128))
			write_opcode |= NVM_A8_OPCODE_SPI;

		/* Send the Write command (8-bit opcode + addr) */
		e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
		e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
					 nvm->address_bits);

		/* Loop to allow for up to whole page write of eeprom */
		while (widx < words) {
			u16 word_out = data[widx];
			word_out = (word_out >> 8) | (word_out << 8);
			e1000_shift_out_eec_bits(hw, word_out, 16);
			widx++;

			if ((((offset + widx) * 2) % nvm->page_size) == 0) {
				e1000_standby_nvm(hw);
				break;
			}
		}
	}

	msleep(10);
	nvm->ops.release(hw);
	return 0;
}

/**
 *  e1000e_read_mac_addr - Read device MAC address
 *  @hw: pointer to the HW structure
 *
 *  Reads the device MAC address from the EEPROM and stores the value.
 *  Since devices with two ports use the same EEPROM, we increment the
 *  last bit in the MAC address for the second port.
 **/
s32 e1000e_read_mac_addr(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 offset, nvm_data, i;
	u16 mac_addr_offset = 0;

	if (hw->mac.type == e1000_82571) {
		/* Check for an alternate MAC address.  An alternate MAC
		 * address can be setup by pre-boot software and must be
		 * treated like a permanent address and must override the
		 * actual permanent MAC address.*/
		ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
					 &mac_addr_offset);
		if (ret_val) {
			e_dbg("NVM Read Error\n");
			return ret_val;
		}
		if (mac_addr_offset == 0xFFFF)
			mac_addr_offset = 0;

		if (mac_addr_offset) {
			if (hw->bus.func == E1000_FUNC_1)
				mac_addr_offset += ETH_ALEN/sizeof(u16);

			/* make sure we have a valid mac address here
			* before using it */
			ret_val = e1000_read_nvm(hw, mac_addr_offset, 1,
						 &nvm_data);
			if (ret_val) {
				e_dbg("NVM Read Error\n");
				return ret_val;
			}
			if (nvm_data & 0x0001)
				mac_addr_offset = 0;
		}

		if (mac_addr_offset)
		hw->dev_spec.e82571.alt_mac_addr_is_present = 1;
	}

	for (i = 0; i < ETH_ALEN; i += 2) {
		offset = mac_addr_offset + (i >> 1);
		ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
		if (ret_val) {
			e_dbg("NVM Read Error\n");
			return ret_val;
		}
		hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF);
		hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8);
	}

	/* Flip last bit of mac address if we're on second port */
	if (!mac_addr_offset && hw->bus.func == E1000_FUNC_1)
		hw->mac.perm_addr[5] ^= 1;

	for (i = 0; i < ETH_ALEN; i++)
		hw->mac.addr[i] = hw->mac.perm_addr[i];

	return 0;
}

/**
 *  e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum
 *  @hw: pointer to the HW structure
 *
 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
 **/
s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 checksum = 0;
	u16 i, nvm_data;

	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
		ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
		if (ret_val) {
			e_dbg("NVM Read Error\n");
			return ret_val;
		}
		checksum += nvm_data;
	}

	if (checksum != (u16) NVM_SUM) {
		e_dbg("NVM Checksum Invalid\n");
		return -E1000_ERR_NVM;
	}

	return 0;
}

/**
 *  e1000e_update_nvm_checksum_generic - Update EEPROM checksum
 *  @hw: pointer to the HW structure
 *
 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
 *  value to the EEPROM.
 **/
s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 checksum = 0;
	u16 i, nvm_data;

	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
		ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
		if (ret_val) {
			e_dbg("NVM Read Error while updating checksum.\n");
			return ret_val;
		}
		checksum += nvm_data;
	}
	checksum = (u16) NVM_SUM - checksum;
	ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum);
	if (ret_val)
		e_dbg("NVM Write Error while updating checksum.\n");

	return ret_val;
}

/**
 *  e1000e_reload_nvm - Reloads EEPROM
 *  @hw: pointer to the HW structure
 *
 *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
 *  extended control register.
 **/
void e1000e_reload_nvm(struct e1000_hw *hw)
{
	u32 ctrl_ext;

	udelay(10);
	ctrl_ext = er32(CTRL_EXT);
	ctrl_ext |= E1000_CTRL_EXT_EE_RST;
	ew32(CTRL_EXT, ctrl_ext);
	e1e_flush();
}

/**
 *  e1000_calculate_checksum - Calculate checksum for buffer
 *  @buffer: pointer to EEPROM
 *  @length: size of EEPROM to calculate a checksum for
 *
 *  Calculates the checksum for some buffer on a specified length.  The
 *  checksum calculated is returned.
 **/
static u8 e1000_calculate_checksum(u8 *buffer, u32 length)
{
	u32 i;
	u8  sum = 0;

	if (!buffer)
		return 0;

	for (i = 0; i < length; i++)
		sum += buffer[i];

	return (u8) (0 - sum);
}

/**
 *  e1000_mng_enable_host_if - Checks host interface is enabled
 *  @hw: pointer to the HW structure
 *
 *  Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
 *
 *  This function checks whether the HOST IF is enabled for command operation
 *  and also checks whether the previous command is completed.  It busy waits
 *  in case of previous command is not completed.
 **/
static s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
{
	u32 hicr;
	u8 i;

	/* Check that the host interface is enabled. */
	hicr = er32(HICR);
	if ((hicr & E1000_HICR_EN) == 0) {
		e_dbg("E1000_HOST_EN bit disabled.\n");
		return -E1000_ERR_HOST_INTERFACE_COMMAND;
	}
	/* check the previous command is completed */
	for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
		hicr = er32(HICR);
		if (!(hicr & E1000_HICR_C))
			break;
		mdelay(1);
	}

	if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
		e_dbg("Previous command timeout failed .\n");
		return -E1000_ERR_HOST_INTERFACE_COMMAND;
	}

	return 0;
}

/**
 *  e1000e_check_mng_mode_generic - check management mode
 *  @hw: pointer to the HW structure
 *
 *  Reads the firmware semaphore register and returns true (>0) if
 *  manageability is enabled, else false (0).
 **/
bool e1000e_check_mng_mode_generic(struct e1000_hw *hw)
{
	u32 fwsm = er32(FWSM);

	return (fwsm & E1000_FWSM_MODE_MASK) ==
		(E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
}

/**
 *  e1000e_enable_tx_pkt_filtering - Enable packet filtering on Tx
 *  @hw: pointer to the HW structure
 *
 *  Enables packet filtering on transmit packets if manageability is enabled
 *  and host interface is enabled.
 **/
bool e1000e_enable_tx_pkt_filtering(struct e1000_hw *hw)
{
	struct e1000_host_mng_dhcp_cookie *hdr = &hw->mng_cookie;
	u32 *buffer = (u32 *)&hw->mng_cookie;
	u32 offset;
	s32 ret_val, hdr_csum, csum;
	u8 i, len;

	/* No manageability, no filtering */
	if (!e1000e_check_mng_mode(hw)) {
		hw->mac.tx_pkt_filtering = 0;
		return 0;
	}

	/*
	 * If we can't read from the host interface for whatever
	 * reason, disable filtering.
	 */
	ret_val = e1000_mng_enable_host_if(hw);
	if (ret_val != 0) {
		hw->mac.tx_pkt_filtering = 0;
		return ret_val;
	}

	/* Read in the header.  Length and offset are in dwords. */
	len    = E1000_MNG_DHCP_COOKIE_LENGTH >> 2;
	offset = E1000_MNG_DHCP_COOKIE_OFFSET >> 2;
	for (i = 0; i < len; i++)
		*(buffer + i) = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset + i);
	hdr_csum = hdr->checksum;
	hdr->checksum = 0;
	csum = e1000_calculate_checksum((u8 *)hdr,
					E1000_MNG_DHCP_COOKIE_LENGTH);
	/*
	 * If either the checksums or signature don't match, then
	 * the cookie area isn't considered valid, in which case we
	 * take the safe route of assuming Tx filtering is enabled.
	 */
	if ((hdr_csum != csum) || (hdr->signature != E1000_IAMT_SIGNATURE)) {
		hw->mac.tx_pkt_filtering = 1;
		return 1;
	}

	/* Cookie area is valid, make the final check for filtering. */
	if (!(hdr->status & E1000_MNG_DHCP_COOKIE_STATUS_PARSING)) {
		hw->mac.tx_pkt_filtering = 0;
		return 0;
	}

	hw->mac.tx_pkt_filtering = 1;
	return 1;
}

/**
 *  e1000_mng_write_cmd_header - Writes manageability command header
 *  @hw: pointer to the HW structure
 *  @hdr: pointer to the host interface command header
 *
 *  Writes the command header after does the checksum calculation.
 **/
static s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
				  struct e1000_host_mng_command_header *hdr)
{
	u16 i, length = sizeof(struct e1000_host_mng_command_header);

	/* Write the whole command header structure with new checksum. */

	hdr->checksum = e1000_calculate_checksum((u8 *)hdr, length);

	length >>= 2;
	/* Write the relevant command block into the ram area. */
	for (i = 0; i < length; i++) {
		E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, i,
					    *((u32 *) hdr + i));
		e1e_flush();
	}

	return 0;
}

/**
 *  e1000_mng_host_if_write - Writes to the manageability host interface
 *  @hw: pointer to the HW structure
 *  @buffer: pointer to the host interface buffer
 *  @length: size of the buffer
 *  @offset: location in the buffer to write to
 *  @sum: sum of the data (not checksum)
 *
 *  This function writes the buffer content at the offset given on the host if.
 *  It also does alignment considerations to do the writes in most efficient
 *  way.  Also fills up the sum of the buffer in *buffer parameter.
 **/
static s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer,
				   u16 length, u16 offset, u8 *sum)
{
	u8 *tmp;
	u8 *bufptr = buffer;
	u32 data = 0;
	u16 remaining, i, j, prev_bytes;

	/* sum = only sum of the data and it is not checksum */

	if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH)
		return -E1000_ERR_PARAM;

	tmp = (u8 *)&data;
	prev_bytes = offset & 0x3;
	offset >>= 2;

	if (prev_bytes) {
		data = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset);
		for (j = prev_bytes; j < sizeof(u32); j++) {
			*(tmp + j) = *bufptr++;
			*sum += *(tmp + j);
		}
		E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset, data);
		length -= j - prev_bytes;
		offset++;
	}

	remaining = length & 0x3;
	length -= remaining;

	/* Calculate length in DWORDs */
	length >>= 2;

	/*
	 * The device driver writes the relevant command block into the
	 * ram area.
	 */
	for (i = 0; i < length; i++) {
		for (j = 0; j < sizeof(u32); j++) {
			*(tmp + j) = *bufptr++;
			*sum += *(tmp + j);
		}

		E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data);
	}
	if (remaining) {
		for (j = 0; j < sizeof(u32); j++) {
			if (j < remaining)
				*(tmp + j) = *bufptr++;
			else
				*(tmp + j) = 0;

			*sum += *(tmp + j);
		}
		E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data);
	}

	return 0;
}

/**
 *  e1000e_mng_write_dhcp_info - Writes DHCP info to host interface
 *  @hw: pointer to the HW structure
 *  @buffer: pointer to the host interface
 *  @length: size of the buffer
 *
 *  Writes the DHCP information to the host interface.
 **/
s32 e1000e_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
{
	struct e1000_host_mng_command_header hdr;
	s32 ret_val;
	u32 hicr;

	hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
	hdr.command_length = length;
	hdr.reserved1 = 0;
	hdr.reserved2 = 0;
	hdr.checksum = 0;

	/* Enable the host interface */
	ret_val = e1000_mng_enable_host_if(hw);
	if (ret_val)
		return ret_val;

	/* Populate the host interface with the contents of "buffer". */
	ret_val = e1000_mng_host_if_write(hw, buffer, length,
					  sizeof(hdr), &(hdr.checksum));
	if (ret_val)
		return ret_val;

	/* Write the manageability command header */
	ret_val = e1000_mng_write_cmd_header(hw, &hdr);
	if (ret_val)
		return ret_val;

	/* Tell the ARC a new command is pending. */
	hicr = er32(HICR);
	ew32(HICR, hicr | E1000_HICR_C);

	return 0;
}

/**
 *  e1000e_enable_mng_pass_thru - Enable processing of ARP's
 *  @hw: pointer to the HW structure
 *
 *  Verifies the hardware needs to allow ARPs to be processed by the host.
 **/
bool e1000e_enable_mng_pass_thru(struct e1000_hw *hw)
{
	u32 manc;
	u32 fwsm, factps;
	bool ret_val = 0;

	manc = er32(MANC);

	if (!(manc & E1000_MANC_RCV_TCO_EN) ||
	    !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
		return ret_val;

	if (hw->mac.arc_subsystem_valid) {
		fwsm = er32(FWSM);
		factps = er32(FACTPS);

		if (!(factps & E1000_FACTPS_MNGCG) &&
		    ((fwsm & E1000_FWSM_MODE_MASK) ==
		     (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
			ret_val = 1;
			return ret_val;
		}
	} else {
		if ((manc & E1000_MANC_SMBUS_EN) &&
		    !(manc & E1000_MANC_ASF_EN)) {
			ret_val = 1;
			return ret_val;
		}
	}

	return ret_val;
}

s32 e1000e_read_pba_num(struct e1000_hw *hw, u32 *pba_num)
{
	s32 ret_val;
	u16 nvm_data;

	ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
	if (ret_val) {
		e_dbg("NVM Read Error\n");
		return ret_val;
	}
	*pba_num = (u32)(nvm_data << 16);

	ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &nvm_data);
	if (ret_val) {
		e_dbg("NVM Read Error\n");
		return ret_val;
	}
	*pba_num |= nvm_data;

	return 0;
}