summaryrefslogtreecommitdiffstats
path: root/drivers/net/ethernet/mediatek/mtk_ppe.c
blob: cfe804bc8d2055ab8c1eeeff16b5c1b4f7fc2368 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (C) 2020 Felix Fietkau <nbd@nbd.name> */

#include <linux/kernel.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/etherdevice.h>
#include <linux/platform_device.h>
#include <linux/if_ether.h>
#include <linux/if_vlan.h>
#include <net/dsa.h>
#include "mtk_eth_soc.h"
#include "mtk_ppe.h"
#include "mtk_ppe_regs.h"

static DEFINE_SPINLOCK(ppe_lock);

static const struct rhashtable_params mtk_flow_l2_ht_params = {
	.head_offset = offsetof(struct mtk_flow_entry, l2_node),
	.key_offset = offsetof(struct mtk_flow_entry, data.bridge),
	.key_len = offsetof(struct mtk_foe_bridge, key_end),
	.automatic_shrinking = true,
};

static void ppe_w32(struct mtk_ppe *ppe, u32 reg, u32 val)
{
	writel(val, ppe->base + reg);
}

static u32 ppe_r32(struct mtk_ppe *ppe, u32 reg)
{
	return readl(ppe->base + reg);
}

static u32 ppe_m32(struct mtk_ppe *ppe, u32 reg, u32 mask, u32 set)
{
	u32 val;

	val = ppe_r32(ppe, reg);
	val &= ~mask;
	val |= set;
	ppe_w32(ppe, reg, val);

	return val;
}

static u32 ppe_set(struct mtk_ppe *ppe, u32 reg, u32 val)
{
	return ppe_m32(ppe, reg, 0, val);
}

static u32 ppe_clear(struct mtk_ppe *ppe, u32 reg, u32 val)
{
	return ppe_m32(ppe, reg, val, 0);
}

static u32 mtk_eth_timestamp(struct mtk_eth *eth)
{
	return mtk_r32(eth, 0x0010) & MTK_FOE_IB1_BIND_TIMESTAMP;
}

static int mtk_ppe_wait_busy(struct mtk_ppe *ppe)
{
	int ret;
	u32 val;

	ret = readl_poll_timeout(ppe->base + MTK_PPE_GLO_CFG, val,
				 !(val & MTK_PPE_GLO_CFG_BUSY),
				 20, MTK_PPE_WAIT_TIMEOUT_US);

	if (ret)
		dev_err(ppe->dev, "PPE table busy");

	return ret;
}

static void mtk_ppe_cache_clear(struct mtk_ppe *ppe)
{
	ppe_set(ppe, MTK_PPE_CACHE_CTL, MTK_PPE_CACHE_CTL_CLEAR);
	ppe_clear(ppe, MTK_PPE_CACHE_CTL, MTK_PPE_CACHE_CTL_CLEAR);
}

static void mtk_ppe_cache_enable(struct mtk_ppe *ppe, bool enable)
{
	mtk_ppe_cache_clear(ppe);

	ppe_m32(ppe, MTK_PPE_CACHE_CTL, MTK_PPE_CACHE_CTL_EN,
		enable * MTK_PPE_CACHE_CTL_EN);
}

static u32 mtk_ppe_hash_entry(struct mtk_foe_entry *e)
{
	u32 hv1, hv2, hv3;
	u32 hash;

	switch (FIELD_GET(MTK_FOE_IB1_PACKET_TYPE, e->ib1)) {
		case MTK_PPE_PKT_TYPE_IPV4_ROUTE:
		case MTK_PPE_PKT_TYPE_IPV4_HNAPT:
			hv1 = e->ipv4.orig.ports;
			hv2 = e->ipv4.orig.dest_ip;
			hv3 = e->ipv4.orig.src_ip;
			break;
		case MTK_PPE_PKT_TYPE_IPV6_ROUTE_3T:
		case MTK_PPE_PKT_TYPE_IPV6_ROUTE_5T:
			hv1 = e->ipv6.src_ip[3] ^ e->ipv6.dest_ip[3];
			hv1 ^= e->ipv6.ports;

			hv2 = e->ipv6.src_ip[2] ^ e->ipv6.dest_ip[2];
			hv2 ^= e->ipv6.dest_ip[0];

			hv3 = e->ipv6.src_ip[1] ^ e->ipv6.dest_ip[1];
			hv3 ^= e->ipv6.src_ip[0];
			break;
		case MTK_PPE_PKT_TYPE_IPV4_DSLITE:
		case MTK_PPE_PKT_TYPE_IPV6_6RD:
		default:
			WARN_ON_ONCE(1);
			return MTK_PPE_HASH_MASK;
	}

	hash = (hv1 & hv2) | ((~hv1) & hv3);
	hash = (hash >> 24) | ((hash & 0xffffff) << 8);
	hash ^= hv1 ^ hv2 ^ hv3;
	hash ^= hash >> 16;
	hash <<= 1;
	hash &= MTK_PPE_ENTRIES - 1;

	return hash;
}

static inline struct mtk_foe_mac_info *
mtk_foe_entry_l2(struct mtk_foe_entry *entry)
{
	int type = FIELD_GET(MTK_FOE_IB1_PACKET_TYPE, entry->ib1);

	if (type == MTK_PPE_PKT_TYPE_BRIDGE)
		return &entry->bridge.l2;

	if (type >= MTK_PPE_PKT_TYPE_IPV4_DSLITE)
		return &entry->ipv6.l2;

	return &entry->ipv4.l2;
}

static inline u32 *
mtk_foe_entry_ib2(struct mtk_foe_entry *entry)
{
	int type = FIELD_GET(MTK_FOE_IB1_PACKET_TYPE, entry->ib1);

	if (type == MTK_PPE_PKT_TYPE_BRIDGE)
		return &entry->bridge.ib2;

	if (type >= MTK_PPE_PKT_TYPE_IPV4_DSLITE)
		return &entry->ipv6.ib2;

	return &entry->ipv4.ib2;
}

int mtk_foe_entry_prepare(struct mtk_foe_entry *entry, int type, int l4proto,
			  u8 pse_port, u8 *src_mac, u8 *dest_mac)
{
	struct mtk_foe_mac_info *l2;
	u32 ports_pad, val;

	memset(entry, 0, sizeof(*entry));

	val = FIELD_PREP(MTK_FOE_IB1_STATE, MTK_FOE_STATE_BIND) |
	      FIELD_PREP(MTK_FOE_IB1_PACKET_TYPE, type) |
	      FIELD_PREP(MTK_FOE_IB1_UDP, l4proto == IPPROTO_UDP) |
	      MTK_FOE_IB1_BIND_TTL |
	      MTK_FOE_IB1_BIND_CACHE;
	entry->ib1 = val;

	val = FIELD_PREP(MTK_FOE_IB2_PORT_MG, 0x3f) |
	      FIELD_PREP(MTK_FOE_IB2_PORT_AG, 0x1f) |
	      FIELD_PREP(MTK_FOE_IB2_DEST_PORT, pse_port);

	if (is_multicast_ether_addr(dest_mac))
		val |= MTK_FOE_IB2_MULTICAST;

	ports_pad = 0xa5a5a500 | (l4proto & 0xff);
	if (type == MTK_PPE_PKT_TYPE_IPV4_ROUTE)
		entry->ipv4.orig.ports = ports_pad;
	if (type == MTK_PPE_PKT_TYPE_IPV6_ROUTE_3T)
		entry->ipv6.ports = ports_pad;

	if (type == MTK_PPE_PKT_TYPE_BRIDGE) {
		ether_addr_copy(entry->bridge.src_mac, src_mac);
		ether_addr_copy(entry->bridge.dest_mac, dest_mac);
		entry->bridge.ib2 = val;
		l2 = &entry->bridge.l2;
	} else if (type >= MTK_PPE_PKT_TYPE_IPV4_DSLITE) {
		entry->ipv6.ib2 = val;
		l2 = &entry->ipv6.l2;
	} else {
		entry->ipv4.ib2 = val;
		l2 = &entry->ipv4.l2;
	}

	l2->dest_mac_hi = get_unaligned_be32(dest_mac);
	l2->dest_mac_lo = get_unaligned_be16(dest_mac + 4);
	l2->src_mac_hi = get_unaligned_be32(src_mac);
	l2->src_mac_lo = get_unaligned_be16(src_mac + 4);

	if (type >= MTK_PPE_PKT_TYPE_IPV6_ROUTE_3T)
		l2->etype = ETH_P_IPV6;
	else
		l2->etype = ETH_P_IP;

	return 0;
}

int mtk_foe_entry_set_pse_port(struct mtk_foe_entry *entry, u8 port)
{
	u32 *ib2 = mtk_foe_entry_ib2(entry);
	u32 val;

	val = *ib2;
	val &= ~MTK_FOE_IB2_DEST_PORT;
	val |= FIELD_PREP(MTK_FOE_IB2_DEST_PORT, port);
	*ib2 = val;

	return 0;
}

int mtk_foe_entry_set_ipv4_tuple(struct mtk_foe_entry *entry, bool egress,
				 __be32 src_addr, __be16 src_port,
				 __be32 dest_addr, __be16 dest_port)
{
	int type = FIELD_GET(MTK_FOE_IB1_PACKET_TYPE, entry->ib1);
	struct mtk_ipv4_tuple *t;

	switch (type) {
	case MTK_PPE_PKT_TYPE_IPV4_HNAPT:
		if (egress) {
			t = &entry->ipv4.new;
			break;
		}
		fallthrough;
	case MTK_PPE_PKT_TYPE_IPV4_DSLITE:
	case MTK_PPE_PKT_TYPE_IPV4_ROUTE:
		t = &entry->ipv4.orig;
		break;
	case MTK_PPE_PKT_TYPE_IPV6_6RD:
		entry->ipv6_6rd.tunnel_src_ip = be32_to_cpu(src_addr);
		entry->ipv6_6rd.tunnel_dest_ip = be32_to_cpu(dest_addr);
		return 0;
	default:
		WARN_ON_ONCE(1);
		return -EINVAL;
	}

	t->src_ip = be32_to_cpu(src_addr);
	t->dest_ip = be32_to_cpu(dest_addr);

	if (type == MTK_PPE_PKT_TYPE_IPV4_ROUTE)
		return 0;

	t->src_port = be16_to_cpu(src_port);
	t->dest_port = be16_to_cpu(dest_port);

	return 0;
}

int mtk_foe_entry_set_ipv6_tuple(struct mtk_foe_entry *entry,
				 __be32 *src_addr, __be16 src_port,
				 __be32 *dest_addr, __be16 dest_port)
{
	int type = FIELD_GET(MTK_FOE_IB1_PACKET_TYPE, entry->ib1);
	u32 *src, *dest;
	int i;

	switch (type) {
	case MTK_PPE_PKT_TYPE_IPV4_DSLITE:
		src = entry->dslite.tunnel_src_ip;
		dest = entry->dslite.tunnel_dest_ip;
		break;
	case MTK_PPE_PKT_TYPE_IPV6_ROUTE_5T:
	case MTK_PPE_PKT_TYPE_IPV6_6RD:
		entry->ipv6.src_port = be16_to_cpu(src_port);
		entry->ipv6.dest_port = be16_to_cpu(dest_port);
		fallthrough;
	case MTK_PPE_PKT_TYPE_IPV6_ROUTE_3T:
		src = entry->ipv6.src_ip;
		dest = entry->ipv6.dest_ip;
		break;
	default:
		WARN_ON_ONCE(1);
		return -EINVAL;
	}

	for (i = 0; i < 4; i++)
		src[i] = be32_to_cpu(src_addr[i]);
	for (i = 0; i < 4; i++)
		dest[i] = be32_to_cpu(dest_addr[i]);

	return 0;
}

int mtk_foe_entry_set_dsa(struct mtk_foe_entry *entry, int port)
{
	struct mtk_foe_mac_info *l2 = mtk_foe_entry_l2(entry);

	l2->etype = BIT(port);

	if (!(entry->ib1 & MTK_FOE_IB1_BIND_VLAN_LAYER))
		entry->ib1 |= FIELD_PREP(MTK_FOE_IB1_BIND_VLAN_LAYER, 1);
	else
		l2->etype |= BIT(8);

	entry->ib1 &= ~MTK_FOE_IB1_BIND_VLAN_TAG;

	return 0;
}

int mtk_foe_entry_set_vlan(struct mtk_foe_entry *entry, int vid)
{
	struct mtk_foe_mac_info *l2 = mtk_foe_entry_l2(entry);

	switch (FIELD_GET(MTK_FOE_IB1_BIND_VLAN_LAYER, entry->ib1)) {
	case 0:
		entry->ib1 |= MTK_FOE_IB1_BIND_VLAN_TAG |
			      FIELD_PREP(MTK_FOE_IB1_BIND_VLAN_LAYER, 1);
		l2->vlan1 = vid;
		return 0;
	case 1:
		if (!(entry->ib1 & MTK_FOE_IB1_BIND_VLAN_TAG)) {
			l2->vlan1 = vid;
			l2->etype |= BIT(8);
		} else {
			l2->vlan2 = vid;
			entry->ib1 += FIELD_PREP(MTK_FOE_IB1_BIND_VLAN_LAYER, 1);
		}
		return 0;
	default:
		return -ENOSPC;
	}
}

int mtk_foe_entry_set_pppoe(struct mtk_foe_entry *entry, int sid)
{
	struct mtk_foe_mac_info *l2 = mtk_foe_entry_l2(entry);

	if (!(entry->ib1 & MTK_FOE_IB1_BIND_VLAN_LAYER) ||
	    (entry->ib1 & MTK_FOE_IB1_BIND_VLAN_TAG))
		l2->etype = ETH_P_PPP_SES;

	entry->ib1 |= MTK_FOE_IB1_BIND_PPPOE;
	l2->pppoe_id = sid;

	return 0;
}

int mtk_foe_entry_set_wdma(struct mtk_foe_entry *entry, int wdma_idx, int txq,
			   int bss, int wcid)
{
	struct mtk_foe_mac_info *l2 = mtk_foe_entry_l2(entry);
	u32 *ib2 = mtk_foe_entry_ib2(entry);

	*ib2 &= ~MTK_FOE_IB2_PORT_MG;
	*ib2 |= MTK_FOE_IB2_WDMA_WINFO;
	if (wdma_idx)
		*ib2 |= MTK_FOE_IB2_WDMA_DEVIDX;

	l2->vlan2 = FIELD_PREP(MTK_FOE_VLAN2_WINFO_BSS, bss) |
		    FIELD_PREP(MTK_FOE_VLAN2_WINFO_WCID, wcid) |
		    FIELD_PREP(MTK_FOE_VLAN2_WINFO_RING, txq);

	return 0;
}

static inline bool mtk_foe_entry_usable(struct mtk_foe_entry *entry)
{
	return !(entry->ib1 & MTK_FOE_IB1_STATIC) &&
	       FIELD_GET(MTK_FOE_IB1_STATE, entry->ib1) != MTK_FOE_STATE_BIND;
}

static bool
mtk_flow_entry_match(struct mtk_flow_entry *entry, struct mtk_foe_entry *data)
{
	int type, len;

	if ((data->ib1 ^ entry->data.ib1) & MTK_FOE_IB1_UDP)
		return false;

	type = FIELD_GET(MTK_FOE_IB1_PACKET_TYPE, entry->data.ib1);
	if (type > MTK_PPE_PKT_TYPE_IPV4_DSLITE)
		len = offsetof(struct mtk_foe_entry, ipv6._rsv);
	else
		len = offsetof(struct mtk_foe_entry, ipv4.ib2);

	return !memcmp(&entry->data.data, &data->data, len - 4);
}

static void
__mtk_foe_entry_clear(struct mtk_ppe *ppe, struct mtk_flow_entry *entry)
{
	struct hlist_head *head;
	struct hlist_node *tmp;

	if (entry->type == MTK_FLOW_TYPE_L2) {
		rhashtable_remove_fast(&ppe->l2_flows, &entry->l2_node,
				       mtk_flow_l2_ht_params);

		head = &entry->l2_flows;
		hlist_for_each_entry_safe(entry, tmp, head, l2_data.list)
			__mtk_foe_entry_clear(ppe, entry);
		return;
	}

	hlist_del_init(&entry->list);
	if (entry->hash != 0xffff) {
		ppe->foe_table[entry->hash].ib1 &= ~MTK_FOE_IB1_STATE;
		ppe->foe_table[entry->hash].ib1 |= FIELD_PREP(MTK_FOE_IB1_STATE,
							      MTK_FOE_STATE_UNBIND);
		dma_wmb();
	}
	entry->hash = 0xffff;

	if (entry->type != MTK_FLOW_TYPE_L2_SUBFLOW)
		return;

	hlist_del_init(&entry->l2_data.list);
	kfree(entry);
}

static int __mtk_foe_entry_idle_time(struct mtk_ppe *ppe, u32 ib1)
{
	u16 timestamp;
	u16 now;

	now = mtk_eth_timestamp(ppe->eth) & MTK_FOE_IB1_BIND_TIMESTAMP;
	timestamp = ib1 & MTK_FOE_IB1_BIND_TIMESTAMP;

	if (timestamp > now)
		return MTK_FOE_IB1_BIND_TIMESTAMP + 1 - timestamp + now;
	else
		return now - timestamp;
}

static void
mtk_flow_entry_update_l2(struct mtk_ppe *ppe, struct mtk_flow_entry *entry)
{
	struct mtk_flow_entry *cur;
	struct mtk_foe_entry *hwe;
	struct hlist_node *tmp;
	int idle;

	idle = __mtk_foe_entry_idle_time(ppe, entry->data.ib1);
	hlist_for_each_entry_safe(cur, tmp, &entry->l2_flows, l2_data.list) {
		int cur_idle;
		u32 ib1;

		hwe = &ppe->foe_table[cur->hash];
		ib1 = READ_ONCE(hwe->ib1);

		if (FIELD_GET(MTK_FOE_IB1_STATE, ib1) != MTK_FOE_STATE_BIND) {
			cur->hash = 0xffff;
			__mtk_foe_entry_clear(ppe, cur);
			continue;
		}

		cur_idle = __mtk_foe_entry_idle_time(ppe, ib1);
		if (cur_idle >= idle)
			continue;

		idle = cur_idle;
		entry->data.ib1 &= ~MTK_FOE_IB1_BIND_TIMESTAMP;
		entry->data.ib1 |= hwe->ib1 & MTK_FOE_IB1_BIND_TIMESTAMP;
	}
}

static void
mtk_flow_entry_update(struct mtk_ppe *ppe, struct mtk_flow_entry *entry)
{
	struct mtk_foe_entry *hwe;
	struct mtk_foe_entry foe;

	spin_lock_bh(&ppe_lock);

	if (entry->type == MTK_FLOW_TYPE_L2) {
		mtk_flow_entry_update_l2(ppe, entry);
		goto out;
	}

	if (entry->hash == 0xffff)
		goto out;

	hwe = &ppe->foe_table[entry->hash];
	memcpy(&foe, hwe, sizeof(foe));
	if (!mtk_flow_entry_match(entry, &foe)) {
		entry->hash = 0xffff;
		goto out;
	}

	entry->data.ib1 = foe.ib1;

out:
	spin_unlock_bh(&ppe_lock);
}

static void
__mtk_foe_entry_commit(struct mtk_ppe *ppe, struct mtk_foe_entry *entry,
		       u16 hash)
{
	struct mtk_foe_entry *hwe;
	u16 timestamp;

	timestamp = mtk_eth_timestamp(ppe->eth);
	timestamp &= MTK_FOE_IB1_BIND_TIMESTAMP;
	entry->ib1 &= ~MTK_FOE_IB1_BIND_TIMESTAMP;
	entry->ib1 |= FIELD_PREP(MTK_FOE_IB1_BIND_TIMESTAMP, timestamp);

	hwe = &ppe->foe_table[hash];
	memcpy(&hwe->data, &entry->data, sizeof(hwe->data));
	wmb();
	hwe->ib1 = entry->ib1;

	dma_wmb();

	mtk_ppe_cache_clear(ppe);
}

void mtk_foe_entry_clear(struct mtk_ppe *ppe, struct mtk_flow_entry *entry)
{
	spin_lock_bh(&ppe_lock);
	__mtk_foe_entry_clear(ppe, entry);
	spin_unlock_bh(&ppe_lock);
}

static int
mtk_foe_entry_commit_l2(struct mtk_ppe *ppe, struct mtk_flow_entry *entry)
{
	entry->type = MTK_FLOW_TYPE_L2;

	return rhashtable_insert_fast(&ppe->l2_flows, &entry->l2_node,
				      mtk_flow_l2_ht_params);
}

int mtk_foe_entry_commit(struct mtk_ppe *ppe, struct mtk_flow_entry *entry)
{
	int type = FIELD_GET(MTK_FOE_IB1_PACKET_TYPE, entry->data.ib1);
	u32 hash;

	if (type == MTK_PPE_PKT_TYPE_BRIDGE)
		return mtk_foe_entry_commit_l2(ppe, entry);

	hash = mtk_ppe_hash_entry(&entry->data);
	entry->hash = 0xffff;
	spin_lock_bh(&ppe_lock);
	hlist_add_head(&entry->list, &ppe->foe_flow[hash / 2]);
	spin_unlock_bh(&ppe_lock);

	return 0;
}

static void
mtk_foe_entry_commit_subflow(struct mtk_ppe *ppe, struct mtk_flow_entry *entry,
			     u16 hash)
{
	struct mtk_flow_entry *flow_info;
	struct mtk_foe_entry foe, *hwe;
	struct mtk_foe_mac_info *l2;
	u32 ib1_mask = MTK_FOE_IB1_PACKET_TYPE | MTK_FOE_IB1_UDP;
	int type;

	flow_info = kzalloc(offsetof(struct mtk_flow_entry, l2_data.end),
			    GFP_ATOMIC);
	if (!flow_info)
		return;

	flow_info->l2_data.base_flow = entry;
	flow_info->type = MTK_FLOW_TYPE_L2_SUBFLOW;
	flow_info->hash = hash;
	hlist_add_head(&flow_info->list, &ppe->foe_flow[hash / 2]);
	hlist_add_head(&flow_info->l2_data.list, &entry->l2_flows);

	hwe = &ppe->foe_table[hash];
	memcpy(&foe, hwe, sizeof(foe));
	foe.ib1 &= ib1_mask;
	foe.ib1 |= entry->data.ib1 & ~ib1_mask;

	l2 = mtk_foe_entry_l2(&foe);
	memcpy(l2, &entry->data.bridge.l2, sizeof(*l2));

	type = FIELD_GET(MTK_FOE_IB1_PACKET_TYPE, foe.ib1);
	if (type == MTK_PPE_PKT_TYPE_IPV4_HNAPT)
		memcpy(&foe.ipv4.new, &foe.ipv4.orig, sizeof(foe.ipv4.new));
	else if (type >= MTK_PPE_PKT_TYPE_IPV6_ROUTE_3T && l2->etype == ETH_P_IP)
		l2->etype = ETH_P_IPV6;

	*mtk_foe_entry_ib2(&foe) = entry->data.bridge.ib2;

	__mtk_foe_entry_commit(ppe, &foe, hash);
}

void __mtk_ppe_check_skb(struct mtk_ppe *ppe, struct sk_buff *skb, u16 hash)
{
	struct hlist_head *head = &ppe->foe_flow[hash / 2];
	struct mtk_foe_entry *hwe = &ppe->foe_table[hash];
	struct mtk_flow_entry *entry;
	struct mtk_foe_bridge key = {};
	struct hlist_node *n;
	struct ethhdr *eh;
	bool found = false;
	u8 *tag;

	spin_lock_bh(&ppe_lock);

	if (FIELD_GET(MTK_FOE_IB1_STATE, hwe->ib1) == MTK_FOE_STATE_BIND)
		goto out;

	hlist_for_each_entry_safe(entry, n, head, list) {
		if (entry->type == MTK_FLOW_TYPE_L2_SUBFLOW) {
			if (unlikely(FIELD_GET(MTK_FOE_IB1_STATE, hwe->ib1) ==
				     MTK_FOE_STATE_BIND))
				continue;

			entry->hash = 0xffff;
			__mtk_foe_entry_clear(ppe, entry);
			continue;
		}

		if (found || !mtk_flow_entry_match(entry, hwe)) {
			if (entry->hash != 0xffff)
				entry->hash = 0xffff;
			continue;
		}

		entry->hash = hash;
		__mtk_foe_entry_commit(ppe, &entry->data, hash);
		found = true;
	}

	if (found)
		goto out;

	eh = eth_hdr(skb);
	ether_addr_copy(key.dest_mac, eh->h_dest);
	ether_addr_copy(key.src_mac, eh->h_source);
	tag = skb->data - 2;
	key.vlan = 0;
	switch (skb->protocol) {
#if IS_ENABLED(CONFIG_NET_DSA)
	case htons(ETH_P_XDSA):
		if (!netdev_uses_dsa(skb->dev) ||
		    skb->dev->dsa_ptr->tag_ops->proto != DSA_TAG_PROTO_MTK)
			goto out;

		tag += 4;
		if (get_unaligned_be16(tag) != ETH_P_8021Q)
			break;

		fallthrough;
#endif
	case htons(ETH_P_8021Q):
		key.vlan = get_unaligned_be16(tag + 2) & VLAN_VID_MASK;
		break;
	default:
		break;
	}

	entry = rhashtable_lookup_fast(&ppe->l2_flows, &key, mtk_flow_l2_ht_params);
	if (!entry)
		goto out;

	mtk_foe_entry_commit_subflow(ppe, entry, hash);

out:
	spin_unlock_bh(&ppe_lock);
}

int mtk_foe_entry_idle_time(struct mtk_ppe *ppe, struct mtk_flow_entry *entry)
{
	mtk_flow_entry_update(ppe, entry);

	return __mtk_foe_entry_idle_time(ppe, entry->data.ib1);
}

struct mtk_ppe *mtk_ppe_init(struct mtk_eth *eth, void __iomem *base,
		 int version)
{
	struct device *dev = eth->dev;
	struct mtk_foe_entry *foe;
	struct mtk_ppe *ppe;

	ppe = devm_kzalloc(dev, sizeof(*ppe), GFP_KERNEL);
	if (!ppe)
		return NULL;

	rhashtable_init(&ppe->l2_flows, &mtk_flow_l2_ht_params);

	/* need to allocate a separate device, since it PPE DMA access is
	 * not coherent.
	 */
	ppe->base = base;
	ppe->eth = eth;
	ppe->dev = dev;
	ppe->version = version;

	foe = dmam_alloc_coherent(ppe->dev, MTK_PPE_ENTRIES * sizeof(*foe),
				  &ppe->foe_phys, GFP_KERNEL);
	if (!foe)
		return NULL;

	ppe->foe_table = foe;

	mtk_ppe_debugfs_init(ppe);

	return ppe;
}

static void mtk_ppe_init_foe_table(struct mtk_ppe *ppe)
{
	static const u8 skip[] = { 12, 25, 38, 51, 76, 89, 102 };
	int i, k;

	memset(ppe->foe_table, 0, MTK_PPE_ENTRIES * sizeof(*ppe->foe_table));

	if (!IS_ENABLED(CONFIG_SOC_MT7621))
		return;

	/* skip all entries that cross the 1024 byte boundary */
	for (i = 0; i < MTK_PPE_ENTRIES; i += 128)
		for (k = 0; k < ARRAY_SIZE(skip); k++)
			ppe->foe_table[i + skip[k]].ib1 |= MTK_FOE_IB1_STATIC;
}

int mtk_ppe_start(struct mtk_ppe *ppe)
{
	u32 val;

	mtk_ppe_init_foe_table(ppe);
	ppe_w32(ppe, MTK_PPE_TB_BASE, ppe->foe_phys);

	val = MTK_PPE_TB_CFG_ENTRY_80B |
	      MTK_PPE_TB_CFG_AGE_NON_L4 |
	      MTK_PPE_TB_CFG_AGE_UNBIND |
	      MTK_PPE_TB_CFG_AGE_TCP |
	      MTK_PPE_TB_CFG_AGE_UDP |
	      MTK_PPE_TB_CFG_AGE_TCP_FIN |
	      FIELD_PREP(MTK_PPE_TB_CFG_SEARCH_MISS,
			 MTK_PPE_SEARCH_MISS_ACTION_FORWARD_BUILD) |
	      FIELD_PREP(MTK_PPE_TB_CFG_KEEPALIVE,
			 MTK_PPE_KEEPALIVE_DISABLE) |
	      FIELD_PREP(MTK_PPE_TB_CFG_HASH_MODE, 1) |
	      FIELD_PREP(MTK_PPE_TB_CFG_SCAN_MODE,
			 MTK_PPE_SCAN_MODE_KEEPALIVE_AGE) |
	      FIELD_PREP(MTK_PPE_TB_CFG_ENTRY_NUM,
			 MTK_PPE_ENTRIES_SHIFT);
	ppe_w32(ppe, MTK_PPE_TB_CFG, val);

	ppe_w32(ppe, MTK_PPE_IP_PROTO_CHK,
		MTK_PPE_IP_PROTO_CHK_IPV4 | MTK_PPE_IP_PROTO_CHK_IPV6);

	mtk_ppe_cache_enable(ppe, true);

	val = MTK_PPE_FLOW_CFG_IP4_TCP_FRAG |
	      MTK_PPE_FLOW_CFG_IP4_UDP_FRAG |
	      MTK_PPE_FLOW_CFG_IP6_3T_ROUTE |
	      MTK_PPE_FLOW_CFG_IP6_5T_ROUTE |
	      MTK_PPE_FLOW_CFG_IP6_6RD |
	      MTK_PPE_FLOW_CFG_IP4_NAT |
	      MTK_PPE_FLOW_CFG_IP4_NAPT |
	      MTK_PPE_FLOW_CFG_IP4_DSLITE |
	      MTK_PPE_FLOW_CFG_IP4_NAT_FRAG;
	ppe_w32(ppe, MTK_PPE_FLOW_CFG, val);

	val = FIELD_PREP(MTK_PPE_UNBIND_AGE_MIN_PACKETS, 1000) |
	      FIELD_PREP(MTK_PPE_UNBIND_AGE_DELTA, 3);
	ppe_w32(ppe, MTK_PPE_UNBIND_AGE, val);

	val = FIELD_PREP(MTK_PPE_BIND_AGE0_DELTA_UDP, 12) |
	      FIELD_PREP(MTK_PPE_BIND_AGE0_DELTA_NON_L4, 1);
	ppe_w32(ppe, MTK_PPE_BIND_AGE0, val);

	val = FIELD_PREP(MTK_PPE_BIND_AGE1_DELTA_TCP_FIN, 1) |
	      FIELD_PREP(MTK_PPE_BIND_AGE1_DELTA_TCP, 7);
	ppe_w32(ppe, MTK_PPE_BIND_AGE1, val);

	val = MTK_PPE_BIND_LIMIT0_QUARTER | MTK_PPE_BIND_LIMIT0_HALF;
	ppe_w32(ppe, MTK_PPE_BIND_LIMIT0, val);

	val = MTK_PPE_BIND_LIMIT1_FULL |
	      FIELD_PREP(MTK_PPE_BIND_LIMIT1_NON_L4, 1);
	ppe_w32(ppe, MTK_PPE_BIND_LIMIT1, val);

	val = FIELD_PREP(MTK_PPE_BIND_RATE_BIND, 30) |
	      FIELD_PREP(MTK_PPE_BIND_RATE_PREBIND, 1);
	ppe_w32(ppe, MTK_PPE_BIND_RATE, val);

	/* enable PPE */
	val = MTK_PPE_GLO_CFG_EN |
	      MTK_PPE_GLO_CFG_IP4_L4_CS_DROP |
	      MTK_PPE_GLO_CFG_IP4_CS_DROP |
	      MTK_PPE_GLO_CFG_FLOW_DROP_UPDATE;
	ppe_w32(ppe, MTK_PPE_GLO_CFG, val);

	ppe_w32(ppe, MTK_PPE_DEFAULT_CPU_PORT, 0);

	return 0;
}

int mtk_ppe_stop(struct mtk_ppe *ppe)
{
	u32 val;
	int i;

	for (i = 0; i < MTK_PPE_ENTRIES; i++)
		ppe->foe_table[i].ib1 = FIELD_PREP(MTK_FOE_IB1_STATE,
						   MTK_FOE_STATE_INVALID);

	mtk_ppe_cache_enable(ppe, false);

	/* disable offload engine */
	ppe_clear(ppe, MTK_PPE_GLO_CFG, MTK_PPE_GLO_CFG_EN);
	ppe_w32(ppe, MTK_PPE_FLOW_CFG, 0);

	/* disable aging */
	val = MTK_PPE_TB_CFG_AGE_NON_L4 |
	      MTK_PPE_TB_CFG_AGE_UNBIND |
	      MTK_PPE_TB_CFG_AGE_TCP |
	      MTK_PPE_TB_CFG_AGE_UDP |
	      MTK_PPE_TB_CFG_AGE_TCP_FIN;
	ppe_clear(ppe, MTK_PPE_TB_CFG, val);

	return mtk_ppe_wait_busy(ppe);
}