1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
|
/****************************************************************************
* Driver for Solarflare network controllers and boards
* Copyright 2005-2006 Fen Systems Ltd.
* Copyright 2006-2013 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#ifndef EFX_NIC_H
#define EFX_NIC_H
#include <linux/net_tstamp.h>
#include <linux/i2c-algo-bit.h>
#include "net_driver.h"
#include "efx.h"
#include "mcdi.h"
enum {
EFX_REV_FALCON_A0 = 0,
EFX_REV_FALCON_A1 = 1,
EFX_REV_FALCON_B0 = 2,
EFX_REV_SIENA_A0 = 3,
EFX_REV_HUNT_A0 = 4,
};
static inline int efx_nic_rev(struct efx_nic *efx)
{
return efx->type->revision;
}
u32 efx_farch_fpga_ver(struct efx_nic *efx);
/* NIC has two interlinked PCI functions for the same port. */
static inline bool efx_nic_is_dual_func(struct efx_nic *efx)
{
return efx_nic_rev(efx) < EFX_REV_FALCON_B0;
}
/* Read the current event from the event queue */
static inline efx_qword_t *efx_event(struct efx_channel *channel,
unsigned int index)
{
return ((efx_qword_t *) (channel->eventq.buf.addr)) +
(index & channel->eventq_mask);
}
/* See if an event is present
*
* We check both the high and low dword of the event for all ones. We
* wrote all ones when we cleared the event, and no valid event can
* have all ones in either its high or low dwords. This approach is
* robust against reordering.
*
* Note that using a single 64-bit comparison is incorrect; even
* though the CPU read will be atomic, the DMA write may not be.
*/
static inline int efx_event_present(efx_qword_t *event)
{
return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
EFX_DWORD_IS_ALL_ONES(event->dword[1]));
}
/* Returns a pointer to the specified transmit descriptor in the TX
* descriptor queue belonging to the specified channel.
*/
static inline efx_qword_t *
efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
{
return ((efx_qword_t *) (tx_queue->txd.buf.addr)) + index;
}
/* Report whether the NIC considers this TX queue empty, given the
* write_count used for the last doorbell push. May return false
* negative.
*/
static inline bool __efx_nic_tx_is_empty(struct efx_tx_queue *tx_queue,
unsigned int write_count)
{
unsigned int empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count);
if (empty_read_count == 0)
return false;
return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0;
}
static inline bool efx_nic_tx_is_empty(struct efx_tx_queue *tx_queue)
{
return __efx_nic_tx_is_empty(tx_queue, tx_queue->write_count);
}
/* Decide whether to push a TX descriptor to the NIC vs merely writing
* the doorbell. This can reduce latency when we are adding a single
* descriptor to an empty queue, but is otherwise pointless. Further,
* Falcon and Siena have hardware bugs (SF bug 33851) that may be
* triggered if we don't check this.
*/
static inline bool efx_nic_may_push_tx_desc(struct efx_tx_queue *tx_queue,
unsigned int write_count)
{
bool was_empty = __efx_nic_tx_is_empty(tx_queue, write_count);
tx_queue->empty_read_count = 0;
return was_empty && tx_queue->write_count - write_count == 1;
}
/* Returns a pointer to the specified descriptor in the RX descriptor queue */
static inline efx_qword_t *
efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
{
return ((efx_qword_t *) (rx_queue->rxd.buf.addr)) + index;
}
enum {
PHY_TYPE_NONE = 0,
PHY_TYPE_TXC43128 = 1,
PHY_TYPE_88E1111 = 2,
PHY_TYPE_SFX7101 = 3,
PHY_TYPE_QT2022C2 = 4,
PHY_TYPE_PM8358 = 6,
PHY_TYPE_SFT9001A = 8,
PHY_TYPE_QT2025C = 9,
PHY_TYPE_SFT9001B = 10,
};
#define FALCON_XMAC_LOOPBACKS \
((1 << LOOPBACK_XGMII) | \
(1 << LOOPBACK_XGXS) | \
(1 << LOOPBACK_XAUI))
/* Alignment of PCIe DMA boundaries (4KB) */
#define EFX_PAGE_SIZE 4096
/* Size and alignment of buffer table entries (same) */
#define EFX_BUF_SIZE EFX_PAGE_SIZE
/**
* struct falcon_board_type - board operations and type information
* @id: Board type id, as found in NVRAM
* @init: Allocate resources and initialise peripheral hardware
* @init_phy: Do board-specific PHY initialisation
* @fini: Shut down hardware and free resources
* @set_id_led: Set state of identifying LED or revert to automatic function
* @monitor: Board-specific health check function
*/
struct falcon_board_type {
u8 id;
int (*init) (struct efx_nic *nic);
void (*init_phy) (struct efx_nic *efx);
void (*fini) (struct efx_nic *nic);
void (*set_id_led) (struct efx_nic *efx, enum efx_led_mode mode);
int (*monitor) (struct efx_nic *nic);
};
/**
* struct falcon_board - board information
* @type: Type of board
* @major: Major rev. ('A', 'B' ...)
* @minor: Minor rev. (0, 1, ...)
* @i2c_adap: I2C adapter for on-board peripherals
* @i2c_data: Data for bit-banging algorithm
* @hwmon_client: I2C client for hardware monitor
* @ioexp_client: I2C client for power/port control
*/
struct falcon_board {
const struct falcon_board_type *type;
int major;
int minor;
struct i2c_adapter i2c_adap;
struct i2c_algo_bit_data i2c_data;
struct i2c_client *hwmon_client, *ioexp_client;
};
/**
* struct falcon_spi_device - a Falcon SPI (Serial Peripheral Interface) device
* @device_id: Controller's id for the device
* @size: Size (in bytes)
* @addr_len: Number of address bytes in read/write commands
* @munge_address: Flag whether addresses should be munged.
* Some devices with 9-bit addresses (e.g. AT25040A EEPROM)
* use bit 3 of the command byte as address bit A8, rather
* than having a two-byte address. If this flag is set, then
* commands should be munged in this way.
* @erase_command: Erase command (or 0 if sector erase not needed).
* @erase_size: Erase sector size (in bytes)
* Erase commands affect sectors with this size and alignment.
* This must be a power of two.
* @block_size: Write block size (in bytes).
* Write commands are limited to blocks with this size and alignment.
*/
struct falcon_spi_device {
int device_id;
unsigned int size;
unsigned int addr_len;
unsigned int munge_address:1;
u8 erase_command;
unsigned int erase_size;
unsigned int block_size;
};
static inline bool falcon_spi_present(const struct falcon_spi_device *spi)
{
return spi->size != 0;
}
enum {
FALCON_STAT_tx_bytes,
FALCON_STAT_tx_packets,
FALCON_STAT_tx_pause,
FALCON_STAT_tx_control,
FALCON_STAT_tx_unicast,
FALCON_STAT_tx_multicast,
FALCON_STAT_tx_broadcast,
FALCON_STAT_tx_lt64,
FALCON_STAT_tx_64,
FALCON_STAT_tx_65_to_127,
FALCON_STAT_tx_128_to_255,
FALCON_STAT_tx_256_to_511,
FALCON_STAT_tx_512_to_1023,
FALCON_STAT_tx_1024_to_15xx,
FALCON_STAT_tx_15xx_to_jumbo,
FALCON_STAT_tx_gtjumbo,
FALCON_STAT_tx_non_tcpudp,
FALCON_STAT_tx_mac_src_error,
FALCON_STAT_tx_ip_src_error,
FALCON_STAT_rx_bytes,
FALCON_STAT_rx_good_bytes,
FALCON_STAT_rx_bad_bytes,
FALCON_STAT_rx_packets,
FALCON_STAT_rx_good,
FALCON_STAT_rx_bad,
FALCON_STAT_rx_pause,
FALCON_STAT_rx_control,
FALCON_STAT_rx_unicast,
FALCON_STAT_rx_multicast,
FALCON_STAT_rx_broadcast,
FALCON_STAT_rx_lt64,
FALCON_STAT_rx_64,
FALCON_STAT_rx_65_to_127,
FALCON_STAT_rx_128_to_255,
FALCON_STAT_rx_256_to_511,
FALCON_STAT_rx_512_to_1023,
FALCON_STAT_rx_1024_to_15xx,
FALCON_STAT_rx_15xx_to_jumbo,
FALCON_STAT_rx_gtjumbo,
FALCON_STAT_rx_bad_lt64,
FALCON_STAT_rx_bad_gtjumbo,
FALCON_STAT_rx_overflow,
FALCON_STAT_rx_symbol_error,
FALCON_STAT_rx_align_error,
FALCON_STAT_rx_length_error,
FALCON_STAT_rx_internal_error,
FALCON_STAT_rx_nodesc_drop_cnt,
FALCON_STAT_COUNT
};
/**
* struct falcon_nic_data - Falcon NIC state
* @pci_dev2: Secondary function of Falcon A
* @board: Board state and functions
* @stats: Hardware statistics
* @stats_disable_count: Nest count for disabling statistics fetches
* @stats_pending: Is there a pending DMA of MAC statistics.
* @stats_timer: A timer for regularly fetching MAC statistics.
* @spi_flash: SPI flash device
* @spi_eeprom: SPI EEPROM device
* @spi_lock: SPI bus lock
* @mdio_lock: MDIO bus lock
* @xmac_poll_required: XMAC link state needs polling
*/
struct falcon_nic_data {
struct pci_dev *pci_dev2;
struct falcon_board board;
u64 stats[FALCON_STAT_COUNT];
unsigned int stats_disable_count;
bool stats_pending;
struct timer_list stats_timer;
struct falcon_spi_device spi_flash;
struct falcon_spi_device spi_eeprom;
struct mutex spi_lock;
struct mutex mdio_lock;
bool xmac_poll_required;
};
static inline struct falcon_board *falcon_board(struct efx_nic *efx)
{
struct falcon_nic_data *data = efx->nic_data;
return &data->board;
}
enum {
SIENA_STAT_tx_bytes,
SIENA_STAT_tx_good_bytes,
SIENA_STAT_tx_bad_bytes,
SIENA_STAT_tx_packets,
SIENA_STAT_tx_bad,
SIENA_STAT_tx_pause,
SIENA_STAT_tx_control,
SIENA_STAT_tx_unicast,
SIENA_STAT_tx_multicast,
SIENA_STAT_tx_broadcast,
SIENA_STAT_tx_lt64,
SIENA_STAT_tx_64,
SIENA_STAT_tx_65_to_127,
SIENA_STAT_tx_128_to_255,
SIENA_STAT_tx_256_to_511,
SIENA_STAT_tx_512_to_1023,
SIENA_STAT_tx_1024_to_15xx,
SIENA_STAT_tx_15xx_to_jumbo,
SIENA_STAT_tx_gtjumbo,
SIENA_STAT_tx_collision,
SIENA_STAT_tx_single_collision,
SIENA_STAT_tx_multiple_collision,
SIENA_STAT_tx_excessive_collision,
SIENA_STAT_tx_deferred,
SIENA_STAT_tx_late_collision,
SIENA_STAT_tx_excessive_deferred,
SIENA_STAT_tx_non_tcpudp,
SIENA_STAT_tx_mac_src_error,
SIENA_STAT_tx_ip_src_error,
SIENA_STAT_rx_bytes,
SIENA_STAT_rx_good_bytes,
SIENA_STAT_rx_bad_bytes,
SIENA_STAT_rx_packets,
SIENA_STAT_rx_good,
SIENA_STAT_rx_bad,
SIENA_STAT_rx_pause,
SIENA_STAT_rx_control,
SIENA_STAT_rx_unicast,
SIENA_STAT_rx_multicast,
SIENA_STAT_rx_broadcast,
SIENA_STAT_rx_lt64,
SIENA_STAT_rx_64,
SIENA_STAT_rx_65_to_127,
SIENA_STAT_rx_128_to_255,
SIENA_STAT_rx_256_to_511,
SIENA_STAT_rx_512_to_1023,
SIENA_STAT_rx_1024_to_15xx,
SIENA_STAT_rx_15xx_to_jumbo,
SIENA_STAT_rx_gtjumbo,
SIENA_STAT_rx_bad_gtjumbo,
SIENA_STAT_rx_overflow,
SIENA_STAT_rx_false_carrier,
SIENA_STAT_rx_symbol_error,
SIENA_STAT_rx_align_error,
SIENA_STAT_rx_length_error,
SIENA_STAT_rx_internal_error,
SIENA_STAT_rx_nodesc_drop_cnt,
SIENA_STAT_COUNT
};
/**
* struct siena_nic_data - Siena NIC state
* @wol_filter_id: Wake-on-LAN packet filter id
* @stats: Hardware statistics
*/
struct siena_nic_data {
int wol_filter_id;
u64 stats[SIENA_STAT_COUNT];
};
enum {
EF10_STAT_tx_bytes,
EF10_STAT_tx_packets,
EF10_STAT_tx_pause,
EF10_STAT_tx_control,
EF10_STAT_tx_unicast,
EF10_STAT_tx_multicast,
EF10_STAT_tx_broadcast,
EF10_STAT_tx_lt64,
EF10_STAT_tx_64,
EF10_STAT_tx_65_to_127,
EF10_STAT_tx_128_to_255,
EF10_STAT_tx_256_to_511,
EF10_STAT_tx_512_to_1023,
EF10_STAT_tx_1024_to_15xx,
EF10_STAT_tx_15xx_to_jumbo,
EF10_STAT_rx_bytes,
EF10_STAT_rx_bytes_minus_good_bytes,
EF10_STAT_rx_good_bytes,
EF10_STAT_rx_bad_bytes,
EF10_STAT_rx_packets,
EF10_STAT_rx_good,
EF10_STAT_rx_bad,
EF10_STAT_rx_pause,
EF10_STAT_rx_control,
EF10_STAT_rx_unicast,
EF10_STAT_rx_multicast,
EF10_STAT_rx_broadcast,
EF10_STAT_rx_lt64,
EF10_STAT_rx_64,
EF10_STAT_rx_65_to_127,
EF10_STAT_rx_128_to_255,
EF10_STAT_rx_256_to_511,
EF10_STAT_rx_512_to_1023,
EF10_STAT_rx_1024_to_15xx,
EF10_STAT_rx_15xx_to_jumbo,
EF10_STAT_rx_gtjumbo,
EF10_STAT_rx_bad_gtjumbo,
EF10_STAT_rx_overflow,
EF10_STAT_rx_align_error,
EF10_STAT_rx_length_error,
EF10_STAT_rx_nodesc_drops,
EF10_STAT_rx_pm_trunc_bb_overflow,
EF10_STAT_rx_pm_discard_bb_overflow,
EF10_STAT_rx_pm_trunc_vfifo_full,
EF10_STAT_rx_pm_discard_vfifo_full,
EF10_STAT_rx_pm_trunc_qbb,
EF10_STAT_rx_pm_discard_qbb,
EF10_STAT_rx_pm_discard_mapping,
EF10_STAT_rx_dp_q_disabled_packets,
EF10_STAT_rx_dp_di_dropped_packets,
EF10_STAT_rx_dp_streaming_packets,
EF10_STAT_rx_dp_emerg_fetch,
EF10_STAT_rx_dp_emerg_wait,
EF10_STAT_COUNT
};
/* Maximum number of TX PIO buffers we may allocate to a function.
* This matches the total number of buffers on each SFC9100-family
* controller.
*/
#define EF10_TX_PIOBUF_COUNT 16
/**
* struct efx_ef10_nic_data - EF10 architecture NIC state
* @mcdi_buf: DMA buffer for MCDI
* @warm_boot_count: Last seen MC warm boot count
* @vi_base: Absolute index of first VI in this function
* @n_allocated_vis: Number of VIs allocated to this function
* @must_realloc_vis: Flag: VIs have yet to be reallocated after MC reboot
* @must_restore_filters: Flag: filters have yet to be restored after MC reboot
* @n_piobufs: Number of PIO buffers allocated to this function
* @wc_membase: Base address of write-combining mapping of the memory BAR
* @pio_write_base: Base address for writing PIO buffers
* @pio_write_vi_base: Relative VI number for @pio_write_base
* @piobuf_handle: Handle of each PIO buffer allocated
* @must_restore_piobufs: Flag: PIO buffers have yet to be restored after MC
* reboot
* @rx_rss_context: Firmware handle for our RSS context
* @stats: Hardware statistics
* @workaround_35388: Flag: firmware supports workaround for bug 35388
* @must_check_datapath_caps: Flag: @datapath_caps needs to be revalidated
* after MC reboot
* @datapath_caps: Capabilities of datapath firmware (FLAGS1 field of
* %MC_CMD_GET_CAPABILITIES response)
*/
struct efx_ef10_nic_data {
struct efx_buffer mcdi_buf;
u16 warm_boot_count;
unsigned int vi_base;
unsigned int n_allocated_vis;
bool must_realloc_vis;
bool must_restore_filters;
unsigned int n_piobufs;
void __iomem *wc_membase, *pio_write_base;
unsigned int pio_write_vi_base;
unsigned int piobuf_handle[EF10_TX_PIOBUF_COUNT];
bool must_restore_piobufs;
u32 rx_rss_context;
u64 stats[EF10_STAT_COUNT];
bool workaround_35388;
bool must_check_datapath_caps;
u32 datapath_caps;
};
/*
* On the SFC9000 family each port is associated with 1 PCI physical
* function (PF) handled by sfc and a configurable number of virtual
* functions (VFs) that may be handled by some other driver, often in
* a VM guest. The queue pointer registers are mapped in both PF and
* VF BARs such that an 8K region provides access to a single RX, TX
* and event queue (collectively a Virtual Interface, VI or VNIC).
*
* The PF has access to all 1024 VIs while VFs are mapped to VIs
* according to VI_BASE and VI_SCALE: VF i has access to VIs numbered
* in range [VI_BASE + i << VI_SCALE, VI_BASE + i + 1 << VI_SCALE).
* The number of VIs and the VI_SCALE value are configurable but must
* be established at boot time by firmware.
*/
/* Maximum VI_SCALE parameter supported by Siena */
#define EFX_VI_SCALE_MAX 6
/* Base VI to use for SR-IOV. Must be aligned to (1 << EFX_VI_SCALE_MAX),
* so this is the smallest allowed value. */
#define EFX_VI_BASE 128U
/* Maximum number of VFs allowed */
#define EFX_VF_COUNT_MAX 127
/* Limit EVQs on VFs to be only 8k to reduce buffer table reservation */
#define EFX_MAX_VF_EVQ_SIZE 8192UL
/* The number of buffer table entries reserved for each VI on a VF */
#define EFX_VF_BUFTBL_PER_VI \
((EFX_MAX_VF_EVQ_SIZE + 2 * EFX_MAX_DMAQ_SIZE) * \
sizeof(efx_qword_t) / EFX_BUF_SIZE)
#ifdef CONFIG_SFC_SRIOV
static inline bool efx_sriov_wanted(struct efx_nic *efx)
{
return efx->vf_count != 0;
}
static inline bool efx_sriov_enabled(struct efx_nic *efx)
{
return efx->vf_init_count != 0;
}
static inline unsigned int efx_vf_size(struct efx_nic *efx)
{
return 1 << efx->vi_scale;
}
int efx_init_sriov(void);
void efx_sriov_probe(struct efx_nic *efx);
int efx_sriov_init(struct efx_nic *efx);
void efx_sriov_mac_address_changed(struct efx_nic *efx);
void efx_sriov_tx_flush_done(struct efx_nic *efx, efx_qword_t *event);
void efx_sriov_rx_flush_done(struct efx_nic *efx, efx_qword_t *event);
void efx_sriov_event(struct efx_channel *channel, efx_qword_t *event);
void efx_sriov_desc_fetch_err(struct efx_nic *efx, unsigned dmaq);
void efx_sriov_flr(struct efx_nic *efx, unsigned flr);
void efx_sriov_reset(struct efx_nic *efx);
void efx_sriov_fini(struct efx_nic *efx);
void efx_fini_sriov(void);
#else
static inline bool efx_sriov_wanted(struct efx_nic *efx) { return false; }
static inline bool efx_sriov_enabled(struct efx_nic *efx) { return false; }
static inline unsigned int efx_vf_size(struct efx_nic *efx) { return 0; }
static inline int efx_init_sriov(void) { return 0; }
static inline void efx_sriov_probe(struct efx_nic *efx) {}
static inline int efx_sriov_init(struct efx_nic *efx) { return -EOPNOTSUPP; }
static inline void efx_sriov_mac_address_changed(struct efx_nic *efx) {}
static inline void efx_sriov_tx_flush_done(struct efx_nic *efx,
efx_qword_t *event) {}
static inline void efx_sriov_rx_flush_done(struct efx_nic *efx,
efx_qword_t *event) {}
static inline void efx_sriov_event(struct efx_channel *channel,
efx_qword_t *event) {}
static inline void efx_sriov_desc_fetch_err(struct efx_nic *efx, unsigned dmaq) {}
static inline void efx_sriov_flr(struct efx_nic *efx, unsigned flr) {}
static inline void efx_sriov_reset(struct efx_nic *efx) {}
static inline void efx_sriov_fini(struct efx_nic *efx) {}
static inline void efx_fini_sriov(void) {}
#endif
int efx_sriov_set_vf_mac(struct net_device *dev, int vf, u8 *mac);
int efx_sriov_set_vf_vlan(struct net_device *dev, int vf, u16 vlan, u8 qos);
int efx_sriov_get_vf_config(struct net_device *dev, int vf,
struct ifla_vf_info *ivf);
int efx_sriov_set_vf_spoofchk(struct net_device *net_dev, int vf,
bool spoofchk);
struct ethtool_ts_info;
int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel);
void efx_ptp_defer_probe_with_channel(struct efx_nic *efx);
void efx_ptp_remove(struct efx_nic *efx);
int efx_ptp_set_ts_config(struct efx_nic *efx, struct ifreq *ifr);
int efx_ptp_get_ts_config(struct efx_nic *efx, struct ifreq *ifr);
void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info);
bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb);
int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb);
void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev);
void efx_ptp_start_datapath(struct efx_nic *efx);
void efx_ptp_stop_datapath(struct efx_nic *efx);
extern const struct efx_nic_type falcon_a1_nic_type;
extern const struct efx_nic_type falcon_b0_nic_type;
extern const struct efx_nic_type siena_a0_nic_type;
extern const struct efx_nic_type efx_hunt_a0_nic_type;
/**************************************************************************
*
* Externs
*
**************************************************************************
*/
int falcon_probe_board(struct efx_nic *efx, u16 revision_info);
/* TX data path */
static inline int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
{
return tx_queue->efx->type->tx_probe(tx_queue);
}
static inline void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
{
tx_queue->efx->type->tx_init(tx_queue);
}
static inline void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
{
tx_queue->efx->type->tx_remove(tx_queue);
}
static inline void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
{
tx_queue->efx->type->tx_write(tx_queue);
}
/* RX data path */
static inline int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
{
return rx_queue->efx->type->rx_probe(rx_queue);
}
static inline void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
{
rx_queue->efx->type->rx_init(rx_queue);
}
static inline void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
{
rx_queue->efx->type->rx_remove(rx_queue);
}
static inline void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
{
rx_queue->efx->type->rx_write(rx_queue);
}
static inline void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
{
rx_queue->efx->type->rx_defer_refill(rx_queue);
}
/* Event data path */
static inline int efx_nic_probe_eventq(struct efx_channel *channel)
{
return channel->efx->type->ev_probe(channel);
}
static inline int efx_nic_init_eventq(struct efx_channel *channel)
{
return channel->efx->type->ev_init(channel);
}
static inline void efx_nic_fini_eventq(struct efx_channel *channel)
{
channel->efx->type->ev_fini(channel);
}
static inline void efx_nic_remove_eventq(struct efx_channel *channel)
{
channel->efx->type->ev_remove(channel);
}
static inline int
efx_nic_process_eventq(struct efx_channel *channel, int quota)
{
return channel->efx->type->ev_process(channel, quota);
}
static inline void efx_nic_eventq_read_ack(struct efx_channel *channel)
{
channel->efx->type->ev_read_ack(channel);
}
void efx_nic_event_test_start(struct efx_channel *channel);
/* Falcon/Siena queue operations */
int efx_farch_tx_probe(struct efx_tx_queue *tx_queue);
void efx_farch_tx_init(struct efx_tx_queue *tx_queue);
void efx_farch_tx_fini(struct efx_tx_queue *tx_queue);
void efx_farch_tx_remove(struct efx_tx_queue *tx_queue);
void efx_farch_tx_write(struct efx_tx_queue *tx_queue);
int efx_farch_rx_probe(struct efx_rx_queue *rx_queue);
void efx_farch_rx_init(struct efx_rx_queue *rx_queue);
void efx_farch_rx_fini(struct efx_rx_queue *rx_queue);
void efx_farch_rx_remove(struct efx_rx_queue *rx_queue);
void efx_farch_rx_write(struct efx_rx_queue *rx_queue);
void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue);
int efx_farch_ev_probe(struct efx_channel *channel);
int efx_farch_ev_init(struct efx_channel *channel);
void efx_farch_ev_fini(struct efx_channel *channel);
void efx_farch_ev_remove(struct efx_channel *channel);
int efx_farch_ev_process(struct efx_channel *channel, int quota);
void efx_farch_ev_read_ack(struct efx_channel *channel);
void efx_farch_ev_test_generate(struct efx_channel *channel);
/* Falcon/Siena filter operations */
int efx_farch_filter_table_probe(struct efx_nic *efx);
void efx_farch_filter_table_restore(struct efx_nic *efx);
void efx_farch_filter_table_remove(struct efx_nic *efx);
void efx_farch_filter_update_rx_scatter(struct efx_nic *efx);
s32 efx_farch_filter_insert(struct efx_nic *efx, struct efx_filter_spec *spec,
bool replace);
int efx_farch_filter_remove_safe(struct efx_nic *efx,
enum efx_filter_priority priority,
u32 filter_id);
int efx_farch_filter_get_safe(struct efx_nic *efx,
enum efx_filter_priority priority, u32 filter_id,
struct efx_filter_spec *);
void efx_farch_filter_clear_rx(struct efx_nic *efx,
enum efx_filter_priority priority);
u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
enum efx_filter_priority priority);
u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx);
s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
enum efx_filter_priority priority, u32 *buf,
u32 size);
#ifdef CONFIG_RFS_ACCEL
s32 efx_farch_filter_rfs_insert(struct efx_nic *efx,
struct efx_filter_spec *spec);
bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
unsigned int index);
#endif
void efx_farch_filter_sync_rx_mode(struct efx_nic *efx);
bool efx_nic_event_present(struct efx_channel *channel);
/* Some statistics are computed as A - B where A and B each increase
* linearly with some hardware counter(s) and the counters are read
* asynchronously. If the counters contributing to B are always read
* after those contributing to A, the computed value may be lower than
* the true value by some variable amount, and may decrease between
* subsequent computations.
*
* We should never allow statistics to decrease or to exceed the true
* value. Since the computed value will never be greater than the
* true value, we can achieve this by only storing the computed value
* when it increases.
*/
static inline void efx_update_diff_stat(u64 *stat, u64 diff)
{
if ((s64)(diff - *stat) > 0)
*stat = diff;
}
/* Interrupts */
int efx_nic_init_interrupt(struct efx_nic *efx);
void efx_nic_irq_test_start(struct efx_nic *efx);
void efx_nic_fini_interrupt(struct efx_nic *efx);
/* Falcon/Siena interrupts */
void efx_farch_irq_enable_master(struct efx_nic *efx);
void efx_farch_irq_test_generate(struct efx_nic *efx);
void efx_farch_irq_disable_master(struct efx_nic *efx);
irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id);
irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id);
irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx);
static inline int efx_nic_event_test_irq_cpu(struct efx_channel *channel)
{
return ACCESS_ONCE(channel->event_test_cpu);
}
static inline int efx_nic_irq_test_irq_cpu(struct efx_nic *efx)
{
return ACCESS_ONCE(efx->last_irq_cpu);
}
/* Global Resources */
int efx_nic_flush_queues(struct efx_nic *efx);
void siena_prepare_flush(struct efx_nic *efx);
int efx_farch_fini_dmaq(struct efx_nic *efx);
void siena_finish_flush(struct efx_nic *efx);
void falcon_start_nic_stats(struct efx_nic *efx);
void falcon_stop_nic_stats(struct efx_nic *efx);
int falcon_reset_xaui(struct efx_nic *efx);
void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw);
void efx_farch_init_common(struct efx_nic *efx);
void efx_ef10_handle_drain_event(struct efx_nic *efx);
static inline void efx_nic_push_rx_indir_table(struct efx_nic *efx)
{
efx->type->rx_push_indir_table(efx);
}
void efx_farch_rx_push_indir_table(struct efx_nic *efx);
int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
unsigned int len, gfp_t gfp_flags);
void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer);
/* Tests */
struct efx_farch_register_test {
unsigned address;
efx_oword_t mask;
};
int efx_farch_test_registers(struct efx_nic *efx,
const struct efx_farch_register_test *regs,
size_t n_regs);
size_t efx_nic_get_regs_len(struct efx_nic *efx);
void efx_nic_get_regs(struct efx_nic *efx, void *buf);
size_t efx_nic_describe_stats(const struct efx_hw_stat_desc *desc, size_t count,
const unsigned long *mask, u8 *names);
void efx_nic_update_stats(const struct efx_hw_stat_desc *desc, size_t count,
const unsigned long *mask, u64 *stats,
const void *dma_buf, bool accumulate);
void efx_nic_fix_nodesc_drop_stat(struct efx_nic *efx, u64 *stat);
#define EFX_MAX_FLUSH_TIME 5000
void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
efx_qword_t *event);
#endif /* EFX_NIC_H */
|