1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
|
// SPDX-License-Identifier: GPL-2.0-only
/****************************************************************************
* Driver for Solarflare network controllers and boards
* Copyright 2005-2006 Fen Systems Ltd.
* Copyright 2005-2013 Solarflare Communications Inc.
*/
#include <linux/pci.h>
#include <linux/tcp.h>
#include <linux/ip.h>
#include <linux/in.h>
#include <linux/ipv6.h>
#include <linux/slab.h>
#include <net/ipv6.h>
#include <linux/if_ether.h>
#include <linux/highmem.h>
#include <linux/cache.h>
#include "net_driver.h"
#include "efx.h"
#include "io.h"
#include "nic.h"
#include "tx.h"
#include "tx_common.h"
#include "workarounds.h"
#include "ef10_regs.h"
#ifdef EFX_USE_PIO
#define EFX_PIOBUF_SIZE_DEF ALIGN(256, L1_CACHE_BYTES)
unsigned int efx_piobuf_size __read_mostly = EFX_PIOBUF_SIZE_DEF;
#endif /* EFX_USE_PIO */
static inline u8 *efx_tx_get_copy_buffer(struct efx_tx_queue *tx_queue,
struct efx_tx_buffer *buffer)
{
unsigned int index = efx_tx_queue_get_insert_index(tx_queue);
struct efx_buffer *page_buf =
&tx_queue->cb_page[index >> (PAGE_SHIFT - EFX_TX_CB_ORDER)];
unsigned int offset =
((index << EFX_TX_CB_ORDER) + NET_IP_ALIGN) & (PAGE_SIZE - 1);
if (unlikely(!page_buf->addr) &&
efx_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE,
GFP_ATOMIC))
return NULL;
buffer->dma_addr = page_buf->dma_addr + offset;
buffer->unmap_len = 0;
return (u8 *)page_buf->addr + offset;
}
u8 *efx_tx_get_copy_buffer_limited(struct efx_tx_queue *tx_queue,
struct efx_tx_buffer *buffer, size_t len)
{
if (len > EFX_TX_CB_SIZE)
return NULL;
return efx_tx_get_copy_buffer(tx_queue, buffer);
}
static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1)
{
/* We need to consider all queues that the net core sees as one */
struct efx_nic *efx = txq1->efx;
struct efx_tx_queue *txq2;
unsigned int fill_level;
fill_level = efx_channel_tx_old_fill_level(txq1->channel);
if (likely(fill_level < efx->txq_stop_thresh))
return;
/* We used the stale old_read_count above, which gives us a
* pessimistic estimate of the fill level (which may even
* validly be >= efx->txq_entries). Now try again using
* read_count (more likely to be a cache miss).
*
* If we read read_count and then conditionally stop the
* queue, it is possible for the completion path to race with
* us and complete all outstanding descriptors in the middle,
* after which there will be no more completions to wake it.
* Therefore we stop the queue first, then read read_count
* (with a memory barrier to ensure the ordering), then
* restart the queue if the fill level turns out to be low
* enough.
*/
netif_tx_stop_queue(txq1->core_txq);
smp_mb();
efx_for_each_channel_tx_queue(txq2, txq1->channel)
txq2->old_read_count = READ_ONCE(txq2->read_count);
fill_level = efx_channel_tx_old_fill_level(txq1->channel);
EFX_WARN_ON_ONCE_PARANOID(fill_level >= efx->txq_entries);
if (likely(fill_level < efx->txq_stop_thresh)) {
smp_mb();
if (likely(!efx->loopback_selftest))
netif_tx_start_queue(txq1->core_txq);
}
}
static int efx_enqueue_skb_copy(struct efx_tx_queue *tx_queue,
struct sk_buff *skb)
{
unsigned int copy_len = skb->len;
struct efx_tx_buffer *buffer;
u8 *copy_buffer;
int rc;
EFX_WARN_ON_ONCE_PARANOID(copy_len > EFX_TX_CB_SIZE);
buffer = efx_tx_queue_get_insert_buffer(tx_queue);
copy_buffer = efx_tx_get_copy_buffer(tx_queue, buffer);
if (unlikely(!copy_buffer))
return -ENOMEM;
rc = skb_copy_bits(skb, 0, copy_buffer, copy_len);
EFX_WARN_ON_PARANOID(rc);
buffer->len = copy_len;
buffer->skb = skb;
buffer->flags = EFX_TX_BUF_SKB;
++tx_queue->insert_count;
return rc;
}
#ifdef EFX_USE_PIO
struct efx_short_copy_buffer {
int used;
u8 buf[L1_CACHE_BYTES];
};
/* Copy to PIO, respecting that writes to PIO buffers must be dword aligned.
* Advances piobuf pointer. Leaves additional data in the copy buffer.
*/
static void efx_memcpy_toio_aligned(struct efx_nic *efx, u8 __iomem **piobuf,
u8 *data, int len,
struct efx_short_copy_buffer *copy_buf)
{
int block_len = len & ~(sizeof(copy_buf->buf) - 1);
__iowrite64_copy(*piobuf, data, block_len >> 3);
*piobuf += block_len;
len -= block_len;
if (len) {
data += block_len;
BUG_ON(copy_buf->used);
BUG_ON(len > sizeof(copy_buf->buf));
memcpy(copy_buf->buf, data, len);
copy_buf->used = len;
}
}
/* Copy to PIO, respecting dword alignment, popping data from copy buffer first.
* Advances piobuf pointer. Leaves additional data in the copy buffer.
*/
static void efx_memcpy_toio_aligned_cb(struct efx_nic *efx, u8 __iomem **piobuf,
u8 *data, int len,
struct efx_short_copy_buffer *copy_buf)
{
if (copy_buf->used) {
/* if the copy buffer is partially full, fill it up and write */
int copy_to_buf =
min_t(int, sizeof(copy_buf->buf) - copy_buf->used, len);
memcpy(copy_buf->buf + copy_buf->used, data, copy_to_buf);
copy_buf->used += copy_to_buf;
/* if we didn't fill it up then we're done for now */
if (copy_buf->used < sizeof(copy_buf->buf))
return;
__iowrite64_copy(*piobuf, copy_buf->buf,
sizeof(copy_buf->buf) >> 3);
*piobuf += sizeof(copy_buf->buf);
data += copy_to_buf;
len -= copy_to_buf;
copy_buf->used = 0;
}
efx_memcpy_toio_aligned(efx, piobuf, data, len, copy_buf);
}
static void efx_flush_copy_buffer(struct efx_nic *efx, u8 __iomem *piobuf,
struct efx_short_copy_buffer *copy_buf)
{
/* if there's anything in it, write the whole buffer, including junk */
if (copy_buf->used)
__iowrite64_copy(piobuf, copy_buf->buf,
sizeof(copy_buf->buf) >> 3);
}
/* Traverse skb structure and copy fragments in to PIO buffer.
* Advances piobuf pointer.
*/
static void efx_skb_copy_bits_to_pio(struct efx_nic *efx, struct sk_buff *skb,
u8 __iomem **piobuf,
struct efx_short_copy_buffer *copy_buf)
{
int i;
efx_memcpy_toio_aligned(efx, piobuf, skb->data, skb_headlen(skb),
copy_buf);
for (i = 0; i < skb_shinfo(skb)->nr_frags; ++i) {
skb_frag_t *f = &skb_shinfo(skb)->frags[i];
u8 *vaddr;
vaddr = kmap_atomic(skb_frag_page(f));
efx_memcpy_toio_aligned_cb(efx, piobuf, vaddr + skb_frag_off(f),
skb_frag_size(f), copy_buf);
kunmap_atomic(vaddr);
}
EFX_WARN_ON_ONCE_PARANOID(skb_shinfo(skb)->frag_list);
}
static int efx_enqueue_skb_pio(struct efx_tx_queue *tx_queue,
struct sk_buff *skb)
{
struct efx_tx_buffer *buffer =
efx_tx_queue_get_insert_buffer(tx_queue);
u8 __iomem *piobuf = tx_queue->piobuf;
/* Copy to PIO buffer. Ensure the writes are padded to the end
* of a cache line, as this is required for write-combining to be
* effective on at least x86.
*/
if (skb_shinfo(skb)->nr_frags) {
/* The size of the copy buffer will ensure all writes
* are the size of a cache line.
*/
struct efx_short_copy_buffer copy_buf;
copy_buf.used = 0;
efx_skb_copy_bits_to_pio(tx_queue->efx, skb,
&piobuf, ©_buf);
efx_flush_copy_buffer(tx_queue->efx, piobuf, ©_buf);
} else {
/* Pad the write to the size of a cache line.
* We can do this because we know the skb_shared_info struct is
* after the source, and the destination buffer is big enough.
*/
BUILD_BUG_ON(L1_CACHE_BYTES >
SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
__iowrite64_copy(tx_queue->piobuf, skb->data,
ALIGN(skb->len, L1_CACHE_BYTES) >> 3);
}
buffer->skb = skb;
buffer->flags = EFX_TX_BUF_SKB | EFX_TX_BUF_OPTION;
EFX_POPULATE_QWORD_5(buffer->option,
ESF_DZ_TX_DESC_IS_OPT, 1,
ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_PIO,
ESF_DZ_TX_PIO_CONT, 0,
ESF_DZ_TX_PIO_BYTE_CNT, skb->len,
ESF_DZ_TX_PIO_BUF_ADDR,
tx_queue->piobuf_offset);
++tx_queue->insert_count;
return 0;
}
/* Decide whether we can use TX PIO, ie. write packet data directly into
* a buffer on the device. This can reduce latency at the expense of
* throughput, so we only do this if both hardware and software TX rings
* are empty, including all queues for the channel. This also ensures that
* only one packet at a time can be using the PIO buffer. If the xmit_more
* flag is set then we don't use this - there'll be another packet along
* shortly and we want to hold off the doorbell.
*/
static bool efx_tx_may_pio(struct efx_tx_queue *tx_queue)
{
struct efx_channel *channel = tx_queue->channel;
if (!tx_queue->piobuf)
return false;
EFX_WARN_ON_ONCE_PARANOID(!channel->efx->type->option_descriptors);
efx_for_each_channel_tx_queue(tx_queue, channel)
if (!efx_nic_tx_is_empty(tx_queue, tx_queue->packet_write_count))
return false;
return true;
}
#endif /* EFX_USE_PIO */
/* Send any pending traffic for a channel. xmit_more is shared across all
* queues for a channel, so we must check all of them.
*/
static void efx_tx_send_pending(struct efx_channel *channel)
{
struct efx_tx_queue *q;
efx_for_each_channel_tx_queue(q, channel) {
if (q->xmit_pending)
efx_nic_push_buffers(q);
}
}
/*
* Add a socket buffer to a TX queue
*
* This maps all fragments of a socket buffer for DMA and adds them to
* the TX queue. The queue's insert pointer will be incremented by
* the number of fragments in the socket buffer.
*
* If any DMA mapping fails, any mapped fragments will be unmapped,
* the queue's insert pointer will be restored to its original value.
*
* This function is split out from efx_hard_start_xmit to allow the
* loopback test to direct packets via specific TX queues.
*
* Returns NETDEV_TX_OK.
* You must hold netif_tx_lock() to call this function.
*/
netdev_tx_t __efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
{
unsigned int old_insert_count = tx_queue->insert_count;
bool xmit_more = netdev_xmit_more();
bool data_mapped = false;
unsigned int segments;
unsigned int skb_len;
int rc;
skb_len = skb->len;
segments = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 0;
if (segments == 1)
segments = 0; /* Don't use TSO for a single segment. */
/* Handle TSO first - it's *possible* (although unlikely) that we might
* be passed a packet to segment that's smaller than the copybreak/PIO
* size limit.
*/
if (segments) {
switch (tx_queue->tso_version) {
case 1:
rc = efx_enqueue_skb_tso(tx_queue, skb, &data_mapped);
break;
case 2:
rc = efx_ef10_tx_tso_desc(tx_queue, skb, &data_mapped);
break;
case 0: /* No TSO on this queue, SW fallback needed */
default:
rc = -EINVAL;
break;
}
if (rc == -EINVAL) {
rc = efx_tx_tso_fallback(tx_queue, skb);
tx_queue->tso_fallbacks++;
if (rc == 0)
return 0;
}
if (rc)
goto err;
#ifdef EFX_USE_PIO
} else if (skb_len <= efx_piobuf_size && !xmit_more &&
efx_tx_may_pio(tx_queue)) {
/* Use PIO for short packets with an empty queue. */
if (efx_enqueue_skb_pio(tx_queue, skb))
goto err;
tx_queue->pio_packets++;
data_mapped = true;
#endif
} else if (skb->data_len && skb_len <= EFX_TX_CB_SIZE) {
/* Pad short packets or coalesce short fragmented packets. */
if (efx_enqueue_skb_copy(tx_queue, skb))
goto err;
tx_queue->cb_packets++;
data_mapped = true;
}
/* Map for DMA and create descriptors if we haven't done so already. */
if (!data_mapped && (efx_tx_map_data(tx_queue, skb, segments)))
goto err;
efx_tx_maybe_stop_queue(tx_queue);
tx_queue->xmit_pending = true;
/* Pass off to hardware */
if (__netdev_tx_sent_queue(tx_queue->core_txq, skb_len, xmit_more))
efx_tx_send_pending(tx_queue->channel);
if (segments) {
tx_queue->tso_bursts++;
tx_queue->tso_packets += segments;
tx_queue->tx_packets += segments;
} else {
tx_queue->tx_packets++;
}
return NETDEV_TX_OK;
err:
efx_enqueue_unwind(tx_queue, old_insert_count);
dev_kfree_skb_any(skb);
/* If we're not expecting another transmit and we had something to push
* on this queue or a partner queue then we need to push here to get the
* previous packets out.
*/
if (!xmit_more)
efx_tx_send_pending(tx_queue->channel);
return NETDEV_TX_OK;
}
/* Transmit a packet from an XDP buffer
*
* Returns number of packets sent on success, error code otherwise.
* Runs in NAPI context, either in our poll (for XDP TX) or a different NIC
* (for XDP redirect).
*/
int efx_xdp_tx_buffers(struct efx_nic *efx, int n, struct xdp_frame **xdpfs,
bool flush)
{
struct efx_tx_buffer *tx_buffer;
struct efx_tx_queue *tx_queue;
struct xdp_frame *xdpf;
dma_addr_t dma_addr;
unsigned int len;
int space;
int cpu;
int i = 0;
if (unlikely(n && !xdpfs))
return -EINVAL;
if (unlikely(!n))
return 0;
cpu = raw_smp_processor_id();
if (unlikely(cpu >= efx->xdp_tx_queue_count))
return -EINVAL;
tx_queue = efx->xdp_tx_queues[cpu];
if (unlikely(!tx_queue))
return -EINVAL;
if (!tx_queue->initialised)
return -EINVAL;
if (efx->xdp_txq_queues_mode != EFX_XDP_TX_QUEUES_DEDICATED)
HARD_TX_LOCK(efx->net_dev, tx_queue->core_txq, cpu);
/* If we're borrowing net stack queues we have to handle stop-restart
* or we might block the queue and it will be considered as frozen
*/
if (efx->xdp_txq_queues_mode == EFX_XDP_TX_QUEUES_BORROWED) {
if (netif_tx_queue_stopped(tx_queue->core_txq))
goto unlock;
efx_tx_maybe_stop_queue(tx_queue);
}
/* Check for available space. We should never need multiple
* descriptors per frame.
*/
space = efx->txq_entries +
tx_queue->read_count - tx_queue->insert_count;
for (i = 0; i < n; i++) {
xdpf = xdpfs[i];
if (i >= space)
break;
/* We'll want a descriptor for this tx. */
prefetchw(__efx_tx_queue_get_insert_buffer(tx_queue));
len = xdpf->len;
/* Map for DMA. */
dma_addr = dma_map_single(&efx->pci_dev->dev,
xdpf->data, len,
DMA_TO_DEVICE);
if (dma_mapping_error(&efx->pci_dev->dev, dma_addr))
break;
/* Create descriptor and set up for unmapping DMA. */
tx_buffer = efx_tx_map_chunk(tx_queue, dma_addr, len);
tx_buffer->xdpf = xdpf;
tx_buffer->flags = EFX_TX_BUF_XDP |
EFX_TX_BUF_MAP_SINGLE;
tx_buffer->dma_offset = 0;
tx_buffer->unmap_len = len;
tx_queue->tx_packets++;
}
/* Pass mapped frames to hardware. */
if (flush && i > 0)
efx_nic_push_buffers(tx_queue);
unlock:
if (efx->xdp_txq_queues_mode != EFX_XDP_TX_QUEUES_DEDICATED)
HARD_TX_UNLOCK(efx->net_dev, tx_queue->core_txq);
return i == 0 ? -EIO : i;
}
/* Initiate a packet transmission. We use one channel per CPU
* (sharing when we have more CPUs than channels).
*
* Context: non-blocking.
* Should always return NETDEV_TX_OK and consume the skb.
*/
netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
struct net_device *net_dev)
{
struct efx_nic *efx = netdev_priv(net_dev);
struct efx_tx_queue *tx_queue;
unsigned index, type;
EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
index = skb_get_queue_mapping(skb);
type = efx_tx_csum_type_skb(skb);
if (index >= efx->n_tx_channels) {
index -= efx->n_tx_channels;
type |= EFX_TXQ_TYPE_HIGHPRI;
}
/* PTP "event" packet */
if (unlikely(efx_xmit_with_hwtstamp(skb)) &&
unlikely(efx_ptp_is_ptp_tx(efx, skb))) {
/* There may be existing transmits on the channel that are
* waiting for this packet to trigger the doorbell write.
* We need to send the packets at this point.
*/
efx_tx_send_pending(efx_get_tx_channel(efx, index));
return efx_ptp_tx(efx, skb);
}
tx_queue = efx_get_tx_queue(efx, index, type);
if (WARN_ON_ONCE(!tx_queue)) {
/* We don't have a TXQ of the right type.
* This should never happen, as we don't advertise offload
* features unless we can support them.
*/
dev_kfree_skb_any(skb);
/* If we're not expecting another transmit and we had something to push
* on this queue or a partner queue then we need to push here to get the
* previous packets out.
*/
if (!netdev_xmit_more())
efx_tx_send_pending(tx_queue->channel);
return NETDEV_TX_OK;
}
return __efx_enqueue_skb(tx_queue, skb);
}
void efx_xmit_done_single(struct efx_tx_queue *tx_queue)
{
unsigned int pkts_compl = 0, bytes_compl = 0;
unsigned int read_ptr;
bool finished = false;
read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
while (!finished) {
struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
if (!efx_tx_buffer_in_use(buffer)) {
struct efx_nic *efx = tx_queue->efx;
netif_err(efx, hw, efx->net_dev,
"TX queue %d spurious single TX completion\n",
tx_queue->queue);
efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
return;
}
/* Need to check the flag before dequeueing. */
if (buffer->flags & EFX_TX_BUF_SKB)
finished = true;
efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
++tx_queue->read_count;
read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
}
tx_queue->pkts_compl += pkts_compl;
tx_queue->bytes_compl += bytes_compl;
EFX_WARN_ON_PARANOID(pkts_compl != 1);
efx_xmit_done_check_empty(tx_queue);
}
void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
{
struct efx_nic *efx = tx_queue->efx;
/* Must be inverse of queue lookup in efx_hard_start_xmit() */
tx_queue->core_txq =
netdev_get_tx_queue(efx->net_dev,
tx_queue->channel->channel +
((tx_queue->type & EFX_TXQ_TYPE_HIGHPRI) ?
efx->n_tx_channels : 0));
}
int efx_setup_tc(struct net_device *net_dev, enum tc_setup_type type,
void *type_data)
{
struct efx_nic *efx = netdev_priv(net_dev);
struct tc_mqprio_qopt *mqprio = type_data;
unsigned tc, num_tc;
if (type != TC_SETUP_QDISC_MQPRIO)
return -EOPNOTSUPP;
/* Only Siena supported highpri queues */
if (efx_nic_rev(efx) > EFX_REV_SIENA_A0)
return -EOPNOTSUPP;
num_tc = mqprio->num_tc;
if (num_tc > EFX_MAX_TX_TC)
return -EINVAL;
mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
if (num_tc == net_dev->num_tc)
return 0;
for (tc = 0; tc < num_tc; tc++) {
net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
}
net_dev->num_tc = num_tc;
return netif_set_real_num_tx_queues(net_dev,
max_t(int, num_tc, 1) *
efx->n_tx_channels);
}
|