summaryrefslogtreecommitdiffstats
path: root/drivers/pci/controller/pci-hyperv.c
blob: f33370b7562830bdc73660104be449a14170798e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (c) Microsoft Corporation.
 *
 * Author:
 *   Jake Oshins <jakeo@microsoft.com>
 *
 * This driver acts as a paravirtual front-end for PCI Express root buses.
 * When a PCI Express function (either an entire device or an SR-IOV
 * Virtual Function) is being passed through to the VM, this driver exposes
 * a new bus to the guest VM.  This is modeled as a root PCI bus because
 * no bridges are being exposed to the VM.  In fact, with a "Generation 2"
 * VM within Hyper-V, there may seem to be no PCI bus at all in the VM
 * until a device as been exposed using this driver.
 *
 * Each root PCI bus has its own PCI domain, which is called "Segment" in
 * the PCI Firmware Specifications.  Thus while each device passed through
 * to the VM using this front-end will appear at "device 0", the domain will
 * be unique.  Typically, each bus will have one PCI function on it, though
 * this driver does support more than one.
 *
 * In order to map the interrupts from the device through to the guest VM,
 * this driver also implements an IRQ Domain, which handles interrupts (either
 * MSI or MSI-X) associated with the functions on the bus.  As interrupts are
 * set up, torn down, or reaffined, this driver communicates with the
 * underlying hypervisor to adjust the mappings in the I/O MMU so that each
 * interrupt will be delivered to the correct virtual processor at the right
 * vector.  This driver does not support level-triggered (line-based)
 * interrupts, and will report that the Interrupt Line register in the
 * function's configuration space is zero.
 *
 * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V
 * facilities.  For instance, the configuration space of a function exposed
 * by Hyper-V is mapped into a single page of memory space, and the
 * read and write handlers for config space must be aware of this mechanism.
 * Similarly, device setup and teardown involves messages sent to and from
 * the PCI back-end driver in Hyper-V.
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/pci-ecam.h>
#include <linux/delay.h>
#include <linux/semaphore.h>
#include <linux/irq.h>
#include <linux/msi.h>
#include <linux/hyperv.h>
#include <linux/refcount.h>
#include <linux/irqdomain.h>
#include <linux/acpi.h>
#include <asm/mshyperv.h>

/*
 * Protocol versions. The low word is the minor version, the high word the
 * major version.
 */

#define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor)))
#define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16)
#define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff)

enum pci_protocol_version_t {
	PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1),	/* Win10 */
	PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2),	/* RS1 */
	PCI_PROTOCOL_VERSION_1_3 = PCI_MAKE_VERSION(1, 3),	/* Vibranium */
	PCI_PROTOCOL_VERSION_1_4 = PCI_MAKE_VERSION(1, 4),	/* WS2022 */
};

#define CPU_AFFINITY_ALL	-1ULL

/*
 * Supported protocol versions in the order of probing - highest go
 * first.
 */
static enum pci_protocol_version_t pci_protocol_versions[] = {
	PCI_PROTOCOL_VERSION_1_4,
	PCI_PROTOCOL_VERSION_1_3,
	PCI_PROTOCOL_VERSION_1_2,
	PCI_PROTOCOL_VERSION_1_1,
};

#define PCI_CONFIG_MMIO_LENGTH	0x2000
#define CFG_PAGE_OFFSET 0x1000
#define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET)

#define MAX_SUPPORTED_MSI_MESSAGES 0x400

#define STATUS_REVISION_MISMATCH 0xC0000059

/* space for 32bit serial number as string */
#define SLOT_NAME_SIZE 11

/*
 * Size of requestor for VMbus; the value is based on the observation
 * that having more than one request outstanding is 'rare', and so 64
 * should be generous in ensuring that we don't ever run out.
 */
#define HV_PCI_RQSTOR_SIZE 64

/*
 * Message Types
 */

enum pci_message_type {
	/*
	 * Version 1.1
	 */
	PCI_MESSAGE_BASE                = 0x42490000,
	PCI_BUS_RELATIONS               = PCI_MESSAGE_BASE + 0,
	PCI_QUERY_BUS_RELATIONS         = PCI_MESSAGE_BASE + 1,
	PCI_POWER_STATE_CHANGE          = PCI_MESSAGE_BASE + 4,
	PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5,
	PCI_QUERY_RESOURCE_RESOURCES    = PCI_MESSAGE_BASE + 6,
	PCI_BUS_D0ENTRY                 = PCI_MESSAGE_BASE + 7,
	PCI_BUS_D0EXIT                  = PCI_MESSAGE_BASE + 8,
	PCI_READ_BLOCK                  = PCI_MESSAGE_BASE + 9,
	PCI_WRITE_BLOCK                 = PCI_MESSAGE_BASE + 0xA,
	PCI_EJECT                       = PCI_MESSAGE_BASE + 0xB,
	PCI_QUERY_STOP                  = PCI_MESSAGE_BASE + 0xC,
	PCI_REENABLE                    = PCI_MESSAGE_BASE + 0xD,
	PCI_QUERY_STOP_FAILED           = PCI_MESSAGE_BASE + 0xE,
	PCI_EJECTION_COMPLETE           = PCI_MESSAGE_BASE + 0xF,
	PCI_RESOURCES_ASSIGNED          = PCI_MESSAGE_BASE + 0x10,
	PCI_RESOURCES_RELEASED          = PCI_MESSAGE_BASE + 0x11,
	PCI_INVALIDATE_BLOCK            = PCI_MESSAGE_BASE + 0x12,
	PCI_QUERY_PROTOCOL_VERSION      = PCI_MESSAGE_BASE + 0x13,
	PCI_CREATE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x14,
	PCI_DELETE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x15,
	PCI_RESOURCES_ASSIGNED2		= PCI_MESSAGE_BASE + 0x16,
	PCI_CREATE_INTERRUPT_MESSAGE2	= PCI_MESSAGE_BASE + 0x17,
	PCI_DELETE_INTERRUPT_MESSAGE2	= PCI_MESSAGE_BASE + 0x18, /* unused */
	PCI_BUS_RELATIONS2		= PCI_MESSAGE_BASE + 0x19,
	PCI_RESOURCES_ASSIGNED3         = PCI_MESSAGE_BASE + 0x1A,
	PCI_CREATE_INTERRUPT_MESSAGE3   = PCI_MESSAGE_BASE + 0x1B,
	PCI_MESSAGE_MAXIMUM
};

/*
 * Structures defining the virtual PCI Express protocol.
 */

union pci_version {
	struct {
		u16 minor_version;
		u16 major_version;
	} parts;
	u32 version;
} __packed;

/*
 * Function numbers are 8-bits wide on Express, as interpreted through ARI,
 * which is all this driver does.  This representation is the one used in
 * Windows, which is what is expected when sending this back and forth with
 * the Hyper-V parent partition.
 */
union win_slot_encoding {
	struct {
		u32	dev:5;
		u32	func:3;
		u32	reserved:24;
	} bits;
	u32 slot;
} __packed;

/*
 * Pretty much as defined in the PCI Specifications.
 */
struct pci_function_description {
	u16	v_id;	/* vendor ID */
	u16	d_id;	/* device ID */
	u8	rev;
	u8	prog_intf;
	u8	subclass;
	u8	base_class;
	u32	subsystem_id;
	union win_slot_encoding win_slot;
	u32	ser;	/* serial number */
} __packed;

enum pci_device_description_flags {
	HV_PCI_DEVICE_FLAG_NONE			= 0x0,
	HV_PCI_DEVICE_FLAG_NUMA_AFFINITY	= 0x1,
};

struct pci_function_description2 {
	u16	v_id;	/* vendor ID */
	u16	d_id;	/* device ID */
	u8	rev;
	u8	prog_intf;
	u8	subclass;
	u8	base_class;
	u32	subsystem_id;
	union	win_slot_encoding win_slot;
	u32	ser;	/* serial number */
	u32	flags;
	u16	virtual_numa_node;
	u16	reserved;
} __packed;

/**
 * struct hv_msi_desc
 * @vector:		IDT entry
 * @delivery_mode:	As defined in Intel's Programmer's
 *			Reference Manual, Volume 3, Chapter 8.
 * @vector_count:	Number of contiguous entries in the
 *			Interrupt Descriptor Table that are
 *			occupied by this Message-Signaled
 *			Interrupt. For "MSI", as first defined
 *			in PCI 2.2, this can be between 1 and
 *			32. For "MSI-X," as first defined in PCI
 *			3.0, this must be 1, as each MSI-X table
 *			entry would have its own descriptor.
 * @reserved:		Empty space
 * @cpu_mask:		All the target virtual processors.
 */
struct hv_msi_desc {
	u8	vector;
	u8	delivery_mode;
	u16	vector_count;
	u32	reserved;
	u64	cpu_mask;
} __packed;

/**
 * struct hv_msi_desc2 - 1.2 version of hv_msi_desc
 * @vector:		IDT entry
 * @delivery_mode:	As defined in Intel's Programmer's
 *			Reference Manual, Volume 3, Chapter 8.
 * @vector_count:	Number of contiguous entries in the
 *			Interrupt Descriptor Table that are
 *			occupied by this Message-Signaled
 *			Interrupt. For "MSI", as first defined
 *			in PCI 2.2, this can be between 1 and
 *			32. For "MSI-X," as first defined in PCI
 *			3.0, this must be 1, as each MSI-X table
 *			entry would have its own descriptor.
 * @processor_count:	number of bits enabled in array.
 * @processor_array:	All the target virtual processors.
 */
struct hv_msi_desc2 {
	u8	vector;
	u8	delivery_mode;
	u16	vector_count;
	u16	processor_count;
	u16	processor_array[32];
} __packed;

/*
 * struct hv_msi_desc3 - 1.3 version of hv_msi_desc
 *	Everything is the same as in 'hv_msi_desc2' except that the size of the
 *	'vector' field is larger to support bigger vector values. For ex: LPI
 *	vectors on ARM.
 */
struct hv_msi_desc3 {
	u32	vector;
	u8	delivery_mode;
	u8	reserved;
	u16	vector_count;
	u16	processor_count;
	u16	processor_array[32];
} __packed;

/**
 * struct tran_int_desc
 * @reserved:		unused, padding
 * @vector_count:	same as in hv_msi_desc
 * @data:		This is the "data payload" value that is
 *			written by the device when it generates
 *			a message-signaled interrupt, either MSI
 *			or MSI-X.
 * @address:		This is the address to which the data
 *			payload is written on interrupt
 *			generation.
 */
struct tran_int_desc {
	u16	reserved;
	u16	vector_count;
	u32	data;
	u64	address;
} __packed;

/*
 * A generic message format for virtual PCI.
 * Specific message formats are defined later in the file.
 */

struct pci_message {
	u32 type;
} __packed;

struct pci_child_message {
	struct pci_message message_type;
	union win_slot_encoding wslot;
} __packed;

struct pci_incoming_message {
	struct vmpacket_descriptor hdr;
	struct pci_message message_type;
} __packed;

struct pci_response {
	struct vmpacket_descriptor hdr;
	s32 status;			/* negative values are failures */
} __packed;

struct pci_packet {
	void (*completion_func)(void *context, struct pci_response *resp,
				int resp_packet_size);
	void *compl_ctxt;

	struct pci_message message[];
};

/*
 * Specific message types supporting the PCI protocol.
 */

/*
 * Version negotiation message. Sent from the guest to the host.
 * The guest is free to try different versions until the host
 * accepts the version.
 *
 * pci_version: The protocol version requested.
 * is_last_attempt: If TRUE, this is the last version guest will request.
 * reservedz: Reserved field, set to zero.
 */

struct pci_version_request {
	struct pci_message message_type;
	u32 protocol_version;
} __packed;

/*
 * Bus D0 Entry.  This is sent from the guest to the host when the virtual
 * bus (PCI Express port) is ready for action.
 */

struct pci_bus_d0_entry {
	struct pci_message message_type;
	u32 reserved;
	u64 mmio_base;
} __packed;

struct pci_bus_relations {
	struct pci_incoming_message incoming;
	u32 device_count;
	struct pci_function_description func[];
} __packed;

struct pci_bus_relations2 {
	struct pci_incoming_message incoming;
	u32 device_count;
	struct pci_function_description2 func[];
} __packed;

struct pci_q_res_req_response {
	struct vmpacket_descriptor hdr;
	s32 status;			/* negative values are failures */
	u32 probed_bar[PCI_STD_NUM_BARS];
} __packed;

struct pci_set_power {
	struct pci_message message_type;
	union win_slot_encoding wslot;
	u32 power_state;		/* In Windows terms */
	u32 reserved;
} __packed;

struct pci_set_power_response {
	struct vmpacket_descriptor hdr;
	s32 status;			/* negative values are failures */
	union win_slot_encoding wslot;
	u32 resultant_state;		/* In Windows terms */
	u32 reserved;
} __packed;

struct pci_resources_assigned {
	struct pci_message message_type;
	union win_slot_encoding wslot;
	u8 memory_range[0x14][6];	/* not used here */
	u32 msi_descriptors;
	u32 reserved[4];
} __packed;

struct pci_resources_assigned2 {
	struct pci_message message_type;
	union win_slot_encoding wslot;
	u8 memory_range[0x14][6];	/* not used here */
	u32 msi_descriptor_count;
	u8 reserved[70];
} __packed;

struct pci_create_interrupt {
	struct pci_message message_type;
	union win_slot_encoding wslot;
	struct hv_msi_desc int_desc;
} __packed;

struct pci_create_int_response {
	struct pci_response response;
	u32 reserved;
	struct tran_int_desc int_desc;
} __packed;

struct pci_create_interrupt2 {
	struct pci_message message_type;
	union win_slot_encoding wslot;
	struct hv_msi_desc2 int_desc;
} __packed;

struct pci_create_interrupt3 {
	struct pci_message message_type;
	union win_slot_encoding wslot;
	struct hv_msi_desc3 int_desc;
} __packed;

struct pci_delete_interrupt {
	struct pci_message message_type;
	union win_slot_encoding wslot;
	struct tran_int_desc int_desc;
} __packed;

/*
 * Note: the VM must pass a valid block id, wslot and bytes_requested.
 */
struct pci_read_block {
	struct pci_message message_type;
	u32 block_id;
	union win_slot_encoding wslot;
	u32 bytes_requested;
} __packed;

struct pci_read_block_response {
	struct vmpacket_descriptor hdr;
	u32 status;
	u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
} __packed;

/*
 * Note: the VM must pass a valid block id, wslot and byte_count.
 */
struct pci_write_block {
	struct pci_message message_type;
	u32 block_id;
	union win_slot_encoding wslot;
	u32 byte_count;
	u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
} __packed;

struct pci_dev_inval_block {
	struct pci_incoming_message incoming;
	union win_slot_encoding wslot;
	u64 block_mask;
} __packed;

struct pci_dev_incoming {
	struct pci_incoming_message incoming;
	union win_slot_encoding wslot;
} __packed;

struct pci_eject_response {
	struct pci_message message_type;
	union win_slot_encoding wslot;
	u32 status;
} __packed;

static int pci_ring_size = (4 * PAGE_SIZE);

/*
 * Driver specific state.
 */

enum hv_pcibus_state {
	hv_pcibus_init = 0,
	hv_pcibus_probed,
	hv_pcibus_installed,
	hv_pcibus_removing,
	hv_pcibus_maximum
};

struct hv_pcibus_device {
#ifdef CONFIG_X86
	struct pci_sysdata sysdata;
#elif defined(CONFIG_ARM64)
	struct pci_config_window sysdata;
#endif
	struct pci_host_bridge *bridge;
	struct fwnode_handle *fwnode;
	/* Protocol version negotiated with the host */
	enum pci_protocol_version_t protocol_version;
	enum hv_pcibus_state state;
	struct hv_device *hdev;
	resource_size_t low_mmio_space;
	resource_size_t high_mmio_space;
	struct resource *mem_config;
	struct resource *low_mmio_res;
	struct resource *high_mmio_res;
	struct completion *survey_event;
	struct pci_bus *pci_bus;
	spinlock_t config_lock;	/* Avoid two threads writing index page */
	spinlock_t device_list_lock;	/* Protect lists below */
	void __iomem *cfg_addr;

	struct list_head children;
	struct list_head dr_list;

	struct msi_domain_info msi_info;
	struct irq_domain *irq_domain;

	spinlock_t retarget_msi_interrupt_lock;

	struct workqueue_struct *wq;

	/* Highest slot of child device with resources allocated */
	int wslot_res_allocated;

	/* hypercall arg, must not cross page boundary */
	struct hv_retarget_device_interrupt retarget_msi_interrupt_params;

	/*
	 * Don't put anything here: retarget_msi_interrupt_params must be last
	 */
};

/*
 * Tracks "Device Relations" messages from the host, which must be both
 * processed in order and deferred so that they don't run in the context
 * of the incoming packet callback.
 */
struct hv_dr_work {
	struct work_struct wrk;
	struct hv_pcibus_device *bus;
};

struct hv_pcidev_description {
	u16	v_id;	/* vendor ID */
	u16	d_id;	/* device ID */
	u8	rev;
	u8	prog_intf;
	u8	subclass;
	u8	base_class;
	u32	subsystem_id;
	union	win_slot_encoding win_slot;
	u32	ser;	/* serial number */
	u32	flags;
	u16	virtual_numa_node;
};

struct hv_dr_state {
	struct list_head list_entry;
	u32 device_count;
	struct hv_pcidev_description func[];
};

enum hv_pcichild_state {
	hv_pcichild_init = 0,
	hv_pcichild_requirements,
	hv_pcichild_resourced,
	hv_pcichild_ejecting,
	hv_pcichild_maximum
};

struct hv_pci_dev {
	/* List protected by pci_rescan_remove_lock */
	struct list_head list_entry;
	refcount_t refs;
	enum hv_pcichild_state state;
	struct pci_slot *pci_slot;
	struct hv_pcidev_description desc;
	bool reported_missing;
	struct hv_pcibus_device *hbus;
	struct work_struct wrk;

	void (*block_invalidate)(void *context, u64 block_mask);
	void *invalidate_context;

	/*
	 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then
	 * read it back, for each of the BAR offsets within config space.
	 */
	u32 probed_bar[PCI_STD_NUM_BARS];
};

struct hv_pci_compl {
	struct completion host_event;
	s32 completion_status;
};

static void hv_pci_onchannelcallback(void *context);

#ifdef CONFIG_X86
#define DELIVERY_MODE	APIC_DELIVERY_MODE_FIXED
#define FLOW_HANDLER	handle_edge_irq
#define FLOW_NAME	"edge"

static int hv_pci_irqchip_init(void)
{
	return 0;
}

static struct irq_domain *hv_pci_get_root_domain(void)
{
	return x86_vector_domain;
}

static unsigned int hv_msi_get_int_vector(struct irq_data *data)
{
	struct irq_cfg *cfg = irqd_cfg(data);

	return cfg->vector;
}

#define hv_msi_prepare		pci_msi_prepare

/**
 * hv_arch_irq_unmask() - "Unmask" the IRQ by setting its current
 * affinity.
 * @data:	Describes the IRQ
 *
 * Build new a destination for the MSI and make a hypercall to
 * update the Interrupt Redirection Table. "Device Logical ID"
 * is built out of this PCI bus's instance GUID and the function
 * number of the device.
 */
static void hv_arch_irq_unmask(struct irq_data *data)
{
	struct msi_desc *msi_desc = irq_data_get_msi_desc(data);
	struct hv_retarget_device_interrupt *params;
	struct tran_int_desc *int_desc;
	struct hv_pcibus_device *hbus;
	const struct cpumask *dest;
	cpumask_var_t tmp;
	struct pci_bus *pbus;
	struct pci_dev *pdev;
	unsigned long flags;
	u32 var_size = 0;
	int cpu, nr_bank;
	u64 res;

	dest = irq_data_get_effective_affinity_mask(data);
	pdev = msi_desc_to_pci_dev(msi_desc);
	pbus = pdev->bus;
	hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
	int_desc = data->chip_data;

	spin_lock_irqsave(&hbus->retarget_msi_interrupt_lock, flags);

	params = &hbus->retarget_msi_interrupt_params;
	memset(params, 0, sizeof(*params));
	params->partition_id = HV_PARTITION_ID_SELF;
	params->int_entry.source = HV_INTERRUPT_SOURCE_MSI;
	params->int_entry.msi_entry.address.as_uint32 = int_desc->address & 0xffffffff;
	params->int_entry.msi_entry.data.as_uint32 = int_desc->data;
	params->device_id = (hbus->hdev->dev_instance.b[5] << 24) |
			   (hbus->hdev->dev_instance.b[4] << 16) |
			   (hbus->hdev->dev_instance.b[7] << 8) |
			   (hbus->hdev->dev_instance.b[6] & 0xf8) |
			   PCI_FUNC(pdev->devfn);
	params->int_target.vector = hv_msi_get_int_vector(data);

	/*
	 * Honoring apic->delivery_mode set to APIC_DELIVERY_MODE_FIXED by
	 * setting the HV_DEVICE_INTERRUPT_TARGET_MULTICAST flag results in a
	 * spurious interrupt storm. Not doing so does not seem to have a
	 * negative effect (yet?).
	 */

	if (hbus->protocol_version >= PCI_PROTOCOL_VERSION_1_2) {
		/*
		 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the
		 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides
		 * with >64 VP support.
		 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED
		 * is not sufficient for this hypercall.
		 */
		params->int_target.flags |=
			HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET;

		if (!alloc_cpumask_var(&tmp, GFP_ATOMIC)) {
			res = 1;
			goto exit_unlock;
		}

		cpumask_and(tmp, dest, cpu_online_mask);
		nr_bank = cpumask_to_vpset(&params->int_target.vp_set, tmp);
		free_cpumask_var(tmp);

		if (nr_bank <= 0) {
			res = 1;
			goto exit_unlock;
		}

		/*
		 * var-sized hypercall, var-size starts after vp_mask (thus
		 * vp_set.format does not count, but vp_set.valid_bank_mask
		 * does).
		 */
		var_size = 1 + nr_bank;
	} else {
		for_each_cpu_and(cpu, dest, cpu_online_mask) {
			params->int_target.vp_mask |=
				(1ULL << hv_cpu_number_to_vp_number(cpu));
		}
	}

	res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17),
			      params, NULL);

exit_unlock:
	spin_unlock_irqrestore(&hbus->retarget_msi_interrupt_lock, flags);

	/*
	 * During hibernation, when a CPU is offlined, the kernel tries
	 * to move the interrupt to the remaining CPUs that haven't
	 * been offlined yet. In this case, the below hv_do_hypercall()
	 * always fails since the vmbus channel has been closed:
	 * refer to cpu_disable_common() -> fixup_irqs() ->
	 * irq_migrate_all_off_this_cpu() -> migrate_one_irq().
	 *
	 * Suppress the error message for hibernation because the failure
	 * during hibernation does not matter (at this time all the devices
	 * have been frozen). Note: the correct affinity info is still updated
	 * into the irqdata data structure in migrate_one_irq() ->
	 * irq_do_set_affinity(), so later when the VM resumes,
	 * hv_pci_restore_msi_state() is able to correctly restore the
	 * interrupt with the correct affinity.
	 */
	if (!hv_result_success(res) && hbus->state != hv_pcibus_removing)
		dev_err(&hbus->hdev->device,
			"%s() failed: %#llx", __func__, res);
}
#elif defined(CONFIG_ARM64)
/*
 * SPI vectors to use for vPCI; arch SPIs range is [32, 1019], but leaving a bit
 * of room at the start to allow for SPIs to be specified through ACPI and
 * starting with a power of two to satisfy power of 2 multi-MSI requirement.
 */
#define HV_PCI_MSI_SPI_START	64
#define HV_PCI_MSI_SPI_NR	(1020 - HV_PCI_MSI_SPI_START)
#define DELIVERY_MODE		0
#define FLOW_HANDLER		NULL
#define FLOW_NAME		NULL
#define hv_msi_prepare		NULL

struct hv_pci_chip_data {
	DECLARE_BITMAP(spi_map, HV_PCI_MSI_SPI_NR);
	struct mutex	map_lock;
};

/* Hyper-V vPCI MSI GIC IRQ domain */
static struct irq_domain *hv_msi_gic_irq_domain;

/* Hyper-V PCI MSI IRQ chip */
static struct irq_chip hv_arm64_msi_irq_chip = {
	.name = "MSI",
	.irq_set_affinity = irq_chip_set_affinity_parent,
	.irq_eoi = irq_chip_eoi_parent,
	.irq_mask = irq_chip_mask_parent,
	.irq_unmask = irq_chip_unmask_parent
};

static unsigned int hv_msi_get_int_vector(struct irq_data *irqd)
{
	return irqd->parent_data->hwirq;
}

/*
 * @nr_bm_irqs:		Indicates the number of IRQs that were allocated from
 *			the bitmap.
 * @nr_dom_irqs:	Indicates the number of IRQs that were allocated from
 *			the parent domain.
 */
static void hv_pci_vec_irq_free(struct irq_domain *domain,
				unsigned int virq,
				unsigned int nr_bm_irqs,
				unsigned int nr_dom_irqs)
{
	struct hv_pci_chip_data *chip_data = domain->host_data;
	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
	int first = d->hwirq - HV_PCI_MSI_SPI_START;
	int i;

	mutex_lock(&chip_data->map_lock);
	bitmap_release_region(chip_data->spi_map,
			      first,
			      get_count_order(nr_bm_irqs));
	mutex_unlock(&chip_data->map_lock);
	for (i = 0; i < nr_dom_irqs; i++) {
		if (i)
			d = irq_domain_get_irq_data(domain, virq + i);
		irq_domain_reset_irq_data(d);
	}

	irq_domain_free_irqs_parent(domain, virq, nr_dom_irqs);
}

static void hv_pci_vec_irq_domain_free(struct irq_domain *domain,
				       unsigned int virq,
				       unsigned int nr_irqs)
{
	hv_pci_vec_irq_free(domain, virq, nr_irqs, nr_irqs);
}

static int hv_pci_vec_alloc_device_irq(struct irq_domain *domain,
				       unsigned int nr_irqs,
				       irq_hw_number_t *hwirq)
{
	struct hv_pci_chip_data *chip_data = domain->host_data;
	int index;

	/* Find and allocate region from the SPI bitmap */
	mutex_lock(&chip_data->map_lock);
	index = bitmap_find_free_region(chip_data->spi_map,
					HV_PCI_MSI_SPI_NR,
					get_count_order(nr_irqs));
	mutex_unlock(&chip_data->map_lock);
	if (index < 0)
		return -ENOSPC;

	*hwirq = index + HV_PCI_MSI_SPI_START;

	return 0;
}

static int hv_pci_vec_irq_gic_domain_alloc(struct irq_domain *domain,
					   unsigned int virq,
					   irq_hw_number_t hwirq)
{
	struct irq_fwspec fwspec;
	struct irq_data *d;
	int ret;

	fwspec.fwnode = domain->parent->fwnode;
	fwspec.param_count = 2;
	fwspec.param[0] = hwirq;
	fwspec.param[1] = IRQ_TYPE_EDGE_RISING;

	ret = irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
	if (ret)
		return ret;

	/*
	 * Since the interrupt specifier is not coming from ACPI or DT, the
	 * trigger type will need to be set explicitly. Otherwise, it will be
	 * set to whatever is in the GIC configuration.
	 */
	d = irq_domain_get_irq_data(domain->parent, virq);

	return d->chip->irq_set_type(d, IRQ_TYPE_EDGE_RISING);
}

static int hv_pci_vec_irq_domain_alloc(struct irq_domain *domain,
				       unsigned int virq, unsigned int nr_irqs,
				       void *args)
{
	irq_hw_number_t hwirq;
	unsigned int i;
	int ret;

	ret = hv_pci_vec_alloc_device_irq(domain, nr_irqs, &hwirq);
	if (ret)
		return ret;

	for (i = 0; i < nr_irqs; i++) {
		ret = hv_pci_vec_irq_gic_domain_alloc(domain, virq + i,
						      hwirq + i);
		if (ret) {
			hv_pci_vec_irq_free(domain, virq, nr_irqs, i);
			return ret;
		}

		irq_domain_set_hwirq_and_chip(domain, virq + i,
					      hwirq + i,
					      &hv_arm64_msi_irq_chip,
					      domain->host_data);
		pr_debug("pID:%d vID:%u\n", (int)(hwirq + i), virq + i);
	}

	return 0;
}

/*
 * Pick the first cpu as the irq affinity that can be temporarily used for
 * composing MSI from the hypervisor. GIC will eventually set the right
 * affinity for the irq and the 'unmask' will retarget the interrupt to that
 * cpu.
 */
static int hv_pci_vec_irq_domain_activate(struct irq_domain *domain,
					  struct irq_data *irqd, bool reserve)
{
	int cpu = cpumask_first(cpu_present_mask);

	irq_data_update_effective_affinity(irqd, cpumask_of(cpu));

	return 0;
}

static const struct irq_domain_ops hv_pci_domain_ops = {
	.alloc	= hv_pci_vec_irq_domain_alloc,
	.free	= hv_pci_vec_irq_domain_free,
	.activate = hv_pci_vec_irq_domain_activate,
};

static int hv_pci_irqchip_init(void)
{
	static struct hv_pci_chip_data *chip_data;
	struct fwnode_handle *fn = NULL;
	int ret = -ENOMEM;

	chip_data = kzalloc(sizeof(*chip_data), GFP_KERNEL);
	if (!chip_data)
		return ret;

	mutex_init(&chip_data->map_lock);
	fn = irq_domain_alloc_named_fwnode("hv_vpci_arm64");
	if (!fn)
		goto free_chip;

	/*
	 * IRQ domain once enabled, should not be removed since there is no
	 * way to ensure that all the corresponding devices are also gone and
	 * no interrupts will be generated.
	 */
	hv_msi_gic_irq_domain = acpi_irq_create_hierarchy(0, HV_PCI_MSI_SPI_NR,
							  fn, &hv_pci_domain_ops,
							  chip_data);

	if (!hv_msi_gic_irq_domain) {
		pr_err("Failed to create Hyper-V arm64 vPCI MSI IRQ domain\n");
		goto free_chip;
	}

	return 0;

free_chip:
	kfree(chip_data);
	if (fn)
		irq_domain_free_fwnode(fn);

	return ret;
}

static struct irq_domain *hv_pci_get_root_domain(void)
{
	return hv_msi_gic_irq_domain;
}

/*
 * SPIs are used for interrupts of PCI devices and SPIs is managed via GICD
 * registers which Hyper-V already supports, so no hypercall needed.
 */
static void hv_arch_irq_unmask(struct irq_data *data) { }
#endif /* CONFIG_ARM64 */

/**
 * hv_pci_generic_compl() - Invoked for a completion packet
 * @context:		Set up by the sender of the packet.
 * @resp:		The response packet
 * @resp_packet_size:	Size in bytes of the packet
 *
 * This function is used to trigger an event and report status
 * for any message for which the completion packet contains a
 * status and nothing else.
 */
static void hv_pci_generic_compl(void *context, struct pci_response *resp,
				 int resp_packet_size)
{
	struct hv_pci_compl *comp_pkt = context;

	comp_pkt->completion_status = resp->status;
	complete(&comp_pkt->host_event);
}

static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
						u32 wslot);

static void get_pcichild(struct hv_pci_dev *hpdev)
{
	refcount_inc(&hpdev->refs);
}

static void put_pcichild(struct hv_pci_dev *hpdev)
{
	if (refcount_dec_and_test(&hpdev->refs))
		kfree(hpdev);
}

/*
 * There is no good way to get notified from vmbus_onoffer_rescind(),
 * so let's use polling here, since this is not a hot path.
 */
static int wait_for_response(struct hv_device *hdev,
			     struct completion *comp)
{
	while (true) {
		if (hdev->channel->rescind) {
			dev_warn_once(&hdev->device, "The device is gone.\n");
			return -ENODEV;
		}

		if (wait_for_completion_timeout(comp, HZ / 10))
			break;
	}

	return 0;
}

/**
 * devfn_to_wslot() - Convert from Linux PCI slot to Windows
 * @devfn:	The Linux representation of PCI slot
 *
 * Windows uses a slightly different representation of PCI slot.
 *
 * Return: The Windows representation
 */
static u32 devfn_to_wslot(int devfn)
{
	union win_slot_encoding wslot;

	wslot.slot = 0;
	wslot.bits.dev = PCI_SLOT(devfn);
	wslot.bits.func = PCI_FUNC(devfn);

	return wslot.slot;
}

/**
 * wslot_to_devfn() - Convert from Windows PCI slot to Linux
 * @wslot:	The Windows representation of PCI slot
 *
 * Windows uses a slightly different representation of PCI slot.
 *
 * Return: The Linux representation
 */
static int wslot_to_devfn(u32 wslot)
{
	union win_slot_encoding slot_no;

	slot_no.slot = wslot;
	return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func);
}

/*
 * PCI Configuration Space for these root PCI buses is implemented as a pair
 * of pages in memory-mapped I/O space.  Writing to the first page chooses
 * the PCI function being written or read.  Once the first page has been
 * written to, the following page maps in the entire configuration space of
 * the function.
 */

/**
 * _hv_pcifront_read_config() - Internal PCI config read
 * @hpdev:	The PCI driver's representation of the device
 * @where:	Offset within config space
 * @size:	Size of the transfer
 * @val:	Pointer to the buffer receiving the data
 */
static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where,
				     int size, u32 *val)
{
	unsigned long flags;
	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;

	/*
	 * If the attempt is to read the IDs or the ROM BAR, simulate that.
	 */
	if (where + size <= PCI_COMMAND) {
		memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size);
	} else if (where >= PCI_CLASS_REVISION && where + size <=
		   PCI_CACHE_LINE_SIZE) {
		memcpy(val, ((u8 *)&hpdev->desc.rev) + where -
		       PCI_CLASS_REVISION, size);
	} else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <=
		   PCI_ROM_ADDRESS) {
		memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where -
		       PCI_SUBSYSTEM_VENDOR_ID, size);
	} else if (where >= PCI_ROM_ADDRESS && where + size <=
		   PCI_CAPABILITY_LIST) {
		/* ROM BARs are unimplemented */
		*val = 0;
	} else if (where >= PCI_INTERRUPT_LINE && where + size <=
		   PCI_INTERRUPT_PIN) {
		/*
		 * Interrupt Line and Interrupt PIN are hard-wired to zero
		 * because this front-end only supports message-signaled
		 * interrupts.
		 */
		*val = 0;
	} else if (where + size <= CFG_PAGE_SIZE) {
		spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
		/* Choose the function to be read. (See comment above) */
		writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
		/* Make sure the function was chosen before we start reading. */
		mb();
		/* Read from that function's config space. */
		switch (size) {
		case 1:
			*val = readb(addr);
			break;
		case 2:
			*val = readw(addr);
			break;
		default:
			*val = readl(addr);
			break;
		}
		/*
		 * Make sure the read was done before we release the spinlock
		 * allowing consecutive reads/writes.
		 */
		mb();
		spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
	} else {
		dev_err(&hpdev->hbus->hdev->device,
			"Attempt to read beyond a function's config space.\n");
	}
}

static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev)
{
	u16 ret;
	unsigned long flags;
	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET +
			     PCI_VENDOR_ID;

	spin_lock_irqsave(&hpdev->hbus->config_lock, flags);

	/* Choose the function to be read. (See comment above) */
	writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
	/* Make sure the function was chosen before we start reading. */
	mb();
	/* Read from that function's config space. */
	ret = readw(addr);
	/*
	 * mb() is not required here, because the spin_unlock_irqrestore()
	 * is a barrier.
	 */

	spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);

	return ret;
}

/**
 * _hv_pcifront_write_config() - Internal PCI config write
 * @hpdev:	The PCI driver's representation of the device
 * @where:	Offset within config space
 * @size:	Size of the transfer
 * @val:	The data being transferred
 */
static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where,
				      int size, u32 val)
{
	unsigned long flags;
	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;

	if (where >= PCI_SUBSYSTEM_VENDOR_ID &&
	    where + size <= PCI_CAPABILITY_LIST) {
		/* SSIDs and ROM BARs are read-only */
	} else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) {
		spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
		/* Choose the function to be written. (See comment above) */
		writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
		/* Make sure the function was chosen before we start writing. */
		wmb();
		/* Write to that function's config space. */
		switch (size) {
		case 1:
			writeb(val, addr);
			break;
		case 2:
			writew(val, addr);
			break;
		default:
			writel(val, addr);
			break;
		}
		/*
		 * Make sure the write was done before we release the spinlock
		 * allowing consecutive reads/writes.
		 */
		mb();
		spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
	} else {
		dev_err(&hpdev->hbus->hdev->device,
			"Attempt to write beyond a function's config space.\n");
	}
}

/**
 * hv_pcifront_read_config() - Read configuration space
 * @bus: PCI Bus structure
 * @devfn: Device/function
 * @where: Offset from base
 * @size: Byte/word/dword
 * @val: Value to be read
 *
 * Return: PCIBIOS_SUCCESSFUL on success
 *	   PCIBIOS_DEVICE_NOT_FOUND on failure
 */
static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn,
				   int where, int size, u32 *val)
{
	struct hv_pcibus_device *hbus =
		container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
	struct hv_pci_dev *hpdev;

	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
	if (!hpdev)
		return PCIBIOS_DEVICE_NOT_FOUND;

	_hv_pcifront_read_config(hpdev, where, size, val);

	put_pcichild(hpdev);
	return PCIBIOS_SUCCESSFUL;
}

/**
 * hv_pcifront_write_config() - Write configuration space
 * @bus: PCI Bus structure
 * @devfn: Device/function
 * @where: Offset from base
 * @size: Byte/word/dword
 * @val: Value to be written to device
 *
 * Return: PCIBIOS_SUCCESSFUL on success
 *	   PCIBIOS_DEVICE_NOT_FOUND on failure
 */
static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn,
				    int where, int size, u32 val)
{
	struct hv_pcibus_device *hbus =
	    container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
	struct hv_pci_dev *hpdev;

	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
	if (!hpdev)
		return PCIBIOS_DEVICE_NOT_FOUND;

	_hv_pcifront_write_config(hpdev, where, size, val);

	put_pcichild(hpdev);
	return PCIBIOS_SUCCESSFUL;
}

/* PCIe operations */
static struct pci_ops hv_pcifront_ops = {
	.read  = hv_pcifront_read_config,
	.write = hv_pcifront_write_config,
};

/*
 * Paravirtual backchannel
 *
 * Hyper-V SR-IOV provides a backchannel mechanism in software for
 * communication between a VF driver and a PF driver.  These
 * "configuration blocks" are similar in concept to PCI configuration space,
 * but instead of doing reads and writes in 32-bit chunks through a very slow
 * path, packets of up to 128 bytes can be sent or received asynchronously.
 *
 * Nearly every SR-IOV device contains just such a communications channel in
 * hardware, so using this one in software is usually optional.  Using the
 * software channel, however, allows driver implementers to leverage software
 * tools that fuzz the communications channel looking for vulnerabilities.
 *
 * The usage model for these packets puts the responsibility for reading or
 * writing on the VF driver.  The VF driver sends a read or a write packet,
 * indicating which "block" is being referred to by number.
 *
 * If the PF driver wishes to initiate communication, it can "invalidate" one or
 * more of the first 64 blocks.  This invalidation is delivered via a callback
 * supplied by the VF driver by this driver.
 *
 * No protocol is implied, except that supplied by the PF and VF drivers.
 */

struct hv_read_config_compl {
	struct hv_pci_compl comp_pkt;
	void *buf;
	unsigned int len;
	unsigned int bytes_returned;
};

/**
 * hv_pci_read_config_compl() - Invoked when a response packet
 * for a read config block operation arrives.
 * @context:		Identifies the read config operation
 * @resp:		The response packet itself
 * @resp_packet_size:	Size in bytes of the response packet
 */
static void hv_pci_read_config_compl(void *context, struct pci_response *resp,
				     int resp_packet_size)
{
	struct hv_read_config_compl *comp = context;
	struct pci_read_block_response *read_resp =
		(struct pci_read_block_response *)resp;
	unsigned int data_len, hdr_len;

	hdr_len = offsetof(struct pci_read_block_response, bytes);
	if (resp_packet_size < hdr_len) {
		comp->comp_pkt.completion_status = -1;
		goto out;
	}

	data_len = resp_packet_size - hdr_len;
	if (data_len > 0 && read_resp->status == 0) {
		comp->bytes_returned = min(comp->len, data_len);
		memcpy(comp->buf, read_resp->bytes, comp->bytes_returned);
	} else {
		comp->bytes_returned = 0;
	}

	comp->comp_pkt.completion_status = read_resp->status;
out:
	complete(&comp->comp_pkt.host_event);
}

/**
 * hv_read_config_block() - Sends a read config block request to
 * the back-end driver running in the Hyper-V parent partition.
 * @pdev:		The PCI driver's representation for this device.
 * @buf:		Buffer into which the config block will be copied.
 * @len:		Size in bytes of buf.
 * @block_id:		Identifies the config block which has been requested.
 * @bytes_returned:	Size which came back from the back-end driver.
 *
 * Return: 0 on success, -errno on failure
 */
static int hv_read_config_block(struct pci_dev *pdev, void *buf,
				unsigned int len, unsigned int block_id,
				unsigned int *bytes_returned)
{
	struct hv_pcibus_device *hbus =
		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
			     sysdata);
	struct {
		struct pci_packet pkt;
		char buf[sizeof(struct pci_read_block)];
	} pkt;
	struct hv_read_config_compl comp_pkt;
	struct pci_read_block *read_blk;
	int ret;

	if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
		return -EINVAL;

	init_completion(&comp_pkt.comp_pkt.host_event);
	comp_pkt.buf = buf;
	comp_pkt.len = len;

	memset(&pkt, 0, sizeof(pkt));
	pkt.pkt.completion_func = hv_pci_read_config_compl;
	pkt.pkt.compl_ctxt = &comp_pkt;
	read_blk = (struct pci_read_block *)&pkt.pkt.message;
	read_blk->message_type.type = PCI_READ_BLOCK;
	read_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
	read_blk->block_id = block_id;
	read_blk->bytes_requested = len;

	ret = vmbus_sendpacket(hbus->hdev->channel, read_blk,
			       sizeof(*read_blk), (unsigned long)&pkt.pkt,
			       VM_PKT_DATA_INBAND,
			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
	if (ret)
		return ret;

	ret = wait_for_response(hbus->hdev, &comp_pkt.comp_pkt.host_event);
	if (ret)
		return ret;

	if (comp_pkt.comp_pkt.completion_status != 0 ||
	    comp_pkt.bytes_returned == 0) {
		dev_err(&hbus->hdev->device,
			"Read Config Block failed: 0x%x, bytes_returned=%d\n",
			comp_pkt.comp_pkt.completion_status,
			comp_pkt.bytes_returned);
		return -EIO;
	}

	*bytes_returned = comp_pkt.bytes_returned;
	return 0;
}

/**
 * hv_pci_write_config_compl() - Invoked when a response packet for a write
 * config block operation arrives.
 * @context:		Identifies the write config operation
 * @resp:		The response packet itself
 * @resp_packet_size:	Size in bytes of the response packet
 */
static void hv_pci_write_config_compl(void *context, struct pci_response *resp,
				      int resp_packet_size)
{
	struct hv_pci_compl *comp_pkt = context;

	comp_pkt->completion_status = resp->status;
	complete(&comp_pkt->host_event);
}

/**
 * hv_write_config_block() - Sends a write config block request to the
 * back-end driver running in the Hyper-V parent partition.
 * @pdev:		The PCI driver's representation for this device.
 * @buf:		Buffer from which the config block will	be copied.
 * @len:		Size in bytes of buf.
 * @block_id:		Identifies the config block which is being written.
 *
 * Return: 0 on success, -errno on failure
 */
static int hv_write_config_block(struct pci_dev *pdev, void *buf,
				unsigned int len, unsigned int block_id)
{
	struct hv_pcibus_device *hbus =
		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
			     sysdata);
	struct {
		struct pci_packet pkt;
		char buf[sizeof(struct pci_write_block)];
		u32 reserved;
	} pkt;
	struct hv_pci_compl comp_pkt;
	struct pci_write_block *write_blk;
	u32 pkt_size;
	int ret;

	if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
		return -EINVAL;

	init_completion(&comp_pkt.host_event);

	memset(&pkt, 0, sizeof(pkt));
	pkt.pkt.completion_func = hv_pci_write_config_compl;
	pkt.pkt.compl_ctxt = &comp_pkt;
	write_blk = (struct pci_write_block *)&pkt.pkt.message;
	write_blk->message_type.type = PCI_WRITE_BLOCK;
	write_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
	write_blk->block_id = block_id;
	write_blk->byte_count = len;
	memcpy(write_blk->bytes, buf, len);
	pkt_size = offsetof(struct pci_write_block, bytes) + len;
	/*
	 * This quirk is required on some hosts shipped around 2018, because
	 * these hosts don't check the pkt_size correctly (new hosts have been
	 * fixed since early 2019). The quirk is also safe on very old hosts
	 * and new hosts, because, on them, what really matters is the length
	 * specified in write_blk->byte_count.
	 */
	pkt_size += sizeof(pkt.reserved);

	ret = vmbus_sendpacket(hbus->hdev->channel, write_blk, pkt_size,
			       (unsigned long)&pkt.pkt, VM_PKT_DATA_INBAND,
			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
	if (ret)
		return ret;

	ret = wait_for_response(hbus->hdev, &comp_pkt.host_event);
	if (ret)
		return ret;

	if (comp_pkt.completion_status != 0) {
		dev_err(&hbus->hdev->device,
			"Write Config Block failed: 0x%x\n",
			comp_pkt.completion_status);
		return -EIO;
	}

	return 0;
}

/**
 * hv_register_block_invalidate() - Invoked when a config block invalidation
 * arrives from the back-end driver.
 * @pdev:		The PCI driver's representation for this device.
 * @context:		Identifies the device.
 * @block_invalidate:	Identifies all of the blocks being invalidated.
 *
 * Return: 0 on success, -errno on failure
 */
static int hv_register_block_invalidate(struct pci_dev *pdev, void *context,
					void (*block_invalidate)(void *context,
								 u64 block_mask))
{
	struct hv_pcibus_device *hbus =
		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
			     sysdata);
	struct hv_pci_dev *hpdev;

	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
	if (!hpdev)
		return -ENODEV;

	hpdev->block_invalidate = block_invalidate;
	hpdev->invalidate_context = context;

	put_pcichild(hpdev);
	return 0;

}

/* Interrupt management hooks */
static void hv_int_desc_free(struct hv_pci_dev *hpdev,
			     struct tran_int_desc *int_desc)
{
	struct pci_delete_interrupt *int_pkt;
	struct {
		struct pci_packet pkt;
		u8 buffer[sizeof(struct pci_delete_interrupt)];
	} ctxt;

	if (!int_desc->vector_count) {
		kfree(int_desc);
		return;
	}
	memset(&ctxt, 0, sizeof(ctxt));
	int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message;
	int_pkt->message_type.type =
		PCI_DELETE_INTERRUPT_MESSAGE;
	int_pkt->wslot.slot = hpdev->desc.win_slot.slot;
	int_pkt->int_desc = *int_desc;
	vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt),
			 0, VM_PKT_DATA_INBAND, 0);
	kfree(int_desc);
}

/**
 * hv_msi_free() - Free the MSI.
 * @domain:	The interrupt domain pointer
 * @info:	Extra MSI-related context
 * @irq:	Identifies the IRQ.
 *
 * The Hyper-V parent partition and hypervisor are tracking the
 * messages that are in use, keeping the interrupt redirection
 * table up to date.  This callback sends a message that frees
 * the IRT entry and related tracking nonsense.
 */
static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info,
			unsigned int irq)
{
	struct hv_pcibus_device *hbus;
	struct hv_pci_dev *hpdev;
	struct pci_dev *pdev;
	struct tran_int_desc *int_desc;
	struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq);
	struct msi_desc *msi = irq_data_get_msi_desc(irq_data);

	pdev = msi_desc_to_pci_dev(msi);
	hbus = info->data;
	int_desc = irq_data_get_irq_chip_data(irq_data);
	if (!int_desc)
		return;

	irq_data->chip_data = NULL;
	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
	if (!hpdev) {
		kfree(int_desc);
		return;
	}

	hv_int_desc_free(hpdev, int_desc);
	put_pcichild(hpdev);
}

static void hv_irq_mask(struct irq_data *data)
{
	pci_msi_mask_irq(data);
	if (data->parent_data->chip->irq_mask)
		irq_chip_mask_parent(data);
}

static void hv_irq_unmask(struct irq_data *data)
{
	hv_arch_irq_unmask(data);

	if (data->parent_data->chip->irq_unmask)
		irq_chip_unmask_parent(data);
	pci_msi_unmask_irq(data);
}

struct compose_comp_ctxt {
	struct hv_pci_compl comp_pkt;
	struct tran_int_desc int_desc;
};

static void hv_pci_compose_compl(void *context, struct pci_response *resp,
				 int resp_packet_size)
{
	struct compose_comp_ctxt *comp_pkt = context;
	struct pci_create_int_response *int_resp =
		(struct pci_create_int_response *)resp;

	if (resp_packet_size < sizeof(*int_resp)) {
		comp_pkt->comp_pkt.completion_status = -1;
		goto out;
	}
	comp_pkt->comp_pkt.completion_status = resp->status;
	comp_pkt->int_desc = int_resp->int_desc;
out:
	complete(&comp_pkt->comp_pkt.host_event);
}

static u32 hv_compose_msi_req_v1(
	struct pci_create_interrupt *int_pkt,
	u32 slot, u8 vector, u16 vector_count)
{
	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE;
	int_pkt->wslot.slot = slot;
	int_pkt->int_desc.vector = vector;
	int_pkt->int_desc.vector_count = vector_count;
	int_pkt->int_desc.delivery_mode = DELIVERY_MODE;

	/*
	 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in
	 * hv_irq_unmask().
	 */
	int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL;

	return sizeof(*int_pkt);
}

/*
 * The vCPU selected by hv_compose_multi_msi_req_get_cpu() and
 * hv_compose_msi_req_get_cpu() is a "dummy" vCPU because the final vCPU to be
 * interrupted is specified later in hv_irq_unmask() and communicated to Hyper-V
 * via the HVCALL_RETARGET_INTERRUPT hypercall. But the choice of dummy vCPU is
 * not irrelevant because Hyper-V chooses the physical CPU to handle the
 * interrupts based on the vCPU specified in message sent to the vPCI VSP in
 * hv_compose_msi_msg(). Hyper-V's choice of pCPU is not visible to the guest,
 * but assigning too many vPCI device interrupts to the same pCPU can cause a
 * performance bottleneck. So we spread out the dummy vCPUs to influence Hyper-V
 * to spread out the pCPUs that it selects.
 *
 * For the single-MSI and MSI-X cases, it's OK for hv_compose_msi_req_get_cpu()
 * to always return the same dummy vCPU, because a second call to
 * hv_compose_msi_msg() contains the "real" vCPU, causing Hyper-V to choose a
 * new pCPU for the interrupt. But for the multi-MSI case, the second call to
 * hv_compose_msi_msg() exits without sending a message to the vPCI VSP, so the
 * original dummy vCPU is used. This dummy vCPU must be round-robin'ed so that
 * the pCPUs are spread out. All interrupts for a multi-MSI device end up using
 * the same pCPU, even though the vCPUs will be spread out by later calls
 * to hv_irq_unmask(), but that is the best we can do now.
 *
 * With Hyper-V in Nov 2022, the HVCALL_RETARGET_INTERRUPT hypercall does *not*
 * cause Hyper-V to reselect the pCPU based on the specified vCPU. Such an
 * enhancement is planned for a future version. With that enhancement, the
 * dummy vCPU selection won't matter, and interrupts for the same multi-MSI
 * device will be spread across multiple pCPUs.
 */

/*
 * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten
 * by subsequent retarget in hv_irq_unmask().
 */
static int hv_compose_msi_req_get_cpu(const struct cpumask *affinity)
{
	return cpumask_first_and(affinity, cpu_online_mask);
}

/*
 * Make sure the dummy vCPU values for multi-MSI don't all point to vCPU0.
 */
static int hv_compose_multi_msi_req_get_cpu(void)
{
	static DEFINE_SPINLOCK(multi_msi_cpu_lock);

	/* -1 means starting with CPU 0 */
	static int cpu_next = -1;

	unsigned long flags;
	int cpu;

	spin_lock_irqsave(&multi_msi_cpu_lock, flags);

	cpu_next = cpumask_next_wrap(cpu_next, cpu_online_mask, nr_cpu_ids,
				     false);
	cpu = cpu_next;

	spin_unlock_irqrestore(&multi_msi_cpu_lock, flags);

	return cpu;
}

static u32 hv_compose_msi_req_v2(
	struct pci_create_interrupt2 *int_pkt, int cpu,
	u32 slot, u8 vector, u16 vector_count)
{
	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2;
	int_pkt->wslot.slot = slot;
	int_pkt->int_desc.vector = vector;
	int_pkt->int_desc.vector_count = vector_count;
	int_pkt->int_desc.delivery_mode = DELIVERY_MODE;
	int_pkt->int_desc.processor_array[0] =
		hv_cpu_number_to_vp_number(cpu);
	int_pkt->int_desc.processor_count = 1;

	return sizeof(*int_pkt);
}

static u32 hv_compose_msi_req_v3(
	struct pci_create_interrupt3 *int_pkt, int cpu,
	u32 slot, u32 vector, u16 vector_count)
{
	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE3;
	int_pkt->wslot.slot = slot;
	int_pkt->int_desc.vector = vector;
	int_pkt->int_desc.reserved = 0;
	int_pkt->int_desc.vector_count = vector_count;
	int_pkt->int_desc.delivery_mode = DELIVERY_MODE;
	int_pkt->int_desc.processor_array[0] =
		hv_cpu_number_to_vp_number(cpu);
	int_pkt->int_desc.processor_count = 1;

	return sizeof(*int_pkt);
}

/**
 * hv_compose_msi_msg() - Supplies a valid MSI address/data
 * @data:	Everything about this MSI
 * @msg:	Buffer that is filled in by this function
 *
 * This function unpacks the IRQ looking for target CPU set, IDT
 * vector and mode and sends a message to the parent partition
 * asking for a mapping for that tuple in this partition.  The
 * response supplies a data value and address to which that data
 * should be written to trigger that interrupt.
 */
static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
{
	struct hv_pcibus_device *hbus;
	struct vmbus_channel *channel;
	struct hv_pci_dev *hpdev;
	struct pci_bus *pbus;
	struct pci_dev *pdev;
	const struct cpumask *dest;
	struct compose_comp_ctxt comp;
	struct tran_int_desc *int_desc;
	struct msi_desc *msi_desc;
	/*
	 * vector_count should be u16: see hv_msi_desc, hv_msi_desc2
	 * and hv_msi_desc3. vector must be u32: see hv_msi_desc3.
	 */
	u16 vector_count;
	u32 vector;
	struct {
		struct pci_packet pci_pkt;
		union {
			struct pci_create_interrupt v1;
			struct pci_create_interrupt2 v2;
			struct pci_create_interrupt3 v3;
		} int_pkts;
	} __packed ctxt;
	bool multi_msi;
	u64 trans_id;
	u32 size;
	int ret;
	int cpu;

	msi_desc  = irq_data_get_msi_desc(data);
	multi_msi = !msi_desc->pci.msi_attrib.is_msix &&
		    msi_desc->nvec_used > 1;

	/* Reuse the previous allocation */
	if (data->chip_data && multi_msi) {
		int_desc = data->chip_data;
		msg->address_hi = int_desc->address >> 32;
		msg->address_lo = int_desc->address & 0xffffffff;
		msg->data = int_desc->data;
		return;
	}

	pdev = msi_desc_to_pci_dev(msi_desc);
	dest = irq_data_get_effective_affinity_mask(data);
	pbus = pdev->bus;
	hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
	channel = hbus->hdev->channel;
	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
	if (!hpdev)
		goto return_null_message;

	/* Free any previous message that might have already been composed. */
	if (data->chip_data && !multi_msi) {
		int_desc = data->chip_data;
		data->chip_data = NULL;
		hv_int_desc_free(hpdev, int_desc);
	}

	int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC);
	if (!int_desc)
		goto drop_reference;

	if (multi_msi) {
		/*
		 * If this is not the first MSI of Multi MSI, we already have
		 * a mapping.  Can exit early.
		 */
		if (msi_desc->irq != data->irq) {
			data->chip_data = int_desc;
			int_desc->address = msi_desc->msg.address_lo |
					    (u64)msi_desc->msg.address_hi << 32;
			int_desc->data = msi_desc->msg.data +
					 (data->irq - msi_desc->irq);
			msg->address_hi = msi_desc->msg.address_hi;
			msg->address_lo = msi_desc->msg.address_lo;
			msg->data = int_desc->data;
			put_pcichild(hpdev);
			return;
		}
		/*
		 * The vector we select here is a dummy value.  The correct
		 * value gets sent to the hypervisor in unmask().  This needs
		 * to be aligned with the count, and also not zero.  Multi-msi
		 * is powers of 2 up to 32, so 32 will always work here.
		 */
		vector = 32;
		vector_count = msi_desc->nvec_used;
		cpu = hv_compose_multi_msi_req_get_cpu();
	} else {
		vector = hv_msi_get_int_vector(data);
		vector_count = 1;
		cpu = hv_compose_msi_req_get_cpu(dest);
	}

	/*
	 * hv_compose_msi_req_v1 and v2 are for x86 only, meaning 'vector'
	 * can't exceed u8. Cast 'vector' down to u8 for v1/v2 explicitly
	 * for better readability.
	 */
	memset(&ctxt, 0, sizeof(ctxt));
	init_completion(&comp.comp_pkt.host_event);
	ctxt.pci_pkt.completion_func = hv_pci_compose_compl;
	ctxt.pci_pkt.compl_ctxt = &comp;

	switch (hbus->protocol_version) {
	case PCI_PROTOCOL_VERSION_1_1:
		size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1,
					hpdev->desc.win_slot.slot,
					(u8)vector,
					vector_count);
		break;

	case PCI_PROTOCOL_VERSION_1_2:
	case PCI_PROTOCOL_VERSION_1_3:
		size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2,
					cpu,
					hpdev->desc.win_slot.slot,
					(u8)vector,
					vector_count);
		break;

	case PCI_PROTOCOL_VERSION_1_4:
		size = hv_compose_msi_req_v3(&ctxt.int_pkts.v3,
					cpu,
					hpdev->desc.win_slot.slot,
					vector,
					vector_count);
		break;

	default:
		/* As we only negotiate protocol versions known to this driver,
		 * this path should never hit. However, this is it not a hot
		 * path so we print a message to aid future updates.
		 */
		dev_err(&hbus->hdev->device,
			"Unexpected vPCI protocol, update driver.");
		goto free_int_desc;
	}

	ret = vmbus_sendpacket_getid(hpdev->hbus->hdev->channel, &ctxt.int_pkts,
				     size, (unsigned long)&ctxt.pci_pkt,
				     &trans_id, VM_PKT_DATA_INBAND,
				     VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
	if (ret) {
		dev_err(&hbus->hdev->device,
			"Sending request for interrupt failed: 0x%x",
			comp.comp_pkt.completion_status);
		goto free_int_desc;
	}

	/*
	 * Prevents hv_pci_onchannelcallback() from running concurrently
	 * in the tasklet.
	 */
	tasklet_disable_in_atomic(&channel->callback_event);

	/*
	 * Since this function is called with IRQ locks held, can't
	 * do normal wait for completion; instead poll.
	 */
	while (!try_wait_for_completion(&comp.comp_pkt.host_event)) {
		unsigned long flags;

		/* 0xFFFF means an invalid PCI VENDOR ID. */
		if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) {
			dev_err_once(&hbus->hdev->device,
				     "the device has gone\n");
			goto enable_tasklet;
		}

		/*
		 * Make sure that the ring buffer data structure doesn't get
		 * freed while we dereference the ring buffer pointer.  Test
		 * for the channel's onchannel_callback being NULL within a
		 * sched_lock critical section.  See also the inline comments
		 * in vmbus_reset_channel_cb().
		 */
		spin_lock_irqsave(&channel->sched_lock, flags);
		if (unlikely(channel->onchannel_callback == NULL)) {
			spin_unlock_irqrestore(&channel->sched_lock, flags);
			goto enable_tasklet;
		}
		hv_pci_onchannelcallback(hbus);
		spin_unlock_irqrestore(&channel->sched_lock, flags);

		if (hpdev->state == hv_pcichild_ejecting) {
			dev_err_once(&hbus->hdev->device,
				     "the device is being ejected\n");
			goto enable_tasklet;
		}

		udelay(100);
	}

	tasklet_enable(&channel->callback_event);

	if (comp.comp_pkt.completion_status < 0) {
		dev_err(&hbus->hdev->device,
			"Request for interrupt failed: 0x%x",
			comp.comp_pkt.completion_status);
		goto free_int_desc;
	}

	/*
	 * Record the assignment so that this can be unwound later. Using
	 * irq_set_chip_data() here would be appropriate, but the lock it takes
	 * is already held.
	 */
	*int_desc = comp.int_desc;
	data->chip_data = int_desc;

	/* Pass up the result. */
	msg->address_hi = comp.int_desc.address >> 32;
	msg->address_lo = comp.int_desc.address & 0xffffffff;
	msg->data = comp.int_desc.data;

	put_pcichild(hpdev);
	return;

enable_tasklet:
	tasklet_enable(&channel->callback_event);
	/*
	 * The completion packet on the stack becomes invalid after 'return';
	 * remove the ID from the VMbus requestor if the identifier is still
	 * mapped to/associated with the packet.  (The identifier could have
	 * been 're-used', i.e., already removed and (re-)mapped.)
	 *
	 * Cf. hv_pci_onchannelcallback().
	 */
	vmbus_request_addr_match(channel, trans_id, (unsigned long)&ctxt.pci_pkt);
free_int_desc:
	kfree(int_desc);
drop_reference:
	put_pcichild(hpdev);
return_null_message:
	msg->address_hi = 0;
	msg->address_lo = 0;
	msg->data = 0;
}

/* HW Interrupt Chip Descriptor */
static struct irq_chip hv_msi_irq_chip = {
	.name			= "Hyper-V PCIe MSI",
	.irq_compose_msi_msg	= hv_compose_msi_msg,
	.irq_set_affinity	= irq_chip_set_affinity_parent,
#ifdef CONFIG_X86
	.irq_ack		= irq_chip_ack_parent,
#elif defined(CONFIG_ARM64)
	.irq_eoi		= irq_chip_eoi_parent,
#endif
	.irq_mask		= hv_irq_mask,
	.irq_unmask		= hv_irq_unmask,
};

static struct msi_domain_ops hv_msi_ops = {
	.msi_prepare	= hv_msi_prepare,
	.msi_free	= hv_msi_free,
};

/**
 * hv_pcie_init_irq_domain() - Initialize IRQ domain
 * @hbus:	The root PCI bus
 *
 * This function creates an IRQ domain which will be used for
 * interrupts from devices that have been passed through.  These
 * devices only support MSI and MSI-X, not line-based interrupts
 * or simulations of line-based interrupts through PCIe's
 * fabric-layer messages.  Because interrupts are remapped, we
 * can support multi-message MSI here.
 *
 * Return: '0' on success and error value on failure
 */
static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus)
{
	hbus->msi_info.chip = &hv_msi_irq_chip;
	hbus->msi_info.ops = &hv_msi_ops;
	hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS |
		MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI |
		MSI_FLAG_PCI_MSIX);
	hbus->msi_info.handler = FLOW_HANDLER;
	hbus->msi_info.handler_name = FLOW_NAME;
	hbus->msi_info.data = hbus;
	hbus->irq_domain = pci_msi_create_irq_domain(hbus->fwnode,
						     &hbus->msi_info,
						     hv_pci_get_root_domain());
	if (!hbus->irq_domain) {
		dev_err(&hbus->hdev->device,
			"Failed to build an MSI IRQ domain\n");
		return -ENODEV;
	}

	dev_set_msi_domain(&hbus->bridge->dev, hbus->irq_domain);

	return 0;
}

/**
 * get_bar_size() - Get the address space consumed by a BAR
 * @bar_val:	Value that a BAR returned after -1 was written
 *              to it.
 *
 * This function returns the size of the BAR, rounded up to 1
 * page.  It has to be rounded up because the hypervisor's page
 * table entry that maps the BAR into the VM can't specify an
 * offset within a page.  The invariant is that the hypervisor
 * must place any BARs of smaller than page length at the
 * beginning of a page.
 *
 * Return:	Size in bytes of the consumed MMIO space.
 */
static u64 get_bar_size(u64 bar_val)
{
	return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)),
			PAGE_SIZE);
}

/**
 * survey_child_resources() - Total all MMIO requirements
 * @hbus:	Root PCI bus, as understood by this driver
 */
static void survey_child_resources(struct hv_pcibus_device *hbus)
{
	struct hv_pci_dev *hpdev;
	resource_size_t bar_size = 0;
	unsigned long flags;
	struct completion *event;
	u64 bar_val;
	int i;

	/* If nobody is waiting on the answer, don't compute it. */
	event = xchg(&hbus->survey_event, NULL);
	if (!event)
		return;

	/* If the answer has already been computed, go with it. */
	if (hbus->low_mmio_space || hbus->high_mmio_space) {
		complete(event);
		return;
	}

	spin_lock_irqsave(&hbus->device_list_lock, flags);

	/*
	 * Due to an interesting quirk of the PCI spec, all memory regions
	 * for a child device are a power of 2 in size and aligned in memory,
	 * so it's sufficient to just add them up without tracking alignment.
	 */
	list_for_each_entry(hpdev, &hbus->children, list_entry) {
		for (i = 0; i < PCI_STD_NUM_BARS; i++) {
			if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO)
				dev_err(&hbus->hdev->device,
					"There's an I/O BAR in this list!\n");

			if (hpdev->probed_bar[i] != 0) {
				/*
				 * A probed BAR has all the upper bits set that
				 * can be changed.
				 */

				bar_val = hpdev->probed_bar[i];
				if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
					bar_val |=
					((u64)hpdev->probed_bar[++i] << 32);
				else
					bar_val |= 0xffffffff00000000ULL;

				bar_size = get_bar_size(bar_val);

				if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
					hbus->high_mmio_space += bar_size;
				else
					hbus->low_mmio_space += bar_size;
			}
		}
	}

	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
	complete(event);
}

/**
 * prepopulate_bars() - Fill in BARs with defaults
 * @hbus:	Root PCI bus, as understood by this driver
 *
 * The core PCI driver code seems much, much happier if the BARs
 * for a device have values upon first scan. So fill them in.
 * The algorithm below works down from large sizes to small,
 * attempting to pack the assignments optimally. The assumption,
 * enforced in other parts of the code, is that the beginning of
 * the memory-mapped I/O space will be aligned on the largest
 * BAR size.
 */
static void prepopulate_bars(struct hv_pcibus_device *hbus)
{
	resource_size_t high_size = 0;
	resource_size_t low_size = 0;
	resource_size_t high_base = 0;
	resource_size_t low_base = 0;
	resource_size_t bar_size;
	struct hv_pci_dev *hpdev;
	unsigned long flags;
	u64 bar_val;
	u32 command;
	bool high;
	int i;

	if (hbus->low_mmio_space) {
		low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
		low_base = hbus->low_mmio_res->start;
	}

	if (hbus->high_mmio_space) {
		high_size = 1ULL <<
			(63 - __builtin_clzll(hbus->high_mmio_space));
		high_base = hbus->high_mmio_res->start;
	}

	spin_lock_irqsave(&hbus->device_list_lock, flags);

	/*
	 * Clear the memory enable bit, in case it's already set. This occurs
	 * in the suspend path of hibernation, where the device is suspended,
	 * resumed and suspended again: see hibernation_snapshot() and
	 * hibernation_platform_enter().
	 *
	 * If the memory enable bit is already set, Hyper-V silently ignores
	 * the below BAR updates, and the related PCI device driver can not
	 * work, because reading from the device register(s) always returns
	 * 0xFFFFFFFF (PCI_ERROR_RESPONSE).
	 */
	list_for_each_entry(hpdev, &hbus->children, list_entry) {
		_hv_pcifront_read_config(hpdev, PCI_COMMAND, 2, &command);
		command &= ~PCI_COMMAND_MEMORY;
		_hv_pcifront_write_config(hpdev, PCI_COMMAND, 2, command);
	}

	/* Pick addresses for the BARs. */
	do {
		list_for_each_entry(hpdev, &hbus->children, list_entry) {
			for (i = 0; i < PCI_STD_NUM_BARS; i++) {
				bar_val = hpdev->probed_bar[i];
				if (bar_val == 0)
					continue;
				high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64;
				if (high) {
					bar_val |=
						((u64)hpdev->probed_bar[i + 1]
						 << 32);
				} else {
					bar_val |= 0xffffffffULL << 32;
				}
				bar_size = get_bar_size(bar_val);
				if (high) {
					if (high_size != bar_size) {
						i++;
						continue;
					}
					_hv_pcifront_write_config(hpdev,
						PCI_BASE_ADDRESS_0 + (4 * i),
						4,
						(u32)(high_base & 0xffffff00));
					i++;
					_hv_pcifront_write_config(hpdev,
						PCI_BASE_ADDRESS_0 + (4 * i),
						4, (u32)(high_base >> 32));
					high_base += bar_size;
				} else {
					if (low_size != bar_size)
						continue;
					_hv_pcifront_write_config(hpdev,
						PCI_BASE_ADDRESS_0 + (4 * i),
						4,
						(u32)(low_base & 0xffffff00));
					low_base += bar_size;
				}
			}
			if (high_size <= 1 && low_size <= 1) {
				/*
				 * No need to set the PCI_COMMAND_MEMORY bit as
				 * the core PCI driver doesn't require the bit
				 * to be pre-set. Actually here we intentionally
				 * keep the bit off so that the PCI BAR probing
				 * in the core PCI driver doesn't cause Hyper-V
				 * to unnecessarily unmap/map the virtual BARs
				 * from/to the physical BARs multiple times.
				 * This reduces the VM boot time significantly
				 * if the BAR sizes are huge.
				 */
				break;
			}
		}

		high_size >>= 1;
		low_size >>= 1;
	}  while (high_size || low_size);

	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
}

/*
 * Assign entries in sysfs pci slot directory.
 *
 * Note that this function does not need to lock the children list
 * because it is called from pci_devices_present_work which
 * is serialized with hv_eject_device_work because they are on the
 * same ordered workqueue. Therefore hbus->children list will not change
 * even when pci_create_slot sleeps.
 */
static void hv_pci_assign_slots(struct hv_pcibus_device *hbus)
{
	struct hv_pci_dev *hpdev;
	char name[SLOT_NAME_SIZE];
	int slot_nr;

	list_for_each_entry(hpdev, &hbus->children, list_entry) {
		if (hpdev->pci_slot)
			continue;

		slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot));
		snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser);
		hpdev->pci_slot = pci_create_slot(hbus->bridge->bus, slot_nr,
					  name, NULL);
		if (IS_ERR(hpdev->pci_slot)) {
			pr_warn("pci_create slot %s failed\n", name);
			hpdev->pci_slot = NULL;
		}
	}
}

/*
 * Remove entries in sysfs pci slot directory.
 */
static void hv_pci_remove_slots(struct hv_pcibus_device *hbus)
{
	struct hv_pci_dev *hpdev;

	list_for_each_entry(hpdev, &hbus->children, list_entry) {
		if (!hpdev->pci_slot)
			continue;
		pci_destroy_slot(hpdev->pci_slot);
		hpdev->pci_slot = NULL;
	}
}

/*
 * Set NUMA node for the devices on the bus
 */
static void hv_pci_assign_numa_node(struct hv_pcibus_device *hbus)
{
	struct pci_dev *dev;
	struct pci_bus *bus = hbus->bridge->bus;
	struct hv_pci_dev *hv_dev;

	list_for_each_entry(dev, &bus->devices, bus_list) {
		hv_dev = get_pcichild_wslot(hbus, devfn_to_wslot(dev->devfn));
		if (!hv_dev)
			continue;

		if (hv_dev->desc.flags & HV_PCI_DEVICE_FLAG_NUMA_AFFINITY &&
		    hv_dev->desc.virtual_numa_node < num_possible_nodes())
			/*
			 * The kernel may boot with some NUMA nodes offline
			 * (e.g. in a KDUMP kernel) or with NUMA disabled via
			 * "numa=off". In those cases, adjust the host provided
			 * NUMA node to a valid NUMA node used by the kernel.
			 */
			set_dev_node(&dev->dev,
				     numa_map_to_online_node(
					     hv_dev->desc.virtual_numa_node));

		put_pcichild(hv_dev);
	}
}

/**
 * create_root_hv_pci_bus() - Expose a new root PCI bus
 * @hbus:	Root PCI bus, as understood by this driver
 *
 * Return: 0 on success, -errno on failure
 */
static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus)
{
	int error;
	struct pci_host_bridge *bridge = hbus->bridge;

	bridge->dev.parent = &hbus->hdev->device;
	bridge->sysdata = &hbus->sysdata;
	bridge->ops = &hv_pcifront_ops;

	error = pci_scan_root_bus_bridge(bridge);
	if (error)
		return error;

	pci_lock_rescan_remove();
	hv_pci_assign_numa_node(hbus);
	pci_bus_assign_resources(bridge->bus);
	hv_pci_assign_slots(hbus);
	pci_bus_add_devices(bridge->bus);
	pci_unlock_rescan_remove();
	hbus->state = hv_pcibus_installed;
	return 0;
}

struct q_res_req_compl {
	struct completion host_event;
	struct hv_pci_dev *hpdev;
};

/**
 * q_resource_requirements() - Query Resource Requirements
 * @context:		The completion context.
 * @resp:		The response that came from the host.
 * @resp_packet_size:	The size in bytes of resp.
 *
 * This function is invoked on completion of a Query Resource
 * Requirements packet.
 */
static void q_resource_requirements(void *context, struct pci_response *resp,
				    int resp_packet_size)
{
	struct q_res_req_compl *completion = context;
	struct pci_q_res_req_response *q_res_req =
		(struct pci_q_res_req_response *)resp;
	s32 status;
	int i;

	status = (resp_packet_size < sizeof(*q_res_req)) ? -1 : resp->status;
	if (status < 0) {
		dev_err(&completion->hpdev->hbus->hdev->device,
			"query resource requirements failed: %x\n",
			status);
	} else {
		for (i = 0; i < PCI_STD_NUM_BARS; i++) {
			completion->hpdev->probed_bar[i] =
				q_res_req->probed_bar[i];
		}
	}

	complete(&completion->host_event);
}

/**
 * new_pcichild_device() - Create a new child device
 * @hbus:	The internal struct tracking this root PCI bus.
 * @desc:	The information supplied so far from the host
 *              about the device.
 *
 * This function creates the tracking structure for a new child
 * device and kicks off the process of figuring out what it is.
 *
 * Return: Pointer to the new tracking struct
 */
static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus,
		struct hv_pcidev_description *desc)
{
	struct hv_pci_dev *hpdev;
	struct pci_child_message *res_req;
	struct q_res_req_compl comp_pkt;
	struct {
		struct pci_packet init_packet;
		u8 buffer[sizeof(struct pci_child_message)];
	} pkt;
	unsigned long flags;
	int ret;

	hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL);
	if (!hpdev)
		return NULL;

	hpdev->hbus = hbus;

	memset(&pkt, 0, sizeof(pkt));
	init_completion(&comp_pkt.host_event);
	comp_pkt.hpdev = hpdev;
	pkt.init_packet.compl_ctxt = &comp_pkt;
	pkt.init_packet.completion_func = q_resource_requirements;
	res_req = (struct pci_child_message *)&pkt.init_packet.message;
	res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS;
	res_req->wslot.slot = desc->win_slot.slot;

	ret = vmbus_sendpacket(hbus->hdev->channel, res_req,
			       sizeof(struct pci_child_message),
			       (unsigned long)&pkt.init_packet,
			       VM_PKT_DATA_INBAND,
			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
	if (ret)
		goto error;

	if (wait_for_response(hbus->hdev, &comp_pkt.host_event))
		goto error;

	hpdev->desc = *desc;
	refcount_set(&hpdev->refs, 1);
	get_pcichild(hpdev);
	spin_lock_irqsave(&hbus->device_list_lock, flags);

	list_add_tail(&hpdev->list_entry, &hbus->children);
	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
	return hpdev;

error:
	kfree(hpdev);
	return NULL;
}

/**
 * get_pcichild_wslot() - Find device from slot
 * @hbus:	Root PCI bus, as understood by this driver
 * @wslot:	Location on the bus
 *
 * This function looks up a PCI device and returns the internal
 * representation of it.  It acquires a reference on it, so that
 * the device won't be deleted while somebody is using it.  The
 * caller is responsible for calling put_pcichild() to release
 * this reference.
 *
 * Return:	Internal representation of a PCI device
 */
static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
					     u32 wslot)
{
	unsigned long flags;
	struct hv_pci_dev *iter, *hpdev = NULL;

	spin_lock_irqsave(&hbus->device_list_lock, flags);
	list_for_each_entry(iter, &hbus->children, list_entry) {
		if (iter->desc.win_slot.slot == wslot) {
			hpdev = iter;
			get_pcichild(hpdev);
			break;
		}
	}
	spin_unlock_irqrestore(&hbus->device_list_lock, flags);

	return hpdev;
}

/**
 * pci_devices_present_work() - Handle new list of child devices
 * @work:	Work struct embedded in struct hv_dr_work
 *
 * "Bus Relations" is the Windows term for "children of this
 * bus."  The terminology is preserved here for people trying to
 * debug the interaction between Hyper-V and Linux.  This
 * function is called when the parent partition reports a list
 * of functions that should be observed under this PCI Express
 * port (bus).
 *
 * This function updates the list, and must tolerate being
 * called multiple times with the same information.  The typical
 * number of child devices is one, with very atypical cases
 * involving three or four, so the algorithms used here can be
 * simple and inefficient.
 *
 * It must also treat the omission of a previously observed device as
 * notification that the device no longer exists.
 *
 * Note that this function is serialized with hv_eject_device_work(),
 * because both are pushed to the ordered workqueue hbus->wq.
 */
static void pci_devices_present_work(struct work_struct *work)
{
	u32 child_no;
	bool found;
	struct hv_pcidev_description *new_desc;
	struct hv_pci_dev *hpdev;
	struct hv_pcibus_device *hbus;
	struct list_head removed;
	struct hv_dr_work *dr_wrk;
	struct hv_dr_state *dr = NULL;
	unsigned long flags;

	dr_wrk = container_of(work, struct hv_dr_work, wrk);
	hbus = dr_wrk->bus;
	kfree(dr_wrk);

	INIT_LIST_HEAD(&removed);

	/* Pull this off the queue and process it if it was the last one. */
	spin_lock_irqsave(&hbus->device_list_lock, flags);
	while (!list_empty(&hbus->dr_list)) {
		dr = list_first_entry(&hbus->dr_list, struct hv_dr_state,
				      list_entry);
		list_del(&dr->list_entry);

		/* Throw this away if the list still has stuff in it. */
		if (!list_empty(&hbus->dr_list)) {
			kfree(dr);
			continue;
		}
	}
	spin_unlock_irqrestore(&hbus->device_list_lock, flags);

	if (!dr)
		return;

	/* First, mark all existing children as reported missing. */
	spin_lock_irqsave(&hbus->device_list_lock, flags);
	list_for_each_entry(hpdev, &hbus->children, list_entry) {
		hpdev->reported_missing = true;
	}
	spin_unlock_irqrestore(&hbus->device_list_lock, flags);

	/* Next, add back any reported devices. */
	for (child_no = 0; child_no < dr->device_count; child_no++) {
		found = false;
		new_desc = &dr->func[child_no];

		spin_lock_irqsave(&hbus->device_list_lock, flags);
		list_for_each_entry(hpdev, &hbus->children, list_entry) {
			if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) &&
			    (hpdev->desc.v_id == new_desc->v_id) &&
			    (hpdev->desc.d_id == new_desc->d_id) &&
			    (hpdev->desc.ser == new_desc->ser)) {
				hpdev->reported_missing = false;
				found = true;
			}
		}
		spin_unlock_irqrestore(&hbus->device_list_lock, flags);

		if (!found) {
			hpdev = new_pcichild_device(hbus, new_desc);
			if (!hpdev)
				dev_err(&hbus->hdev->device,
					"couldn't record a child device.\n");
		}
	}

	/* Move missing children to a list on the stack. */
	spin_lock_irqsave(&hbus->device_list_lock, flags);
	do {
		found = false;
		list_for_each_entry(hpdev, &hbus->children, list_entry) {
			if (hpdev->reported_missing) {
				found = true;
				put_pcichild(hpdev);
				list_move_tail(&hpdev->list_entry, &removed);
				break;
			}
		}
	} while (found);
	spin_unlock_irqrestore(&hbus->device_list_lock, flags);

	/* Delete everything that should no longer exist. */
	while (!list_empty(&removed)) {
		hpdev = list_first_entry(&removed, struct hv_pci_dev,
					 list_entry);
		list_del(&hpdev->list_entry);

		if (hpdev->pci_slot)
			pci_destroy_slot(hpdev->pci_slot);

		put_pcichild(hpdev);
	}

	switch (hbus->state) {
	case hv_pcibus_installed:
		/*
		 * Tell the core to rescan bus
		 * because there may have been changes.
		 */
		pci_lock_rescan_remove();
		pci_scan_child_bus(hbus->bridge->bus);
		hv_pci_assign_numa_node(hbus);
		hv_pci_assign_slots(hbus);
		pci_unlock_rescan_remove();
		break;

	case hv_pcibus_init:
	case hv_pcibus_probed:
		survey_child_resources(hbus);
		break;

	default:
		break;
	}

	kfree(dr);
}

/**
 * hv_pci_start_relations_work() - Queue work to start device discovery
 * @hbus:	Root PCI bus, as understood by this driver
 * @dr:		The list of children returned from host
 *
 * Return:  0 on success, -errno on failure
 */
static int hv_pci_start_relations_work(struct hv_pcibus_device *hbus,
				       struct hv_dr_state *dr)
{
	struct hv_dr_work *dr_wrk;
	unsigned long flags;
	bool pending_dr;

	if (hbus->state == hv_pcibus_removing) {
		dev_info(&hbus->hdev->device,
			 "PCI VMBus BUS_RELATIONS: ignored\n");
		return -ENOENT;
	}

	dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT);
	if (!dr_wrk)
		return -ENOMEM;

	INIT_WORK(&dr_wrk->wrk, pci_devices_present_work);
	dr_wrk->bus = hbus;

	spin_lock_irqsave(&hbus->device_list_lock, flags);
	/*
	 * If pending_dr is true, we have already queued a work,
	 * which will see the new dr. Otherwise, we need to
	 * queue a new work.
	 */
	pending_dr = !list_empty(&hbus->dr_list);
	list_add_tail(&dr->list_entry, &hbus->dr_list);
	spin_unlock_irqrestore(&hbus->device_list_lock, flags);

	if (pending_dr)
		kfree(dr_wrk);
	else
		queue_work(hbus->wq, &dr_wrk->wrk);

	return 0;
}

/**
 * hv_pci_devices_present() - Handle list of new children
 * @hbus:      Root PCI bus, as understood by this driver
 * @relations: Packet from host listing children
 *
 * Process a new list of devices on the bus. The list of devices is
 * discovered by VSP and sent to us via VSP message PCI_BUS_RELATIONS,
 * whenever a new list of devices for this bus appears.
 */
static void hv_pci_devices_present(struct hv_pcibus_device *hbus,
				   struct pci_bus_relations *relations)
{
	struct hv_dr_state *dr;
	int i;

	dr = kzalloc(struct_size(dr, func, relations->device_count),
		     GFP_NOWAIT);
	if (!dr)
		return;

	dr->device_count = relations->device_count;
	for (i = 0; i < dr->device_count; i++) {
		dr->func[i].v_id = relations->func[i].v_id;
		dr->func[i].d_id = relations->func[i].d_id;
		dr->func[i].rev = relations->func[i].rev;
		dr->func[i].prog_intf = relations->func[i].prog_intf;
		dr->func[i].subclass = relations->func[i].subclass;
		dr->func[i].base_class = relations->func[i].base_class;
		dr->func[i].subsystem_id = relations->func[i].subsystem_id;
		dr->func[i].win_slot = relations->func[i].win_slot;
		dr->func[i].ser = relations->func[i].ser;
	}

	if (hv_pci_start_relations_work(hbus, dr))
		kfree(dr);
}

/**
 * hv_pci_devices_present2() - Handle list of new children
 * @hbus:	Root PCI bus, as understood by this driver
 * @relations:	Packet from host listing children
 *
 * This function is the v2 version of hv_pci_devices_present()
 */
static void hv_pci_devices_present2(struct hv_pcibus_device *hbus,
				    struct pci_bus_relations2 *relations)
{
	struct hv_dr_state *dr;
	int i;

	dr = kzalloc(struct_size(dr, func, relations->device_count),
		     GFP_NOWAIT);
	if (!dr)
		return;

	dr->device_count = relations->device_count;
	for (i = 0; i < dr->device_count; i++) {
		dr->func[i].v_id = relations->func[i].v_id;
		dr->func[i].d_id = relations->func[i].d_id;
		dr->func[i].rev = relations->func[i].rev;
		dr->func[i].prog_intf = relations->func[i].prog_intf;
		dr->func[i].subclass = relations->func[i].subclass;
		dr->func[i].base_class = relations->func[i].base_class;
		dr->func[i].subsystem_id = relations->func[i].subsystem_id;
		dr->func[i].win_slot = relations->func[i].win_slot;
		dr->func[i].ser = relations->func[i].ser;
		dr->func[i].flags = relations->func[i].flags;
		dr->func[i].virtual_numa_node =
			relations->func[i].virtual_numa_node;
	}

	if (hv_pci_start_relations_work(hbus, dr))
		kfree(dr);
}

/**
 * hv_eject_device_work() - Asynchronously handles ejection
 * @work:	Work struct embedded in internal device struct
 *
 * This function handles ejecting a device.  Windows will
 * attempt to gracefully eject a device, waiting 60 seconds to
 * hear back from the guest OS that this completed successfully.
 * If this timer expires, the device will be forcibly removed.
 */
static void hv_eject_device_work(struct work_struct *work)
{
	struct pci_eject_response *ejct_pkt;
	struct hv_pcibus_device *hbus;
	struct hv_pci_dev *hpdev;
	struct pci_dev *pdev;
	unsigned long flags;
	int wslot;
	struct {
		struct pci_packet pkt;
		u8 buffer[sizeof(struct pci_eject_response)];
	} ctxt;

	hpdev = container_of(work, struct hv_pci_dev, wrk);
	hbus = hpdev->hbus;

	WARN_ON(hpdev->state != hv_pcichild_ejecting);

	/*
	 * Ejection can come before or after the PCI bus has been set up, so
	 * attempt to find it and tear down the bus state, if it exists.  This
	 * must be done without constructs like pci_domain_nr(hbus->bridge->bus)
	 * because hbus->bridge->bus may not exist yet.
	 */
	wslot = wslot_to_devfn(hpdev->desc.win_slot.slot);
	pdev = pci_get_domain_bus_and_slot(hbus->bridge->domain_nr, 0, wslot);
	if (pdev) {
		pci_lock_rescan_remove();
		pci_stop_and_remove_bus_device(pdev);
		pci_dev_put(pdev);
		pci_unlock_rescan_remove();
	}

	spin_lock_irqsave(&hbus->device_list_lock, flags);
	list_del(&hpdev->list_entry);
	spin_unlock_irqrestore(&hbus->device_list_lock, flags);

	if (hpdev->pci_slot)
		pci_destroy_slot(hpdev->pci_slot);

	memset(&ctxt, 0, sizeof(ctxt));
	ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message;
	ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE;
	ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot;
	vmbus_sendpacket(hbus->hdev->channel, ejct_pkt,
			 sizeof(*ejct_pkt), 0,
			 VM_PKT_DATA_INBAND, 0);

	/* For the get_pcichild() in hv_pci_eject_device() */
	put_pcichild(hpdev);
	/* For the two refs got in new_pcichild_device() */
	put_pcichild(hpdev);
	put_pcichild(hpdev);
	/* hpdev has been freed. Do not use it any more. */
}

/**
 * hv_pci_eject_device() - Handles device ejection
 * @hpdev:	Internal device tracking struct
 *
 * This function is invoked when an ejection packet arrives.  It
 * just schedules work so that we don't re-enter the packet
 * delivery code handling the ejection.
 */
static void hv_pci_eject_device(struct hv_pci_dev *hpdev)
{
	struct hv_pcibus_device *hbus = hpdev->hbus;
	struct hv_device *hdev = hbus->hdev;

	if (hbus->state == hv_pcibus_removing) {
		dev_info(&hdev->device, "PCI VMBus EJECT: ignored\n");
		return;
	}

	hpdev->state = hv_pcichild_ejecting;
	get_pcichild(hpdev);
	INIT_WORK(&hpdev->wrk, hv_eject_device_work);
	queue_work(hbus->wq, &hpdev->wrk);
}

/**
 * hv_pci_onchannelcallback() - Handles incoming packets
 * @context:	Internal bus tracking struct
 *
 * This function is invoked whenever the host sends a packet to
 * this channel (which is private to this root PCI bus).
 */
static void hv_pci_onchannelcallback(void *context)
{
	const int packet_size = 0x100;
	int ret;
	struct hv_pcibus_device *hbus = context;
	struct vmbus_channel *chan = hbus->hdev->channel;
	u32 bytes_recvd;
	u64 req_id, req_addr;
	struct vmpacket_descriptor *desc;
	unsigned char *buffer;
	int bufferlen = packet_size;
	struct pci_packet *comp_packet;
	struct pci_response *response;
	struct pci_incoming_message *new_message;
	struct pci_bus_relations *bus_rel;
	struct pci_bus_relations2 *bus_rel2;
	struct pci_dev_inval_block *inval;
	struct pci_dev_incoming *dev_message;
	struct hv_pci_dev *hpdev;
	unsigned long flags;

	buffer = kmalloc(bufferlen, GFP_ATOMIC);
	if (!buffer)
		return;

	while (1) {
		ret = vmbus_recvpacket_raw(chan, buffer, bufferlen,
					   &bytes_recvd, &req_id);

		if (ret == -ENOBUFS) {
			kfree(buffer);
			/* Handle large packet */
			bufferlen = bytes_recvd;
			buffer = kmalloc(bytes_recvd, GFP_ATOMIC);
			if (!buffer)
				return;
			continue;
		}

		/* Zero length indicates there are no more packets. */
		if (ret || !bytes_recvd)
			break;

		/*
		 * All incoming packets must be at least as large as a
		 * response.
		 */
		if (bytes_recvd <= sizeof(struct pci_response))
			continue;
		desc = (struct vmpacket_descriptor *)buffer;

		switch (desc->type) {
		case VM_PKT_COMP:

			lock_requestor(chan, flags);
			req_addr = __vmbus_request_addr_match(chan, req_id,
							      VMBUS_RQST_ADDR_ANY);
			if (req_addr == VMBUS_RQST_ERROR) {
				unlock_requestor(chan, flags);
				dev_err(&hbus->hdev->device,
					"Invalid transaction ID %llx\n",
					req_id);
				break;
			}
			comp_packet = (struct pci_packet *)req_addr;
			response = (struct pci_response *)buffer;
			/*
			 * Call ->completion_func() within the critical section to make
			 * sure that the packet pointer is still valid during the call:
			 * here 'valid' means that there's a task still waiting for the
			 * completion, and that the packet data is still on the waiting
			 * task's stack.  Cf. hv_compose_msi_msg().
			 */
			comp_packet->completion_func(comp_packet->compl_ctxt,
						     response,
						     bytes_recvd);
			unlock_requestor(chan, flags);
			break;

		case VM_PKT_DATA_INBAND:

			new_message = (struct pci_incoming_message *)buffer;
			switch (new_message->message_type.type) {
			case PCI_BUS_RELATIONS:

				bus_rel = (struct pci_bus_relations *)buffer;
				if (bytes_recvd < sizeof(*bus_rel) ||
				    bytes_recvd <
					struct_size(bus_rel, func,
						    bus_rel->device_count)) {
					dev_err(&hbus->hdev->device,
						"bus relations too small\n");
					break;
				}

				hv_pci_devices_present(hbus, bus_rel);
				break;

			case PCI_BUS_RELATIONS2:

				bus_rel2 = (struct pci_bus_relations2 *)buffer;
				if (bytes_recvd < sizeof(*bus_rel2) ||
				    bytes_recvd <
					struct_size(bus_rel2, func,
						    bus_rel2->device_count)) {
					dev_err(&hbus->hdev->device,
						"bus relations v2 too small\n");
					break;
				}

				hv_pci_devices_present2(hbus, bus_rel2);
				break;

			case PCI_EJECT:

				dev_message = (struct pci_dev_incoming *)buffer;
				if (bytes_recvd < sizeof(*dev_message)) {
					dev_err(&hbus->hdev->device,
						"eject message too small\n");
					break;
				}
				hpdev = get_pcichild_wslot(hbus,
						      dev_message->wslot.slot);
				if (hpdev) {
					hv_pci_eject_device(hpdev);
					put_pcichild(hpdev);
				}
				break;

			case PCI_INVALIDATE_BLOCK:

				inval = (struct pci_dev_inval_block *)buffer;
				if (bytes_recvd < sizeof(*inval)) {
					dev_err(&hbus->hdev->device,
						"invalidate message too small\n");
					break;
				}
				hpdev = get_pcichild_wslot(hbus,
							   inval->wslot.slot);
				if (hpdev) {
					if (hpdev->block_invalidate) {
						hpdev->block_invalidate(
						    hpdev->invalidate_context,
						    inval->block_mask);
					}
					put_pcichild(hpdev);
				}
				break;

			default:
				dev_warn(&hbus->hdev->device,
					"Unimplemented protocol message %x\n",
					new_message->message_type.type);
				break;
			}
			break;

		default:
			dev_err(&hbus->hdev->device,
				"unhandled packet type %d, tid %llx len %d\n",
				desc->type, req_id, bytes_recvd);
			break;
		}
	}

	kfree(buffer);
}

/**
 * hv_pci_protocol_negotiation() - Set up protocol
 * @hdev:		VMBus's tracking struct for this root PCI bus.
 * @version:		Array of supported channel protocol versions in
 *			the order of probing - highest go first.
 * @num_version:	Number of elements in the version array.
 *
 * This driver is intended to support running on Windows 10
 * (server) and later versions. It will not run on earlier
 * versions, as they assume that many of the operations which
 * Linux needs accomplished with a spinlock held were done via
 * asynchronous messaging via VMBus.  Windows 10 increases the
 * surface area of PCI emulation so that these actions can take
 * place by suspending a virtual processor for their duration.
 *
 * This function negotiates the channel protocol version,
 * failing if the host doesn't support the necessary protocol
 * level.
 */
static int hv_pci_protocol_negotiation(struct hv_device *hdev,
				       enum pci_protocol_version_t version[],
				       int num_version)
{
	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
	struct pci_version_request *version_req;
	struct hv_pci_compl comp_pkt;
	struct pci_packet *pkt;
	int ret;
	int i;

	/*
	 * Initiate the handshake with the host and negotiate
	 * a version that the host can support. We start with the
	 * highest version number and go down if the host cannot
	 * support it.
	 */
	pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL);
	if (!pkt)
		return -ENOMEM;

	init_completion(&comp_pkt.host_event);
	pkt->completion_func = hv_pci_generic_compl;
	pkt->compl_ctxt = &comp_pkt;
	version_req = (struct pci_version_request *)&pkt->message;
	version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION;

	for (i = 0; i < num_version; i++) {
		version_req->protocol_version = version[i];
		ret = vmbus_sendpacket(hdev->channel, version_req,
				sizeof(struct pci_version_request),
				(unsigned long)pkt, VM_PKT_DATA_INBAND,
				VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
		if (!ret)
			ret = wait_for_response(hdev, &comp_pkt.host_event);

		if (ret) {
			dev_err(&hdev->device,
				"PCI Pass-through VSP failed to request version: %d",
				ret);
			goto exit;
		}

		if (comp_pkt.completion_status >= 0) {
			hbus->protocol_version = version[i];
			dev_info(&hdev->device,
				"PCI VMBus probing: Using version %#x\n",
				hbus->protocol_version);
			goto exit;
		}

		if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) {
			dev_err(&hdev->device,
				"PCI Pass-through VSP failed version request: %#x",
				comp_pkt.completion_status);
			ret = -EPROTO;
			goto exit;
		}

		reinit_completion(&comp_pkt.host_event);
	}

	dev_err(&hdev->device,
		"PCI pass-through VSP failed to find supported version");
	ret = -EPROTO;

exit:
	kfree(pkt);
	return ret;
}

/**
 * hv_pci_free_bridge_windows() - Release memory regions for the
 * bus
 * @hbus:	Root PCI bus, as understood by this driver
 */
static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus)
{
	/*
	 * Set the resources back to the way they looked when they
	 * were allocated by setting IORESOURCE_BUSY again.
	 */

	if (hbus->low_mmio_space && hbus->low_mmio_res) {
		hbus->low_mmio_res->flags |= IORESOURCE_BUSY;
		vmbus_free_mmio(hbus->low_mmio_res->start,
				resource_size(hbus->low_mmio_res));
	}

	if (hbus->high_mmio_space && hbus->high_mmio_res) {
		hbus->high_mmio_res->flags |= IORESOURCE_BUSY;
		vmbus_free_mmio(hbus->high_mmio_res->start,
				resource_size(hbus->high_mmio_res));
	}
}

/**
 * hv_pci_allocate_bridge_windows() - Allocate memory regions
 * for the bus
 * @hbus:	Root PCI bus, as understood by this driver
 *
 * This function calls vmbus_allocate_mmio(), which is itself a
 * bit of a compromise.  Ideally, we might change the pnp layer
 * in the kernel such that it comprehends either PCI devices
 * which are "grandchildren of ACPI," with some intermediate bus
 * node (in this case, VMBus) or change it such that it
 * understands VMBus.  The pnp layer, however, has been declared
 * deprecated, and not subject to change.
 *
 * The workaround, implemented here, is to ask VMBus to allocate
 * MMIO space for this bus.  VMBus itself knows which ranges are
 * appropriate by looking at its own ACPI objects.  Then, after
 * these ranges are claimed, they're modified to look like they
 * would have looked if the ACPI and pnp code had allocated
 * bridge windows.  These descriptors have to exist in this form
 * in order to satisfy the code which will get invoked when the
 * endpoint PCI function driver calls request_mem_region() or
 * request_mem_region_exclusive().
 *
 * Return: 0 on success, -errno on failure
 */
static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus)
{
	resource_size_t align;
	int ret;

	if (hbus->low_mmio_space) {
		align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
		ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0,
					  (u64)(u32)0xffffffff,
					  hbus->low_mmio_space,
					  align, false);
		if (ret) {
			dev_err(&hbus->hdev->device,
				"Need %#llx of low MMIO space. Consider reconfiguring the VM.\n",
				hbus->low_mmio_space);
			return ret;
		}

		/* Modify this resource to become a bridge window. */
		hbus->low_mmio_res->flags |= IORESOURCE_WINDOW;
		hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY;
		pci_add_resource(&hbus->bridge->windows, hbus->low_mmio_res);
	}

	if (hbus->high_mmio_space) {
		align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space));
		ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev,
					  0x100000000, -1,
					  hbus->high_mmio_space, align,
					  false);
		if (ret) {
			dev_err(&hbus->hdev->device,
				"Need %#llx of high MMIO space. Consider reconfiguring the VM.\n",
				hbus->high_mmio_space);
			goto release_low_mmio;
		}

		/* Modify this resource to become a bridge window. */
		hbus->high_mmio_res->flags |= IORESOURCE_WINDOW;
		hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY;
		pci_add_resource(&hbus->bridge->windows, hbus->high_mmio_res);
	}

	return 0;

release_low_mmio:
	if (hbus->low_mmio_res) {
		vmbus_free_mmio(hbus->low_mmio_res->start,
				resource_size(hbus->low_mmio_res));
	}

	return ret;
}

/**
 * hv_allocate_config_window() - Find MMIO space for PCI Config
 * @hbus:	Root PCI bus, as understood by this driver
 *
 * This function claims memory-mapped I/O space for accessing
 * configuration space for the functions on this bus.
 *
 * Return: 0 on success, -errno on failure
 */
static int hv_allocate_config_window(struct hv_pcibus_device *hbus)
{
	int ret;

	/*
	 * Set up a region of MMIO space to use for accessing configuration
	 * space.
	 */
	ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1,
				  PCI_CONFIG_MMIO_LENGTH, 0x1000, false);
	if (ret)
		return ret;

	/*
	 * vmbus_allocate_mmio() gets used for allocating both device endpoint
	 * resource claims (those which cannot be overlapped) and the ranges
	 * which are valid for the children of this bus, which are intended
	 * to be overlapped by those children.  Set the flag on this claim
	 * meaning that this region can't be overlapped.
	 */

	hbus->mem_config->flags |= IORESOURCE_BUSY;

	return 0;
}

static void hv_free_config_window(struct hv_pcibus_device *hbus)
{
	vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH);
}

static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs);

/**
 * hv_pci_enter_d0() - Bring the "bus" into the D0 power state
 * @hdev:	VMBus's tracking struct for this root PCI bus
 *
 * Return: 0 on success, -errno on failure
 */
static int hv_pci_enter_d0(struct hv_device *hdev)
{
	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
	struct pci_bus_d0_entry *d0_entry;
	struct hv_pci_compl comp_pkt;
	struct pci_packet *pkt;
	int ret;

	/*
	 * Tell the host that the bus is ready to use, and moved into the
	 * powered-on state.  This includes telling the host which region
	 * of memory-mapped I/O space has been chosen for configuration space
	 * access.
	 */
	pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL);
	if (!pkt)
		return -ENOMEM;

	init_completion(&comp_pkt.host_event);
	pkt->completion_func = hv_pci_generic_compl;
	pkt->compl_ctxt = &comp_pkt;
	d0_entry = (struct pci_bus_d0_entry *)&pkt->message;
	d0_entry->message_type.type = PCI_BUS_D0ENTRY;
	d0_entry->mmio_base = hbus->mem_config->start;

	ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry),
			       (unsigned long)pkt, VM_PKT_DATA_INBAND,
			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
	if (!ret)
		ret = wait_for_response(hdev, &comp_pkt.host_event);

	if (ret)
		goto exit;

	if (comp_pkt.completion_status < 0) {
		dev_err(&hdev->device,
			"PCI Pass-through VSP failed D0 Entry with status %x\n",
			comp_pkt.completion_status);
		ret = -EPROTO;
		goto exit;
	}

	ret = 0;

exit:
	kfree(pkt);
	return ret;
}

/**
 * hv_pci_query_relations() - Ask host to send list of child
 * devices
 * @hdev:	VMBus's tracking struct for this root PCI bus
 *
 * Return: 0 on success, -errno on failure
 */
static int hv_pci_query_relations(struct hv_device *hdev)
{
	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
	struct pci_message message;
	struct completion comp;
	int ret;

	/* Ask the host to send along the list of child devices */
	init_completion(&comp);
	if (cmpxchg(&hbus->survey_event, NULL, &comp))
		return -ENOTEMPTY;

	memset(&message, 0, sizeof(message));
	message.type = PCI_QUERY_BUS_RELATIONS;

	ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message),
			       0, VM_PKT_DATA_INBAND, 0);
	if (!ret)
		ret = wait_for_response(hdev, &comp);

	return ret;
}

/**
 * hv_send_resources_allocated() - Report local resource choices
 * @hdev:	VMBus's tracking struct for this root PCI bus
 *
 * The host OS is expecting to be sent a request as a message
 * which contains all the resources that the device will use.
 * The response contains those same resources, "translated"
 * which is to say, the values which should be used by the
 * hardware, when it delivers an interrupt.  (MMIO resources are
 * used in local terms.)  This is nice for Windows, and lines up
 * with the FDO/PDO split, which doesn't exist in Linux.  Linux
 * is deeply expecting to scan an emulated PCI configuration
 * space.  So this message is sent here only to drive the state
 * machine on the host forward.
 *
 * Return: 0 on success, -errno on failure
 */
static int hv_send_resources_allocated(struct hv_device *hdev)
{
	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
	struct pci_resources_assigned *res_assigned;
	struct pci_resources_assigned2 *res_assigned2;
	struct hv_pci_compl comp_pkt;
	struct hv_pci_dev *hpdev;
	struct pci_packet *pkt;
	size_t size_res;
	int wslot;
	int ret;

	size_res = (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2)
			? sizeof(*res_assigned) : sizeof(*res_assigned2);

	pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL);
	if (!pkt)
		return -ENOMEM;

	ret = 0;

	for (wslot = 0; wslot < 256; wslot++) {
		hpdev = get_pcichild_wslot(hbus, wslot);
		if (!hpdev)
			continue;

		memset(pkt, 0, sizeof(*pkt) + size_res);
		init_completion(&comp_pkt.host_event);
		pkt->completion_func = hv_pci_generic_compl;
		pkt->compl_ctxt = &comp_pkt;

		if (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) {
			res_assigned =
				(struct pci_resources_assigned *)&pkt->message;
			res_assigned->message_type.type =
				PCI_RESOURCES_ASSIGNED;
			res_assigned->wslot.slot = hpdev->desc.win_slot.slot;
		} else {
			res_assigned2 =
				(struct pci_resources_assigned2 *)&pkt->message;
			res_assigned2->message_type.type =
				PCI_RESOURCES_ASSIGNED2;
			res_assigned2->wslot.slot = hpdev->desc.win_slot.slot;
		}
		put_pcichild(hpdev);

		ret = vmbus_sendpacket(hdev->channel, &pkt->message,
				size_res, (unsigned long)pkt,
				VM_PKT_DATA_INBAND,
				VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
		if (!ret)
			ret = wait_for_response(hdev, &comp_pkt.host_event);
		if (ret)
			break;

		if (comp_pkt.completion_status < 0) {
			ret = -EPROTO;
			dev_err(&hdev->device,
				"resource allocated returned 0x%x",
				comp_pkt.completion_status);
			break;
		}

		hbus->wslot_res_allocated = wslot;
	}

	kfree(pkt);
	return ret;
}

/**
 * hv_send_resources_released() - Report local resources
 * released
 * @hdev:	VMBus's tracking struct for this root PCI bus
 *
 * Return: 0 on success, -errno on failure
 */
static int hv_send_resources_released(struct hv_device *hdev)
{
	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
	struct pci_child_message pkt;
	struct hv_pci_dev *hpdev;
	int wslot;
	int ret;

	for (wslot = hbus->wslot_res_allocated; wslot >= 0; wslot--) {
		hpdev = get_pcichild_wslot(hbus, wslot);
		if (!hpdev)
			continue;

		memset(&pkt, 0, sizeof(pkt));
		pkt.message_type.type = PCI_RESOURCES_RELEASED;
		pkt.wslot.slot = hpdev->desc.win_slot.slot;

		put_pcichild(hpdev);

		ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0,
				       VM_PKT_DATA_INBAND, 0);
		if (ret)
			return ret;

		hbus->wslot_res_allocated = wslot - 1;
	}

	hbus->wslot_res_allocated = -1;

	return 0;
}

#define HVPCI_DOM_MAP_SIZE (64 * 1024)
static DECLARE_BITMAP(hvpci_dom_map, HVPCI_DOM_MAP_SIZE);

/*
 * PCI domain number 0 is used by emulated devices on Gen1 VMs, so define 0
 * as invalid for passthrough PCI devices of this driver.
 */
#define HVPCI_DOM_INVALID 0

/**
 * hv_get_dom_num() - Get a valid PCI domain number
 * Check if the PCI domain number is in use, and return another number if
 * it is in use.
 *
 * @dom: Requested domain number
 *
 * return: domain number on success, HVPCI_DOM_INVALID on failure
 */
static u16 hv_get_dom_num(u16 dom)
{
	unsigned int i;

	if (test_and_set_bit(dom, hvpci_dom_map) == 0)
		return dom;

	for_each_clear_bit(i, hvpci_dom_map, HVPCI_DOM_MAP_SIZE) {
		if (test_and_set_bit(i, hvpci_dom_map) == 0)
			return i;
	}

	return HVPCI_DOM_INVALID;
}

/**
 * hv_put_dom_num() - Mark the PCI domain number as free
 * @dom: Domain number to be freed
 */
static void hv_put_dom_num(u16 dom)
{
	clear_bit(dom, hvpci_dom_map);
}

/**
 * hv_pci_probe() - New VMBus channel probe, for a root PCI bus
 * @hdev:	VMBus's tracking struct for this root PCI bus
 * @dev_id:	Identifies the device itself
 *
 * Return: 0 on success, -errno on failure
 */
static int hv_pci_probe(struct hv_device *hdev,
			const struct hv_vmbus_device_id *dev_id)
{
	struct pci_host_bridge *bridge;
	struct hv_pcibus_device *hbus;
	u16 dom_req, dom;
	char *name;
	bool enter_d0_retry = true;
	int ret;

	/*
	 * hv_pcibus_device contains the hypercall arguments for retargeting in
	 * hv_irq_unmask(). Those must not cross a page boundary.
	 */
	BUILD_BUG_ON(sizeof(*hbus) > HV_HYP_PAGE_SIZE);

	bridge = devm_pci_alloc_host_bridge(&hdev->device, 0);
	if (!bridge)
		return -ENOMEM;

	/*
	 * With the recent 59bb47985c1d ("mm, sl[aou]b: guarantee natural
	 * alignment for kmalloc(power-of-two)"), kzalloc() is able to allocate
	 * a 4KB buffer that is guaranteed to be 4KB-aligned. Here the size and
	 * alignment of hbus is important because hbus's field
	 * retarget_msi_interrupt_params must not cross a 4KB page boundary.
	 *
	 * Here we prefer kzalloc to get_zeroed_page(), because a buffer
	 * allocated by the latter is not tracked and scanned by kmemleak, and
	 * hence kmemleak reports the pointer contained in the hbus buffer
	 * (i.e. the hpdev struct, which is created in new_pcichild_device() and
	 * is tracked by hbus->children) as memory leak (false positive).
	 *
	 * If the kernel doesn't have 59bb47985c1d, get_zeroed_page() *must* be
	 * used to allocate the hbus buffer and we can avoid the kmemleak false
	 * positive by using kmemleak_alloc() and kmemleak_free() to ask
	 * kmemleak to track and scan the hbus buffer.
	 */
	hbus = kzalloc(HV_HYP_PAGE_SIZE, GFP_KERNEL);
	if (!hbus)
		return -ENOMEM;

	hbus->bridge = bridge;
	hbus->state = hv_pcibus_init;
	hbus->wslot_res_allocated = -1;

	/*
	 * The PCI bus "domain" is what is called "segment" in ACPI and other
	 * specs. Pull it from the instance ID, to get something usually
	 * unique. In rare cases of collision, we will find out another number
	 * not in use.
	 *
	 * Note that, since this code only runs in a Hyper-V VM, Hyper-V
	 * together with this guest driver can guarantee that (1) The only
	 * domain used by Gen1 VMs for something that looks like a physical
	 * PCI bus (which is actually emulated by the hypervisor) is domain 0.
	 * (2) There will be no overlap between domains (after fixing possible
	 * collisions) in the same VM.
	 */
	dom_req = hdev->dev_instance.b[5] << 8 | hdev->dev_instance.b[4];
	dom = hv_get_dom_num(dom_req);

	if (dom == HVPCI_DOM_INVALID) {
		dev_err(&hdev->device,
			"Unable to use dom# 0x%x or other numbers", dom_req);
		ret = -EINVAL;
		goto free_bus;
	}

	if (dom != dom_req)
		dev_info(&hdev->device,
			 "PCI dom# 0x%x has collision, using 0x%x",
			 dom_req, dom);

	hbus->bridge->domain_nr = dom;
#ifdef CONFIG_X86
	hbus->sysdata.domain = dom;
#elif defined(CONFIG_ARM64)
	/*
	 * Set the PCI bus parent to be the corresponding VMbus
	 * device. Then the VMbus device will be assigned as the
	 * ACPI companion in pcibios_root_bridge_prepare() and
	 * pci_dma_configure() will propagate device coherence
	 * information to devices created on the bus.
	 */
	hbus->sysdata.parent = hdev->device.parent;
#endif

	hbus->hdev = hdev;
	INIT_LIST_HEAD(&hbus->children);
	INIT_LIST_HEAD(&hbus->dr_list);
	spin_lock_init(&hbus->config_lock);
	spin_lock_init(&hbus->device_list_lock);
	spin_lock_init(&hbus->retarget_msi_interrupt_lock);
	hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0,
					   hbus->bridge->domain_nr);
	if (!hbus->wq) {
		ret = -ENOMEM;
		goto free_dom;
	}

	hdev->channel->next_request_id_callback = vmbus_next_request_id;
	hdev->channel->request_addr_callback = vmbus_request_addr;
	hdev->channel->rqstor_size = HV_PCI_RQSTOR_SIZE;

	ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
			 hv_pci_onchannelcallback, hbus);
	if (ret)
		goto destroy_wq;

	hv_set_drvdata(hdev, hbus);

	ret = hv_pci_protocol_negotiation(hdev, pci_protocol_versions,
					  ARRAY_SIZE(pci_protocol_versions));
	if (ret)
		goto close;

	ret = hv_allocate_config_window(hbus);
	if (ret)
		goto close;

	hbus->cfg_addr = ioremap(hbus->mem_config->start,
				 PCI_CONFIG_MMIO_LENGTH);
	if (!hbus->cfg_addr) {
		dev_err(&hdev->device,
			"Unable to map a virtual address for config space\n");
		ret = -ENOMEM;
		goto free_config;
	}

	name = kasprintf(GFP_KERNEL, "%pUL", &hdev->dev_instance);
	if (!name) {
		ret = -ENOMEM;
		goto unmap;
	}

	hbus->fwnode = irq_domain_alloc_named_fwnode(name);
	kfree(name);
	if (!hbus->fwnode) {
		ret = -ENOMEM;
		goto unmap;
	}

	ret = hv_pcie_init_irq_domain(hbus);
	if (ret)
		goto free_fwnode;

retry:
	ret = hv_pci_query_relations(hdev);
	if (ret)
		goto free_irq_domain;

	ret = hv_pci_enter_d0(hdev);
	/*
	 * In certain case (Kdump) the pci device of interest was
	 * not cleanly shut down and resource is still held on host
	 * side, the host could return invalid device status.
	 * We need to explicitly request host to release the resource
	 * and try to enter D0 again.
	 * Since the hv_pci_bus_exit() call releases structures
	 * of all its child devices, we need to start the retry from
	 * hv_pci_query_relations() call, requesting host to send
	 * the synchronous child device relations message before this
	 * information is needed in hv_send_resources_allocated()
	 * call later.
	 */
	if (ret == -EPROTO && enter_d0_retry) {
		enter_d0_retry = false;

		dev_err(&hdev->device, "Retrying D0 Entry\n");

		/*
		 * Hv_pci_bus_exit() calls hv_send_resources_released()
		 * to free up resources of its child devices.
		 * In the kdump kernel we need to set the
		 * wslot_res_allocated to 255 so it scans all child
		 * devices to release resources allocated in the
		 * normal kernel before panic happened.
		 */
		hbus->wslot_res_allocated = 255;
		ret = hv_pci_bus_exit(hdev, true);

		if (ret == 0)
			goto retry;

		dev_err(&hdev->device,
			"Retrying D0 failed with ret %d\n", ret);
	}
	if (ret)
		goto free_irq_domain;

	ret = hv_pci_allocate_bridge_windows(hbus);
	if (ret)
		goto exit_d0;

	ret = hv_send_resources_allocated(hdev);
	if (ret)
		goto free_windows;

	prepopulate_bars(hbus);

	hbus->state = hv_pcibus_probed;

	ret = create_root_hv_pci_bus(hbus);
	if (ret)
		goto free_windows;

	return 0;

free_windows:
	hv_pci_free_bridge_windows(hbus);
exit_d0:
	(void) hv_pci_bus_exit(hdev, true);
free_irq_domain:
	irq_domain_remove(hbus->irq_domain);
free_fwnode:
	irq_domain_free_fwnode(hbus->fwnode);
unmap:
	iounmap(hbus->cfg_addr);
free_config:
	hv_free_config_window(hbus);
close:
	vmbus_close(hdev->channel);
destroy_wq:
	destroy_workqueue(hbus->wq);
free_dom:
	hv_put_dom_num(hbus->bridge->domain_nr);
free_bus:
	kfree(hbus);
	return ret;
}

static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs)
{
	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
	struct vmbus_channel *chan = hdev->channel;
	struct {
		struct pci_packet teardown_packet;
		u8 buffer[sizeof(struct pci_message)];
	} pkt;
	struct hv_pci_compl comp_pkt;
	struct hv_pci_dev *hpdev, *tmp;
	unsigned long flags;
	u64 trans_id;
	int ret;

	/*
	 * After the host sends the RESCIND_CHANNEL message, it doesn't
	 * access the per-channel ringbuffer any longer.
	 */
	if (chan->rescind)
		return 0;

	if (!keep_devs) {
		struct list_head removed;

		/* Move all present children to the list on stack */
		INIT_LIST_HEAD(&removed);
		spin_lock_irqsave(&hbus->device_list_lock, flags);
		list_for_each_entry_safe(hpdev, tmp, &hbus->children, list_entry)
			list_move_tail(&hpdev->list_entry, &removed);
		spin_unlock_irqrestore(&hbus->device_list_lock, flags);

		/* Remove all children in the list */
		list_for_each_entry_safe(hpdev, tmp, &removed, list_entry) {
			list_del(&hpdev->list_entry);
			if (hpdev->pci_slot)
				pci_destroy_slot(hpdev->pci_slot);
			/* For the two refs got in new_pcichild_device() */
			put_pcichild(hpdev);
			put_pcichild(hpdev);
		}
	}

	ret = hv_send_resources_released(hdev);
	if (ret) {
		dev_err(&hdev->device,
			"Couldn't send resources released packet(s)\n");
		return ret;
	}

	memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet));
	init_completion(&comp_pkt.host_event);
	pkt.teardown_packet.completion_func = hv_pci_generic_compl;
	pkt.teardown_packet.compl_ctxt = &comp_pkt;
	pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT;

	ret = vmbus_sendpacket_getid(chan, &pkt.teardown_packet.message,
				     sizeof(struct pci_message),
				     (unsigned long)&pkt.teardown_packet,
				     &trans_id, VM_PKT_DATA_INBAND,
				     VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
	if (ret)
		return ret;

	if (wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ) == 0) {
		/*
		 * The completion packet on the stack becomes invalid after
		 * 'return'; remove the ID from the VMbus requestor if the
		 * identifier is still mapped to/associated with the packet.
		 *
		 * Cf. hv_pci_onchannelcallback().
		 */
		vmbus_request_addr_match(chan, trans_id,
					 (unsigned long)&pkt.teardown_packet);
		return -ETIMEDOUT;
	}

	return 0;
}

/**
 * hv_pci_remove() - Remove routine for this VMBus channel
 * @hdev:	VMBus's tracking struct for this root PCI bus
 */
static void hv_pci_remove(struct hv_device *hdev)
{
	struct hv_pcibus_device *hbus;

	hbus = hv_get_drvdata(hdev);
	if (hbus->state == hv_pcibus_installed) {
		tasklet_disable(&hdev->channel->callback_event);
		hbus->state = hv_pcibus_removing;
		tasklet_enable(&hdev->channel->callback_event);
		destroy_workqueue(hbus->wq);
		hbus->wq = NULL;
		/*
		 * At this point, no work is running or can be scheduled
		 * on hbus-wq. We can't race with hv_pci_devices_present()
		 * or hv_pci_eject_device(), it's safe to proceed.
		 */

		/* Remove the bus from PCI's point of view. */
		pci_lock_rescan_remove();
		pci_stop_root_bus(hbus->bridge->bus);
		hv_pci_remove_slots(hbus);
		pci_remove_root_bus(hbus->bridge->bus);
		pci_unlock_rescan_remove();
	}

	hv_pci_bus_exit(hdev, false);

	vmbus_close(hdev->channel);

	iounmap(hbus->cfg_addr);
	hv_free_config_window(hbus);
	hv_pci_free_bridge_windows(hbus);
	irq_domain_remove(hbus->irq_domain);
	irq_domain_free_fwnode(hbus->fwnode);

	hv_put_dom_num(hbus->bridge->domain_nr);

	kfree(hbus);
}

static int hv_pci_suspend(struct hv_device *hdev)
{
	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
	enum hv_pcibus_state old_state;
	int ret;

	/*
	 * hv_pci_suspend() must make sure there are no pending work items
	 * before calling vmbus_close(), since it runs in a process context
	 * as a callback in dpm_suspend().  When it starts to run, the channel
	 * callback hv_pci_onchannelcallback(), which runs in a tasklet
	 * context, can be still running concurrently and scheduling new work
	 * items onto hbus->wq in hv_pci_devices_present() and
	 * hv_pci_eject_device(), and the work item handlers can access the
	 * vmbus channel, which can be being closed by hv_pci_suspend(), e.g.
	 * the work item handler pci_devices_present_work() ->
	 * new_pcichild_device() writes to the vmbus channel.
	 *
	 * To eliminate the race, hv_pci_suspend() disables the channel
	 * callback tasklet, sets hbus->state to hv_pcibus_removing, and
	 * re-enables the tasklet. This way, when hv_pci_suspend() proceeds,
	 * it knows that no new work item can be scheduled, and then it flushes
	 * hbus->wq and safely closes the vmbus channel.
	 */
	tasklet_disable(&hdev->channel->callback_event);

	/* Change the hbus state to prevent new work items. */
	old_state = hbus->state;
	if (hbus->state == hv_pcibus_installed)
		hbus->state = hv_pcibus_removing;

	tasklet_enable(&hdev->channel->callback_event);

	if (old_state != hv_pcibus_installed)
		return -EINVAL;

	flush_workqueue(hbus->wq);

	ret = hv_pci_bus_exit(hdev, true);
	if (ret)
		return ret;

	vmbus_close(hdev->channel);

	return 0;
}

static int hv_pci_restore_msi_msg(struct pci_dev *pdev, void *arg)
{
	struct irq_data *irq_data;
	struct msi_desc *entry;
	int ret = 0;

	msi_lock_descs(&pdev->dev);
	msi_for_each_desc(entry, &pdev->dev, MSI_DESC_ASSOCIATED) {
		irq_data = irq_get_irq_data(entry->irq);
		if (WARN_ON_ONCE(!irq_data)) {
			ret = -EINVAL;
			break;
		}

		hv_compose_msi_msg(irq_data, &entry->msg);
	}
	msi_unlock_descs(&pdev->dev);

	return ret;
}

/*
 * Upon resume, pci_restore_msi_state() -> ... ->  __pci_write_msi_msg()
 * directly writes the MSI/MSI-X registers via MMIO, but since Hyper-V
 * doesn't trap and emulate the MMIO accesses, here hv_compose_msi_msg()
 * must be used to ask Hyper-V to re-create the IOMMU Interrupt Remapping
 * Table entries.
 */
static void hv_pci_restore_msi_state(struct hv_pcibus_device *hbus)
{
	pci_walk_bus(hbus->bridge->bus, hv_pci_restore_msi_msg, NULL);
}

static int hv_pci_resume(struct hv_device *hdev)
{
	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
	enum pci_protocol_version_t version[1];
	int ret;

	hbus->state = hv_pcibus_init;

	hdev->channel->next_request_id_callback = vmbus_next_request_id;
	hdev->channel->request_addr_callback = vmbus_request_addr;
	hdev->channel->rqstor_size = HV_PCI_RQSTOR_SIZE;

	ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
			 hv_pci_onchannelcallback, hbus);
	if (ret)
		return ret;

	/* Only use the version that was in use before hibernation. */
	version[0] = hbus->protocol_version;
	ret = hv_pci_protocol_negotiation(hdev, version, 1);
	if (ret)
		goto out;

	ret = hv_pci_query_relations(hdev);
	if (ret)
		goto out;

	ret = hv_pci_enter_d0(hdev);
	if (ret)
		goto out;

	ret = hv_send_resources_allocated(hdev);
	if (ret)
		goto out;

	prepopulate_bars(hbus);

	hv_pci_restore_msi_state(hbus);

	hbus->state = hv_pcibus_installed;
	return 0;
out:
	vmbus_close(hdev->channel);
	return ret;
}

static const struct hv_vmbus_device_id hv_pci_id_table[] = {
	/* PCI Pass-through Class ID */
	/* 44C4F61D-4444-4400-9D52-802E27EDE19F */
	{ HV_PCIE_GUID, },
	{ },
};

MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table);

static struct hv_driver hv_pci_drv = {
	.name		= "hv_pci",
	.id_table	= hv_pci_id_table,
	.probe		= hv_pci_probe,
	.remove		= hv_pci_remove,
	.suspend	= hv_pci_suspend,
	.resume		= hv_pci_resume,
};

static void __exit exit_hv_pci_drv(void)
{
	vmbus_driver_unregister(&hv_pci_drv);

	hvpci_block_ops.read_block = NULL;
	hvpci_block_ops.write_block = NULL;
	hvpci_block_ops.reg_blk_invalidate = NULL;
}

static int __init init_hv_pci_drv(void)
{
	int ret;

	if (!hv_is_hyperv_initialized())
		return -ENODEV;

	ret = hv_pci_irqchip_init();
	if (ret)
		return ret;

	/* Set the invalid domain number's bit, so it will not be used */
	set_bit(HVPCI_DOM_INVALID, hvpci_dom_map);

	/* Initialize PCI block r/w interface */
	hvpci_block_ops.read_block = hv_read_config_block;
	hvpci_block_ops.write_block = hv_write_config_block;
	hvpci_block_ops.reg_blk_invalidate = hv_register_block_invalidate;

	return vmbus_driver_register(&hv_pci_drv);
}

module_init(init_hv_pci_drv);
module_exit(exit_hv_pci_drv);

MODULE_DESCRIPTION("Hyper-V PCI");
MODULE_LICENSE("GPL v2");