summaryrefslogtreecommitdiffstats
path: root/drivers/rtc/rtc-sun6i.c
blob: 448e0e14a9ffd5371a88c9a18b7a5090f050c8db (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * An RTC driver for Allwinner A31/A23
 *
 * Copyright (c) 2014, Chen-Yu Tsai <wens@csie.org>
 *
 * based on rtc-sunxi.c
 *
 * An RTC driver for Allwinner A10/A20
 *
 * Copyright (c) 2013, Carlo Caione <carlo.caione@gmail.com>
 */

#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/rtc.h>
#include <linux/slab.h>
#include <linux/types.h>

/* Control register */
#define SUN6I_LOSC_CTRL				0x0000
#define SUN6I_LOSC_CTRL_KEY			(0x16aa << 16)
#define SUN6I_LOSC_CTRL_AUTO_SWT_BYPASS		BIT(15)
#define SUN6I_LOSC_CTRL_ALM_DHMS_ACC		BIT(9)
#define SUN6I_LOSC_CTRL_RTC_HMS_ACC		BIT(8)
#define SUN6I_LOSC_CTRL_RTC_YMD_ACC		BIT(7)
#define SUN6I_LOSC_CTRL_EXT_LOSC_EN		BIT(4)
#define SUN6I_LOSC_CTRL_EXT_OSC			BIT(0)
#define SUN6I_LOSC_CTRL_ACC_MASK		GENMASK(9, 7)

#define SUN6I_LOSC_CLK_PRESCAL			0x0008

/* RTC */
#define SUN6I_RTC_YMD				0x0010
#define SUN6I_RTC_HMS				0x0014

/* Alarm 0 (counter) */
#define SUN6I_ALRM_COUNTER			0x0020
/* This holds the remaining alarm seconds on older SoCs (current value) */
#define SUN6I_ALRM_COUNTER_HMS			0x0024
#define SUN6I_ALRM_EN				0x0028
#define SUN6I_ALRM_EN_CNT_EN			BIT(0)
#define SUN6I_ALRM_IRQ_EN			0x002c
#define SUN6I_ALRM_IRQ_EN_CNT_IRQ_EN		BIT(0)
#define SUN6I_ALRM_IRQ_STA			0x0030
#define SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND		BIT(0)

/* Alarm 1 (wall clock) */
#define SUN6I_ALRM1_EN				0x0044
#define SUN6I_ALRM1_IRQ_EN			0x0048
#define SUN6I_ALRM1_IRQ_STA			0x004c
#define SUN6I_ALRM1_IRQ_STA_WEEK_IRQ_PEND	BIT(0)

/* Alarm config */
#define SUN6I_ALARM_CONFIG			0x0050
#define SUN6I_ALARM_CONFIG_WAKEUP		BIT(0)

#define SUN6I_LOSC_OUT_GATING			0x0060
#define SUN6I_LOSC_OUT_GATING_EN_OFFSET		0

/*
 * Get date values
 */
#define SUN6I_DATE_GET_DAY_VALUE(x)		((x)  & 0x0000001f)
#define SUN6I_DATE_GET_MON_VALUE(x)		(((x) & 0x00000f00) >> 8)
#define SUN6I_DATE_GET_YEAR_VALUE(x)		(((x) & 0x003f0000) >> 16)
#define SUN6I_LEAP_GET_VALUE(x)			(((x) & 0x00400000) >> 22)

/*
 * Get time values
 */
#define SUN6I_TIME_GET_SEC_VALUE(x)		((x)  & 0x0000003f)
#define SUN6I_TIME_GET_MIN_VALUE(x)		(((x) & 0x00003f00) >> 8)
#define SUN6I_TIME_GET_HOUR_VALUE(x)		(((x) & 0x001f0000) >> 16)

/*
 * Set date values
 */
#define SUN6I_DATE_SET_DAY_VALUE(x)		((x)       & 0x0000001f)
#define SUN6I_DATE_SET_MON_VALUE(x)		((x) <<  8 & 0x00000f00)
#define SUN6I_DATE_SET_YEAR_VALUE(x)		((x) << 16 & 0x003f0000)
#define SUN6I_LEAP_SET_VALUE(x)			((x) << 22 & 0x00400000)

/*
 * Set time values
 */
#define SUN6I_TIME_SET_SEC_VALUE(x)		((x)       & 0x0000003f)
#define SUN6I_TIME_SET_MIN_VALUE(x)		((x) <<  8 & 0x00003f00)
#define SUN6I_TIME_SET_HOUR_VALUE(x)		((x) << 16 & 0x001f0000)

/*
 * The year parameter passed to the driver is usually an offset relative to
 * the year 1900. This macro is used to convert this offset to another one
 * relative to the minimum year allowed by the hardware.
 *
 * The year range is 1970 - 2033. This range is selected to match Allwinner's
 * driver, even though it is somewhat limited.
 */
#define SUN6I_YEAR_MIN				1970
#define SUN6I_YEAR_OFF				(SUN6I_YEAR_MIN - 1900)

#define SECS_PER_DAY				(24 * 3600ULL)

/*
 * There are other differences between models, including:
 *
 *   - number of GPIO pins that can be configured to hold a certain level
 *   - crypto-key related registers (H5, H6)
 *   - boot process related (super standby, secondary processor entry address)
 *     registers (R40, H6)
 *   - SYS power domain controls (R40)
 *   - DCXO controls (H6)
 *   - RC oscillator calibration (H6)
 *
 * These functions are not covered by this driver.
 */
struct sun6i_rtc_clk_data {
	unsigned long rc_osc_rate;
	unsigned int fixed_prescaler : 16;
	unsigned int has_prescaler : 1;
	unsigned int has_out_clk : 1;
	unsigned int export_iosc : 1;
	unsigned int has_losc_en : 1;
	unsigned int has_auto_swt : 1;
};

#define RTC_LINEAR_DAY	BIT(0)

struct sun6i_rtc_dev {
	struct rtc_device *rtc;
	const struct sun6i_rtc_clk_data *data;
	void __iomem *base;
	int irq;
	time64_t alarm;
	unsigned long flags;

	struct clk_hw hw;
	struct clk_hw *int_osc;
	struct clk *losc;
	struct clk *ext_losc;

	spinlock_t lock;
};

static struct sun6i_rtc_dev *sun6i_rtc;

static unsigned long sun6i_rtc_osc_recalc_rate(struct clk_hw *hw,
					       unsigned long parent_rate)
{
	struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
	u32 val = 0;

	val = readl(rtc->base + SUN6I_LOSC_CTRL);
	if (val & SUN6I_LOSC_CTRL_EXT_OSC)
		return parent_rate;

	if (rtc->data->fixed_prescaler)
		parent_rate /= rtc->data->fixed_prescaler;

	if (rtc->data->has_prescaler) {
		val = readl(rtc->base + SUN6I_LOSC_CLK_PRESCAL);
		val &= GENMASK(4, 0);
	}

	return parent_rate / (val + 1);
}

static u8 sun6i_rtc_osc_get_parent(struct clk_hw *hw)
{
	struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);

	return readl(rtc->base + SUN6I_LOSC_CTRL) & SUN6I_LOSC_CTRL_EXT_OSC;
}

static int sun6i_rtc_osc_set_parent(struct clk_hw *hw, u8 index)
{
	struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
	unsigned long flags;
	u32 val;

	if (index > 1)
		return -EINVAL;

	spin_lock_irqsave(&rtc->lock, flags);
	val = readl(rtc->base + SUN6I_LOSC_CTRL);
	val &= ~SUN6I_LOSC_CTRL_EXT_OSC;
	val |= SUN6I_LOSC_CTRL_KEY;
	val |= index ? SUN6I_LOSC_CTRL_EXT_OSC : 0;
	if (rtc->data->has_losc_en) {
		val &= ~SUN6I_LOSC_CTRL_EXT_LOSC_EN;
		val |= index ? SUN6I_LOSC_CTRL_EXT_LOSC_EN : 0;
	}
	writel(val, rtc->base + SUN6I_LOSC_CTRL);
	spin_unlock_irqrestore(&rtc->lock, flags);

	return 0;
}

static const struct clk_ops sun6i_rtc_osc_ops = {
	.recalc_rate	= sun6i_rtc_osc_recalc_rate,

	.get_parent	= sun6i_rtc_osc_get_parent,
	.set_parent	= sun6i_rtc_osc_set_parent,
};

static void __init sun6i_rtc_clk_init(struct device_node *node,
				      const struct sun6i_rtc_clk_data *data)
{
	struct clk_hw_onecell_data *clk_data;
	struct sun6i_rtc_dev *rtc;
	struct clk_init_data init = {
		.ops		= &sun6i_rtc_osc_ops,
		.name		= "losc",
	};
	const char *iosc_name = "rtc-int-osc";
	const char *clkout_name = "osc32k-out";
	const char *parents[2];
	u32 reg;

	rtc = kzalloc(sizeof(*rtc), GFP_KERNEL);
	if (!rtc)
		return;

	rtc->data = data;
	clk_data = kzalloc(struct_size(clk_data, hws, 3), GFP_KERNEL);
	if (!clk_data) {
		kfree(rtc);
		return;
	}

	spin_lock_init(&rtc->lock);

	rtc->base = of_io_request_and_map(node, 0, of_node_full_name(node));
	if (IS_ERR(rtc->base)) {
		pr_crit("Can't map RTC registers");
		goto err;
	}

	reg = SUN6I_LOSC_CTRL_KEY;
	if (rtc->data->has_auto_swt) {
		/* Bypass auto-switch to int osc, on ext losc failure */
		reg |= SUN6I_LOSC_CTRL_AUTO_SWT_BYPASS;
		writel(reg, rtc->base + SUN6I_LOSC_CTRL);
	}

	/* Switch to the external, more precise, oscillator, if present */
	if (of_get_property(node, "clocks", NULL)) {
		reg |= SUN6I_LOSC_CTRL_EXT_OSC;
		if (rtc->data->has_losc_en)
			reg |= SUN6I_LOSC_CTRL_EXT_LOSC_EN;
	}
	writel(reg, rtc->base + SUN6I_LOSC_CTRL);

	/* Yes, I know, this is ugly. */
	sun6i_rtc = rtc;

	/* Only read IOSC name from device tree if it is exported */
	if (rtc->data->export_iosc)
		of_property_read_string_index(node, "clock-output-names", 2,
					      &iosc_name);

	rtc->int_osc = clk_hw_register_fixed_rate_with_accuracy(NULL,
								iosc_name,
								NULL, 0,
								rtc->data->rc_osc_rate,
								300000000);
	if (IS_ERR(rtc->int_osc)) {
		pr_crit("Couldn't register the internal oscillator\n");
		goto err;
	}

	parents[0] = clk_hw_get_name(rtc->int_osc);
	/* If there is no external oscillator, this will be NULL and ... */
	parents[1] = of_clk_get_parent_name(node, 0);

	rtc->hw.init = &init;

	init.parent_names = parents;
	/* ... number of clock parents will be 1. */
	init.num_parents = of_clk_get_parent_count(node) + 1;
	of_property_read_string_index(node, "clock-output-names", 0,
				      &init.name);

	rtc->losc = clk_register(NULL, &rtc->hw);
	if (IS_ERR(rtc->losc)) {
		pr_crit("Couldn't register the LOSC clock\n");
		goto err_register;
	}

	of_property_read_string_index(node, "clock-output-names", 1,
				      &clkout_name);
	rtc->ext_losc = clk_register_gate(NULL, clkout_name, init.name,
					  0, rtc->base + SUN6I_LOSC_OUT_GATING,
					  SUN6I_LOSC_OUT_GATING_EN_OFFSET, 0,
					  &rtc->lock);
	if (IS_ERR(rtc->ext_losc)) {
		pr_crit("Couldn't register the LOSC external gate\n");
		goto err_register;
	}

	clk_data->num = 2;
	clk_data->hws[0] = &rtc->hw;
	clk_data->hws[1] = __clk_get_hw(rtc->ext_losc);
	if (rtc->data->export_iosc) {
		clk_data->hws[2] = rtc->int_osc;
		clk_data->num = 3;
	}
	of_clk_add_hw_provider(node, of_clk_hw_onecell_get, clk_data);
	return;

err_register:
	clk_hw_unregister_fixed_rate(rtc->int_osc);
err:
	kfree(clk_data);
}

static const struct sun6i_rtc_clk_data sun6i_a31_rtc_data = {
	.rc_osc_rate = 667000, /* datasheet says 600 ~ 700 KHz */
	.has_prescaler = 1,
};

static void __init sun6i_a31_rtc_clk_init(struct device_node *node)
{
	sun6i_rtc_clk_init(node, &sun6i_a31_rtc_data);
}
CLK_OF_DECLARE_DRIVER(sun6i_a31_rtc_clk, "allwinner,sun6i-a31-rtc",
		      sun6i_a31_rtc_clk_init);

static const struct sun6i_rtc_clk_data sun8i_a23_rtc_data = {
	.rc_osc_rate = 667000, /* datasheet says 600 ~ 700 KHz */
	.has_prescaler = 1,
	.has_out_clk = 1,
};

static void __init sun8i_a23_rtc_clk_init(struct device_node *node)
{
	sun6i_rtc_clk_init(node, &sun8i_a23_rtc_data);
}
CLK_OF_DECLARE_DRIVER(sun8i_a23_rtc_clk, "allwinner,sun8i-a23-rtc",
		      sun8i_a23_rtc_clk_init);

static const struct sun6i_rtc_clk_data sun8i_h3_rtc_data = {
	.rc_osc_rate = 16000000,
	.fixed_prescaler = 32,
	.has_prescaler = 1,
	.has_out_clk = 1,
	.export_iosc = 1,
};

static void __init sun8i_h3_rtc_clk_init(struct device_node *node)
{
	sun6i_rtc_clk_init(node, &sun8i_h3_rtc_data);
}
CLK_OF_DECLARE_DRIVER(sun8i_h3_rtc_clk, "allwinner,sun8i-h3-rtc",
		      sun8i_h3_rtc_clk_init);
/* As far as we are concerned, clocks for H5 are the same as H3 */
CLK_OF_DECLARE_DRIVER(sun50i_h5_rtc_clk, "allwinner,sun50i-h5-rtc",
		      sun8i_h3_rtc_clk_init);

static const struct sun6i_rtc_clk_data sun50i_h6_rtc_data = {
	.rc_osc_rate = 16000000,
	.fixed_prescaler = 32,
	.has_prescaler = 1,
	.has_out_clk = 1,
	.export_iosc = 1,
	.has_losc_en = 1,
	.has_auto_swt = 1,
};

static void __init sun50i_h6_rtc_clk_init(struct device_node *node)
{
	sun6i_rtc_clk_init(node, &sun50i_h6_rtc_data);
}
CLK_OF_DECLARE_DRIVER(sun50i_h6_rtc_clk, "allwinner,sun50i-h6-rtc",
		      sun50i_h6_rtc_clk_init);

/*
 * The R40 user manual is self-conflicting on whether the prescaler is
 * fixed or configurable. The clock diagram shows it as fixed, but there
 * is also a configurable divider in the RTC block.
 */
static const struct sun6i_rtc_clk_data sun8i_r40_rtc_data = {
	.rc_osc_rate = 16000000,
	.fixed_prescaler = 512,
};
static void __init sun8i_r40_rtc_clk_init(struct device_node *node)
{
	sun6i_rtc_clk_init(node, &sun8i_r40_rtc_data);
}
CLK_OF_DECLARE_DRIVER(sun8i_r40_rtc_clk, "allwinner,sun8i-r40-rtc",
		      sun8i_r40_rtc_clk_init);

static const struct sun6i_rtc_clk_data sun8i_v3_rtc_data = {
	.rc_osc_rate = 32000,
	.has_out_clk = 1,
};

static void __init sun8i_v3_rtc_clk_init(struct device_node *node)
{
	sun6i_rtc_clk_init(node, &sun8i_v3_rtc_data);
}
CLK_OF_DECLARE_DRIVER(sun8i_v3_rtc_clk, "allwinner,sun8i-v3-rtc",
		      sun8i_v3_rtc_clk_init);

static irqreturn_t sun6i_rtc_alarmirq(int irq, void *id)
{
	struct sun6i_rtc_dev *chip = (struct sun6i_rtc_dev *) id;
	irqreturn_t ret = IRQ_NONE;
	u32 val;

	spin_lock(&chip->lock);
	val = readl(chip->base + SUN6I_ALRM_IRQ_STA);

	if (val & SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND) {
		val |= SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND;
		writel(val, chip->base + SUN6I_ALRM_IRQ_STA);

		rtc_update_irq(chip->rtc, 1, RTC_AF | RTC_IRQF);

		ret = IRQ_HANDLED;
	}
	spin_unlock(&chip->lock);

	return ret;
}

static void sun6i_rtc_setaie(int to, struct sun6i_rtc_dev *chip)
{
	u32 alrm_val = 0;
	u32 alrm_irq_val = 0;
	u32 alrm_wake_val = 0;
	unsigned long flags;

	if (to) {
		alrm_val = SUN6I_ALRM_EN_CNT_EN;
		alrm_irq_val = SUN6I_ALRM_IRQ_EN_CNT_IRQ_EN;
		alrm_wake_val = SUN6I_ALARM_CONFIG_WAKEUP;
	} else {
		writel(SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND,
		       chip->base + SUN6I_ALRM_IRQ_STA);
	}

	spin_lock_irqsave(&chip->lock, flags);
	writel(alrm_val, chip->base + SUN6I_ALRM_EN);
	writel(alrm_irq_val, chip->base + SUN6I_ALRM_IRQ_EN);
	writel(alrm_wake_val, chip->base + SUN6I_ALARM_CONFIG);
	spin_unlock_irqrestore(&chip->lock, flags);
}

static int sun6i_rtc_gettime(struct device *dev, struct rtc_time *rtc_tm)
{
	struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
	u32 date, time;

	/*
	 * read again in case it changes
	 */
	do {
		date = readl(chip->base + SUN6I_RTC_YMD);
		time = readl(chip->base + SUN6I_RTC_HMS);
	} while ((date != readl(chip->base + SUN6I_RTC_YMD)) ||
		 (time != readl(chip->base + SUN6I_RTC_HMS)));

	if (chip->flags & RTC_LINEAR_DAY) {
		/*
		 * Newer chips store a linear day number, the manual
		 * does not mandate any epoch base. The BSP driver uses
		 * the UNIX epoch, let's just copy that, as it's the
		 * easiest anyway.
		 */
		rtc_time64_to_tm((date & 0xffff) * SECS_PER_DAY, rtc_tm);
	} else {
		rtc_tm->tm_mday = SUN6I_DATE_GET_DAY_VALUE(date);
		rtc_tm->tm_mon  = SUN6I_DATE_GET_MON_VALUE(date) - 1;
		rtc_tm->tm_year = SUN6I_DATE_GET_YEAR_VALUE(date);

		/*
		 * switch from (data_year->min)-relative offset to
		 * a (1900)-relative one
		 */
		rtc_tm->tm_year += SUN6I_YEAR_OFF;
	}

	rtc_tm->tm_sec  = SUN6I_TIME_GET_SEC_VALUE(time);
	rtc_tm->tm_min  = SUN6I_TIME_GET_MIN_VALUE(time);
	rtc_tm->tm_hour = SUN6I_TIME_GET_HOUR_VALUE(time);

	return 0;
}

static int sun6i_rtc_getalarm(struct device *dev, struct rtc_wkalrm *wkalrm)
{
	struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
	unsigned long flags;
	u32 alrm_st;
	u32 alrm_en;

	spin_lock_irqsave(&chip->lock, flags);
	alrm_en = readl(chip->base + SUN6I_ALRM_IRQ_EN);
	alrm_st = readl(chip->base + SUN6I_ALRM_IRQ_STA);
	spin_unlock_irqrestore(&chip->lock, flags);

	wkalrm->enabled = !!(alrm_en & SUN6I_ALRM_EN_CNT_EN);
	wkalrm->pending = !!(alrm_st & SUN6I_ALRM_EN_CNT_EN);
	rtc_time64_to_tm(chip->alarm, &wkalrm->time);

	return 0;
}

static int sun6i_rtc_setalarm(struct device *dev, struct rtc_wkalrm *wkalrm)
{
	struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
	struct rtc_time *alrm_tm = &wkalrm->time;
	struct rtc_time tm_now;
	time64_t time_set;
	u32 counter_val, counter_val_hms;
	int ret;

	time_set = rtc_tm_to_time64(alrm_tm);

	if (chip->flags & RTC_LINEAR_DAY) {
		/*
		 * The alarm registers hold the actual alarm time, encoded
		 * in the same way (linear day + HMS) as the current time.
		 */
		counter_val_hms = SUN6I_TIME_SET_SEC_VALUE(alrm_tm->tm_sec)  |
				  SUN6I_TIME_SET_MIN_VALUE(alrm_tm->tm_min)  |
				  SUN6I_TIME_SET_HOUR_VALUE(alrm_tm->tm_hour);
		/* The division will cut off the H:M:S part of alrm_tm. */
		counter_val = div_u64(rtc_tm_to_time64(alrm_tm), SECS_PER_DAY);
	} else {
		/* The alarm register holds the number of seconds left. */
		time64_t time_now;

		ret = sun6i_rtc_gettime(dev, &tm_now);
		if (ret < 0) {
			dev_err(dev, "Error in getting time\n");
			return -EINVAL;
		}

		time_now = rtc_tm_to_time64(&tm_now);
		if (time_set <= time_now) {
			dev_err(dev, "Date to set in the past\n");
			return -EINVAL;
		}
		if ((time_set - time_now) > U32_MAX) {
			dev_err(dev, "Date too far in the future\n");
			return -EINVAL;
		}

		counter_val = time_set - time_now;
	}

	sun6i_rtc_setaie(0, chip);
	writel(0, chip->base + SUN6I_ALRM_COUNTER);
	if (chip->flags & RTC_LINEAR_DAY)
		writel(0, chip->base + SUN6I_ALRM_COUNTER_HMS);
	usleep_range(100, 300);

	writel(counter_val, chip->base + SUN6I_ALRM_COUNTER);
	if (chip->flags & RTC_LINEAR_DAY)
		writel(counter_val_hms, chip->base + SUN6I_ALRM_COUNTER_HMS);
	chip->alarm = time_set;

	sun6i_rtc_setaie(wkalrm->enabled, chip);

	return 0;
}

static int sun6i_rtc_wait(struct sun6i_rtc_dev *chip, int offset,
			  unsigned int mask, unsigned int ms_timeout)
{
	const unsigned long timeout = jiffies + msecs_to_jiffies(ms_timeout);
	u32 reg;

	do {
		reg = readl(chip->base + offset);
		reg &= mask;

		if (!reg)
			return 0;

	} while (time_before(jiffies, timeout));

	return -ETIMEDOUT;
}

static int sun6i_rtc_settime(struct device *dev, struct rtc_time *rtc_tm)
{
	struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
	u32 date = 0;
	u32 time = 0;

	time = SUN6I_TIME_SET_SEC_VALUE(rtc_tm->tm_sec)  |
		SUN6I_TIME_SET_MIN_VALUE(rtc_tm->tm_min)  |
		SUN6I_TIME_SET_HOUR_VALUE(rtc_tm->tm_hour);

	if (chip->flags & RTC_LINEAR_DAY) {
		/* The division will cut off the H:M:S part of rtc_tm. */
		date = div_u64(rtc_tm_to_time64(rtc_tm), SECS_PER_DAY);
	} else {
		rtc_tm->tm_year -= SUN6I_YEAR_OFF;
		rtc_tm->tm_mon += 1;

		date = SUN6I_DATE_SET_DAY_VALUE(rtc_tm->tm_mday) |
			SUN6I_DATE_SET_MON_VALUE(rtc_tm->tm_mon)  |
			SUN6I_DATE_SET_YEAR_VALUE(rtc_tm->tm_year);

		if (is_leap_year(rtc_tm->tm_year + SUN6I_YEAR_MIN))
			date |= SUN6I_LEAP_SET_VALUE(1);
	}

	/* Check whether registers are writable */
	if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL,
			   SUN6I_LOSC_CTRL_ACC_MASK, 50)) {
		dev_err(dev, "rtc is still busy.\n");
		return -EBUSY;
	}

	writel(time, chip->base + SUN6I_RTC_HMS);

	/*
	 * After writing the RTC HH-MM-SS register, the
	 * SUN6I_LOSC_CTRL_RTC_HMS_ACC bit is set and it will not
	 * be cleared until the real writing operation is finished
	 */

	if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL,
			   SUN6I_LOSC_CTRL_RTC_HMS_ACC, 50)) {
		dev_err(dev, "Failed to set rtc time.\n");
		return -ETIMEDOUT;
	}

	writel(date, chip->base + SUN6I_RTC_YMD);

	/*
	 * After writing the RTC YY-MM-DD register, the
	 * SUN6I_LOSC_CTRL_RTC_YMD_ACC bit is set and it will not
	 * be cleared until the real writing operation is finished
	 */

	if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL,
			   SUN6I_LOSC_CTRL_RTC_YMD_ACC, 50)) {
		dev_err(dev, "Failed to set rtc time.\n");
		return -ETIMEDOUT;
	}

	return 0;
}

static int sun6i_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
{
	struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);

	if (!enabled)
		sun6i_rtc_setaie(enabled, chip);

	return 0;
}

static const struct rtc_class_ops sun6i_rtc_ops = {
	.read_time		= sun6i_rtc_gettime,
	.set_time		= sun6i_rtc_settime,
	.read_alarm		= sun6i_rtc_getalarm,
	.set_alarm		= sun6i_rtc_setalarm,
	.alarm_irq_enable	= sun6i_rtc_alarm_irq_enable
};

#ifdef CONFIG_PM_SLEEP
/* Enable IRQ wake on suspend, to wake up from RTC. */
static int sun6i_rtc_suspend(struct device *dev)
{
	struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);

	if (device_may_wakeup(dev))
		enable_irq_wake(chip->irq);

	return 0;
}

/* Disable IRQ wake on resume. */
static int sun6i_rtc_resume(struct device *dev)
{
	struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);

	if (device_may_wakeup(dev))
		disable_irq_wake(chip->irq);

	return 0;
}
#endif

static SIMPLE_DEV_PM_OPS(sun6i_rtc_pm_ops,
	sun6i_rtc_suspend, sun6i_rtc_resume);

static void sun6i_rtc_bus_clk_cleanup(void *data)
{
	struct clk *bus_clk = data;

	clk_disable_unprepare(bus_clk);
}

static int sun6i_rtc_probe(struct platform_device *pdev)
{
	struct sun6i_rtc_dev *chip = sun6i_rtc;
	struct device *dev = &pdev->dev;
	struct clk *bus_clk;
	int ret;

	bus_clk = devm_clk_get_optional(dev, "bus");
	if (IS_ERR(bus_clk))
		return PTR_ERR(bus_clk);

	if (bus_clk) {
		ret = clk_prepare_enable(bus_clk);
		if (ret)
			return ret;

		ret = devm_add_action_or_reset(dev, sun6i_rtc_bus_clk_cleanup,
					       bus_clk);
		if (ret)
			return ret;
	}

	if (!chip) {
		chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL);
		if (!chip)
			return -ENOMEM;

		spin_lock_init(&chip->lock);

		chip->base = devm_platform_ioremap_resource(pdev, 0);
		if (IS_ERR(chip->base))
			return PTR_ERR(chip->base);
	}

	platform_set_drvdata(pdev, chip);

	chip->flags = (unsigned long)of_device_get_match_data(&pdev->dev);

	chip->irq = platform_get_irq(pdev, 0);
	if (chip->irq < 0)
		return chip->irq;

	ret = devm_request_irq(&pdev->dev, chip->irq, sun6i_rtc_alarmirq,
			       0, dev_name(&pdev->dev), chip);
	if (ret) {
		dev_err(&pdev->dev, "Could not request IRQ\n");
		return ret;
	}

	/* clear the alarm counter value */
	writel(0, chip->base + SUN6I_ALRM_COUNTER);

	/* disable counter alarm */
	writel(0, chip->base + SUN6I_ALRM_EN);

	/* disable counter alarm interrupt */
	writel(0, chip->base + SUN6I_ALRM_IRQ_EN);

	/* disable week alarm */
	writel(0, chip->base + SUN6I_ALRM1_EN);

	/* disable week alarm interrupt */
	writel(0, chip->base + SUN6I_ALRM1_IRQ_EN);

	/* clear counter alarm pending interrupts */
	writel(SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND,
	       chip->base + SUN6I_ALRM_IRQ_STA);

	/* clear week alarm pending interrupts */
	writel(SUN6I_ALRM1_IRQ_STA_WEEK_IRQ_PEND,
	       chip->base + SUN6I_ALRM1_IRQ_STA);

	/* disable alarm wakeup */
	writel(0, chip->base + SUN6I_ALARM_CONFIG);

	clk_prepare_enable(chip->losc);

	device_init_wakeup(&pdev->dev, 1);

	chip->rtc = devm_rtc_allocate_device(&pdev->dev);
	if (IS_ERR(chip->rtc))
		return PTR_ERR(chip->rtc);

	chip->rtc->ops = &sun6i_rtc_ops;
	if (chip->flags & RTC_LINEAR_DAY)
		chip->rtc->range_max = (65536 * SECS_PER_DAY) - 1;
	else
		chip->rtc->range_max = 2019686399LL; /* 2033-12-31 23:59:59 */

	ret = devm_rtc_register_device(chip->rtc);
	if (ret)
		return ret;

	dev_info(&pdev->dev, "RTC enabled\n");

	return 0;
}

/*
 * As far as RTC functionality goes, all models are the same. The
 * datasheets claim that different models have different number of
 * registers available for non-volatile storage, but experiments show
 * that all SoCs have 16 registers available for this purpose.
 */
static const struct of_device_id sun6i_rtc_dt_ids[] = {
	{ .compatible = "allwinner,sun6i-a31-rtc" },
	{ .compatible = "allwinner,sun8i-a23-rtc" },
	{ .compatible = "allwinner,sun8i-h3-rtc" },
	{ .compatible = "allwinner,sun8i-r40-rtc" },
	{ .compatible = "allwinner,sun8i-v3-rtc" },
	{ .compatible = "allwinner,sun50i-h5-rtc" },
	{ .compatible = "allwinner,sun50i-h6-rtc" },
	{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, sun6i_rtc_dt_ids);

static struct platform_driver sun6i_rtc_driver = {
	.probe		= sun6i_rtc_probe,
	.driver		= {
		.name		= "sun6i-rtc",
		.of_match_table = sun6i_rtc_dt_ids,
		.pm = &sun6i_rtc_pm_ops,
	},
};
builtin_platform_driver(sun6i_rtc_driver);