summaryrefslogtreecommitdiffstats
path: root/drivers/spi/spi-cadence-quadspi.c
blob: b50db71ac4cccc58f7f936180fb2b9f9cf741a4b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
// SPDX-License-Identifier: GPL-2.0-only
//
// Driver for Cadence QSPI Controller
//
// Copyright Altera Corporation (C) 2012-2014. All rights reserved.
// Copyright Intel Corporation (C) 2019-2020. All rights reserved.
// Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com

#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/firmware/xlnx-zynqmp.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/log2.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/reset.h>
#include <linux/sched.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi-mem.h>
#include <linux/timer.h>

#define CQSPI_NAME			"cadence-qspi"
#define CQSPI_MAX_CHIPSELECT		16

/* Quirks */
#define CQSPI_NEEDS_WR_DELAY		BIT(0)
#define CQSPI_DISABLE_DAC_MODE		BIT(1)
#define CQSPI_SUPPORT_EXTERNAL_DMA	BIT(2)
#define CQSPI_NO_SUPPORT_WR_COMPLETION	BIT(3)
#define CQSPI_SLOW_SRAM		BIT(4)
#define CQSPI_NEEDS_APB_AHB_HAZARD_WAR	BIT(5)

/* Capabilities */
#define CQSPI_SUPPORTS_OCTAL		BIT(0)

#define CQSPI_OP_WIDTH(part) ((part).nbytes ? ilog2((part).buswidth) : 0)

enum {
	CLK_QSPI_APB = 0,
	CLK_QSPI_AHB,
	CLK_QSPI_NUM,
};

struct cqspi_st;

struct cqspi_flash_pdata {
	struct cqspi_st	*cqspi;
	u32		clk_rate;
	u32		read_delay;
	u32		tshsl_ns;
	u32		tsd2d_ns;
	u32		tchsh_ns;
	u32		tslch_ns;
	u8		cs;
};

struct cqspi_st {
	struct platform_device	*pdev;
	struct spi_controller	*host;
	struct clk		*clk;
	struct clk		*clks[CLK_QSPI_NUM];
	unsigned int		sclk;

	void __iomem		*iobase;
	void __iomem		*ahb_base;
	resource_size_t		ahb_size;
	struct completion	transfer_complete;

	struct dma_chan		*rx_chan;
	struct completion	rx_dma_complete;
	dma_addr_t		mmap_phys_base;

	int			current_cs;
	unsigned long		master_ref_clk_hz;
	bool			is_decoded_cs;
	u32			fifo_depth;
	u32			fifo_width;
	u32			num_chipselect;
	bool			rclk_en;
	u32			trigger_address;
	u32			wr_delay;
	bool			use_direct_mode;
	bool			use_direct_mode_wr;
	struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
	bool			use_dma_read;
	u32			pd_dev_id;
	bool			wr_completion;
	bool			slow_sram;
	bool			apb_ahb_hazard;

	bool			is_jh7110; /* Flag for StarFive JH7110 SoC */
};

struct cqspi_driver_platdata {
	u32 hwcaps_mask;
	u8 quirks;
	int (*indirect_read_dma)(struct cqspi_flash_pdata *f_pdata,
				 u_char *rxbuf, loff_t from_addr, size_t n_rx);
	u32 (*get_dma_status)(struct cqspi_st *cqspi);
	int (*jh7110_clk_init)(struct platform_device *pdev,
			       struct cqspi_st *cqspi);
};

/* Operation timeout value */
#define CQSPI_TIMEOUT_MS			500
#define CQSPI_READ_TIMEOUT_MS			10

#define CQSPI_DUMMY_CLKS_PER_BYTE		8
#define CQSPI_DUMMY_BYTES_MAX			4
#define CQSPI_DUMMY_CLKS_MAX			31

#define CQSPI_STIG_DATA_LEN_MAX			8

/* Register map */
#define CQSPI_REG_CONFIG			0x00
#define CQSPI_REG_CONFIG_ENABLE_MASK		BIT(0)
#define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL	BIT(7)
#define CQSPI_REG_CONFIG_DECODE_MASK		BIT(9)
#define CQSPI_REG_CONFIG_CHIPSELECT_LSB		10
#define CQSPI_REG_CONFIG_DMA_MASK		BIT(15)
#define CQSPI_REG_CONFIG_BAUD_LSB		19
#define CQSPI_REG_CONFIG_DTR_PROTO		BIT(24)
#define CQSPI_REG_CONFIG_DUAL_OPCODE		BIT(30)
#define CQSPI_REG_CONFIG_IDLE_LSB		31
#define CQSPI_REG_CONFIG_CHIPSELECT_MASK	0xF
#define CQSPI_REG_CONFIG_BAUD_MASK		0xF

#define CQSPI_REG_RD_INSTR			0x04
#define CQSPI_REG_RD_INSTR_OPCODE_LSB		0
#define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB	8
#define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB	12
#define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB	16
#define CQSPI_REG_RD_INSTR_MODE_EN_LSB		20
#define CQSPI_REG_RD_INSTR_DUMMY_LSB		24
#define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK	0x3
#define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK	0x3
#define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK	0x3
#define CQSPI_REG_RD_INSTR_DUMMY_MASK		0x1F

#define CQSPI_REG_WR_INSTR			0x08
#define CQSPI_REG_WR_INSTR_OPCODE_LSB		0
#define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB	12
#define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB	16

#define CQSPI_REG_DELAY				0x0C
#define CQSPI_REG_DELAY_TSLCH_LSB		0
#define CQSPI_REG_DELAY_TCHSH_LSB		8
#define CQSPI_REG_DELAY_TSD2D_LSB		16
#define CQSPI_REG_DELAY_TSHSL_LSB		24
#define CQSPI_REG_DELAY_TSLCH_MASK		0xFF
#define CQSPI_REG_DELAY_TCHSH_MASK		0xFF
#define CQSPI_REG_DELAY_TSD2D_MASK		0xFF
#define CQSPI_REG_DELAY_TSHSL_MASK		0xFF

#define CQSPI_REG_READCAPTURE			0x10
#define CQSPI_REG_READCAPTURE_BYPASS_LSB	0
#define CQSPI_REG_READCAPTURE_DELAY_LSB		1
#define CQSPI_REG_READCAPTURE_DELAY_MASK	0xF

#define CQSPI_REG_SIZE				0x14
#define CQSPI_REG_SIZE_ADDRESS_LSB		0
#define CQSPI_REG_SIZE_PAGE_LSB			4
#define CQSPI_REG_SIZE_BLOCK_LSB		16
#define CQSPI_REG_SIZE_ADDRESS_MASK		0xF
#define CQSPI_REG_SIZE_PAGE_MASK		0xFFF
#define CQSPI_REG_SIZE_BLOCK_MASK		0x3F

#define CQSPI_REG_SRAMPARTITION			0x18
#define CQSPI_REG_INDIRECTTRIGGER		0x1C

#define CQSPI_REG_DMA				0x20
#define CQSPI_REG_DMA_SINGLE_LSB		0
#define CQSPI_REG_DMA_BURST_LSB			8
#define CQSPI_REG_DMA_SINGLE_MASK		0xFF
#define CQSPI_REG_DMA_BURST_MASK		0xFF

#define CQSPI_REG_REMAP				0x24
#define CQSPI_REG_MODE_BIT			0x28

#define CQSPI_REG_SDRAMLEVEL			0x2C
#define CQSPI_REG_SDRAMLEVEL_RD_LSB		0
#define CQSPI_REG_SDRAMLEVEL_WR_LSB		16
#define CQSPI_REG_SDRAMLEVEL_RD_MASK		0xFFFF
#define CQSPI_REG_SDRAMLEVEL_WR_MASK		0xFFFF

#define CQSPI_REG_WR_COMPLETION_CTRL		0x38
#define CQSPI_REG_WR_DISABLE_AUTO_POLL		BIT(14)

#define CQSPI_REG_IRQSTATUS			0x40
#define CQSPI_REG_IRQMASK			0x44

#define CQSPI_REG_INDIRECTRD			0x60
#define CQSPI_REG_INDIRECTRD_START_MASK		BIT(0)
#define CQSPI_REG_INDIRECTRD_CANCEL_MASK	BIT(1)
#define CQSPI_REG_INDIRECTRD_DONE_MASK		BIT(5)

#define CQSPI_REG_INDIRECTRDWATERMARK		0x64
#define CQSPI_REG_INDIRECTRDSTARTADDR		0x68
#define CQSPI_REG_INDIRECTRDBYTES		0x6C

#define CQSPI_REG_CMDCTRL			0x90
#define CQSPI_REG_CMDCTRL_EXECUTE_MASK		BIT(0)
#define CQSPI_REG_CMDCTRL_INPROGRESS_MASK	BIT(1)
#define CQSPI_REG_CMDCTRL_DUMMY_LSB		7
#define CQSPI_REG_CMDCTRL_WR_BYTES_LSB		12
#define CQSPI_REG_CMDCTRL_WR_EN_LSB		15
#define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB		16
#define CQSPI_REG_CMDCTRL_ADDR_EN_LSB		19
#define CQSPI_REG_CMDCTRL_RD_BYTES_LSB		20
#define CQSPI_REG_CMDCTRL_RD_EN_LSB		23
#define CQSPI_REG_CMDCTRL_OPCODE_LSB		24
#define CQSPI_REG_CMDCTRL_WR_BYTES_MASK		0x7
#define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK	0x3
#define CQSPI_REG_CMDCTRL_RD_BYTES_MASK		0x7
#define CQSPI_REG_CMDCTRL_DUMMY_MASK		0x1F

#define CQSPI_REG_INDIRECTWR			0x70
#define CQSPI_REG_INDIRECTWR_START_MASK		BIT(0)
#define CQSPI_REG_INDIRECTWR_CANCEL_MASK	BIT(1)
#define CQSPI_REG_INDIRECTWR_DONE_MASK		BIT(5)

#define CQSPI_REG_INDIRECTWRWATERMARK		0x74
#define CQSPI_REG_INDIRECTWRSTARTADDR		0x78
#define CQSPI_REG_INDIRECTWRBYTES		0x7C

#define CQSPI_REG_INDTRIG_ADDRRANGE		0x80

#define CQSPI_REG_CMDADDRESS			0x94
#define CQSPI_REG_CMDREADDATALOWER		0xA0
#define CQSPI_REG_CMDREADDATAUPPER		0xA4
#define CQSPI_REG_CMDWRITEDATALOWER		0xA8
#define CQSPI_REG_CMDWRITEDATAUPPER		0xAC

#define CQSPI_REG_POLLING_STATUS		0xB0
#define CQSPI_REG_POLLING_STATUS_DUMMY_LSB	16

#define CQSPI_REG_OP_EXT_LOWER			0xE0
#define CQSPI_REG_OP_EXT_READ_LSB		24
#define CQSPI_REG_OP_EXT_WRITE_LSB		16
#define CQSPI_REG_OP_EXT_STIG_LSB		0

#define CQSPI_REG_VERSAL_DMA_SRC_ADDR		0x1000

#define CQSPI_REG_VERSAL_DMA_DST_ADDR		0x1800
#define CQSPI_REG_VERSAL_DMA_DST_SIZE		0x1804

#define CQSPI_REG_VERSAL_DMA_DST_CTRL		0x180C

#define CQSPI_REG_VERSAL_DMA_DST_I_STS		0x1814
#define CQSPI_REG_VERSAL_DMA_DST_I_EN		0x1818
#define CQSPI_REG_VERSAL_DMA_DST_I_DIS		0x181C
#define CQSPI_REG_VERSAL_DMA_DST_DONE_MASK	BIT(1)

#define CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB	0x1828

#define CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL	0xF43FFA00
#define CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL	0x6

/* Interrupt status bits */
#define CQSPI_REG_IRQ_MODE_ERR			BIT(0)
#define CQSPI_REG_IRQ_UNDERFLOW			BIT(1)
#define CQSPI_REG_IRQ_IND_COMP			BIT(2)
#define CQSPI_REG_IRQ_IND_RD_REJECT		BIT(3)
#define CQSPI_REG_IRQ_WR_PROTECTED_ERR		BIT(4)
#define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR		BIT(5)
#define CQSPI_REG_IRQ_WATERMARK			BIT(6)
#define CQSPI_REG_IRQ_IND_SRAM_FULL		BIT(12)

#define CQSPI_IRQ_MASK_RD		(CQSPI_REG_IRQ_WATERMARK	| \
					 CQSPI_REG_IRQ_IND_SRAM_FULL	| \
					 CQSPI_REG_IRQ_IND_COMP)

#define CQSPI_IRQ_MASK_WR		(CQSPI_REG_IRQ_IND_COMP		| \
					 CQSPI_REG_IRQ_WATERMARK	| \
					 CQSPI_REG_IRQ_UNDERFLOW)

#define CQSPI_IRQ_STATUS_MASK		0x1FFFF
#define CQSPI_DMA_UNALIGN		0x3

#define CQSPI_REG_VERSAL_DMA_VAL		0x602

static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clr)
{
	u32 val;

	return readl_relaxed_poll_timeout(reg, val,
					  (((clr ? ~val : val) & mask) == mask),
					  10, CQSPI_TIMEOUT_MS * 1000);
}

static bool cqspi_is_idle(struct cqspi_st *cqspi)
{
	u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);

	return reg & (1UL << CQSPI_REG_CONFIG_IDLE_LSB);
}

static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
{
	u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);

	reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
	return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
}

static u32 cqspi_get_versal_dma_status(struct cqspi_st *cqspi)
{
	u32 dma_status;

	dma_status = readl(cqspi->iobase +
					   CQSPI_REG_VERSAL_DMA_DST_I_STS);
	writel(dma_status, cqspi->iobase +
		   CQSPI_REG_VERSAL_DMA_DST_I_STS);

	return dma_status & CQSPI_REG_VERSAL_DMA_DST_DONE_MASK;
}

static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
{
	struct cqspi_st *cqspi = dev;
	unsigned int irq_status;
	struct device *device = &cqspi->pdev->dev;
	const struct cqspi_driver_platdata *ddata;

	ddata = of_device_get_match_data(device);

	/* Read interrupt status */
	irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);

	/* Clear interrupt */
	writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);

	if (cqspi->use_dma_read && ddata && ddata->get_dma_status) {
		if (ddata->get_dma_status(cqspi)) {
			complete(&cqspi->transfer_complete);
			return IRQ_HANDLED;
		}
	}

	else if (!cqspi->slow_sram)
		irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
	else
		irq_status &= CQSPI_REG_IRQ_WATERMARK | CQSPI_IRQ_MASK_WR;

	if (irq_status)
		complete(&cqspi->transfer_complete);

	return IRQ_HANDLED;
}

static unsigned int cqspi_calc_rdreg(const struct spi_mem_op *op)
{
	u32 rdreg = 0;

	rdreg |= CQSPI_OP_WIDTH(op->cmd) << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
	rdreg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
	rdreg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;

	return rdreg;
}

static unsigned int cqspi_calc_dummy(const struct spi_mem_op *op)
{
	unsigned int dummy_clk;

	if (!op->dummy.nbytes)
		return 0;

	dummy_clk = op->dummy.nbytes * (8 / op->dummy.buswidth);
	if (op->cmd.dtr)
		dummy_clk /= 2;

	return dummy_clk;
}

static int cqspi_wait_idle(struct cqspi_st *cqspi)
{
	const unsigned int poll_idle_retry = 3;
	unsigned int count = 0;
	unsigned long timeout;

	timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
	while (1) {
		/*
		 * Read few times in succession to ensure the controller
		 * is indeed idle, that is, the bit does not transition
		 * low again.
		 */
		if (cqspi_is_idle(cqspi))
			count++;
		else
			count = 0;

		if (count >= poll_idle_retry)
			return 0;

		if (time_after(jiffies, timeout)) {
			/* Timeout, in busy mode. */
			dev_err(&cqspi->pdev->dev,
				"QSPI is still busy after %dms timeout.\n",
				CQSPI_TIMEOUT_MS);
			return -ETIMEDOUT;
		}

		cpu_relax();
	}
}

static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
{
	void __iomem *reg_base = cqspi->iobase;
	int ret;

	/* Write the CMDCTRL without start execution. */
	writel(reg, reg_base + CQSPI_REG_CMDCTRL);
	/* Start execute */
	reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
	writel(reg, reg_base + CQSPI_REG_CMDCTRL);

	/* Polling for completion. */
	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
				 CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
	if (ret) {
		dev_err(&cqspi->pdev->dev,
			"Flash command execution timed out.\n");
		return ret;
	}

	/* Polling QSPI idle status. */
	return cqspi_wait_idle(cqspi);
}

static int cqspi_setup_opcode_ext(struct cqspi_flash_pdata *f_pdata,
				  const struct spi_mem_op *op,
				  unsigned int shift)
{
	struct cqspi_st *cqspi = f_pdata->cqspi;
	void __iomem *reg_base = cqspi->iobase;
	unsigned int reg;
	u8 ext;

	if (op->cmd.nbytes != 2)
		return -EINVAL;

	/* Opcode extension is the LSB. */
	ext = op->cmd.opcode & 0xff;

	reg = readl(reg_base + CQSPI_REG_OP_EXT_LOWER);
	reg &= ~(0xff << shift);
	reg |= ext << shift;
	writel(reg, reg_base + CQSPI_REG_OP_EXT_LOWER);

	return 0;
}

static int cqspi_enable_dtr(struct cqspi_flash_pdata *f_pdata,
			    const struct spi_mem_op *op, unsigned int shift)
{
	struct cqspi_st *cqspi = f_pdata->cqspi;
	void __iomem *reg_base = cqspi->iobase;
	unsigned int reg;
	int ret;

	reg = readl(reg_base + CQSPI_REG_CONFIG);

	/*
	 * We enable dual byte opcode here. The callers have to set up the
	 * extension opcode based on which type of operation it is.
	 */
	if (op->cmd.dtr) {
		reg |= CQSPI_REG_CONFIG_DTR_PROTO;
		reg |= CQSPI_REG_CONFIG_DUAL_OPCODE;

		/* Set up command opcode extension. */
		ret = cqspi_setup_opcode_ext(f_pdata, op, shift);
		if (ret)
			return ret;
	} else {
		reg &= ~CQSPI_REG_CONFIG_DTR_PROTO;
		reg &= ~CQSPI_REG_CONFIG_DUAL_OPCODE;
	}

	writel(reg, reg_base + CQSPI_REG_CONFIG);

	return cqspi_wait_idle(cqspi);
}

static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
			      const struct spi_mem_op *op)
{
	struct cqspi_st *cqspi = f_pdata->cqspi;
	void __iomem *reg_base = cqspi->iobase;
	u8 *rxbuf = op->data.buf.in;
	u8 opcode;
	size_t n_rx = op->data.nbytes;
	unsigned int rdreg;
	unsigned int reg;
	unsigned int dummy_clk;
	size_t read_len;
	int status;

	status = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
	if (status)
		return status;

	if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
		dev_err(&cqspi->pdev->dev,
			"Invalid input argument, len %zu rxbuf 0x%p\n",
			n_rx, rxbuf);
		return -EINVAL;
	}

	if (op->cmd.dtr)
		opcode = op->cmd.opcode >> 8;
	else
		opcode = op->cmd.opcode;

	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;

	rdreg = cqspi_calc_rdreg(op);
	writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);

	dummy_clk = cqspi_calc_dummy(op);
	if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
		return -EOPNOTSUPP;

	if (dummy_clk)
		reg |= (dummy_clk & CQSPI_REG_CMDCTRL_DUMMY_MASK)
		     << CQSPI_REG_CMDCTRL_DUMMY_LSB;

	reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);

	/* 0 means 1 byte. */
	reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
		<< CQSPI_REG_CMDCTRL_RD_BYTES_LSB);

	/* setup ADDR BIT field */
	if (op->addr.nbytes) {
		reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
		reg |= ((op->addr.nbytes - 1) &
			CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
			<< CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;

		writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
	}

	status = cqspi_exec_flash_cmd(cqspi, reg);
	if (status)
		return status;

	reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);

	/* Put the read value into rx_buf */
	read_len = (n_rx > 4) ? 4 : n_rx;
	memcpy(rxbuf, &reg, read_len);
	rxbuf += read_len;

	if (n_rx > 4) {
		reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);

		read_len = n_rx - read_len;
		memcpy(rxbuf, &reg, read_len);
	}

	/* Reset CMD_CTRL Reg once command read completes */
	writel(0, reg_base + CQSPI_REG_CMDCTRL);

	return 0;
}

static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
			       const struct spi_mem_op *op)
{
	struct cqspi_st *cqspi = f_pdata->cqspi;
	void __iomem *reg_base = cqspi->iobase;
	u8 opcode;
	const u8 *txbuf = op->data.buf.out;
	size_t n_tx = op->data.nbytes;
	unsigned int reg;
	unsigned int data;
	size_t write_len;
	int ret;

	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
	if (ret)
		return ret;

	if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
		dev_err(&cqspi->pdev->dev,
			"Invalid input argument, cmdlen %zu txbuf 0x%p\n",
			n_tx, txbuf);
		return -EINVAL;
	}

	reg = cqspi_calc_rdreg(op);
	writel(reg, reg_base + CQSPI_REG_RD_INSTR);

	if (op->cmd.dtr)
		opcode = op->cmd.opcode >> 8;
	else
		opcode = op->cmd.opcode;

	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;

	if (op->addr.nbytes) {
		reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
		reg |= ((op->addr.nbytes - 1) &
			CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
			<< CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;

		writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
	}

	if (n_tx) {
		reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
		reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
			<< CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
		data = 0;
		write_len = (n_tx > 4) ? 4 : n_tx;
		memcpy(&data, txbuf, write_len);
		txbuf += write_len;
		writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);

		if (n_tx > 4) {
			data = 0;
			write_len = n_tx - 4;
			memcpy(&data, txbuf, write_len);
			writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
		}
	}

	ret = cqspi_exec_flash_cmd(cqspi, reg);

	/* Reset CMD_CTRL Reg once command write completes */
	writel(0, reg_base + CQSPI_REG_CMDCTRL);

	return ret;
}

static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
			    const struct spi_mem_op *op)
{
	struct cqspi_st *cqspi = f_pdata->cqspi;
	void __iomem *reg_base = cqspi->iobase;
	unsigned int dummy_clk = 0;
	unsigned int reg;
	int ret;
	u8 opcode;

	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_READ_LSB);
	if (ret)
		return ret;

	if (op->cmd.dtr)
		opcode = op->cmd.opcode >> 8;
	else
		opcode = op->cmd.opcode;

	reg = opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
	reg |= cqspi_calc_rdreg(op);

	/* Setup dummy clock cycles */
	dummy_clk = cqspi_calc_dummy(op);

	if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
		return -EOPNOTSUPP;

	if (dummy_clk)
		reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
		       << CQSPI_REG_RD_INSTR_DUMMY_LSB;

	writel(reg, reg_base + CQSPI_REG_RD_INSTR);

	/* Set address width */
	reg = readl(reg_base + CQSPI_REG_SIZE);
	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
	reg |= (op->addr.nbytes - 1);
	writel(reg, reg_base + CQSPI_REG_SIZE);
	return 0;
}

static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
				       u8 *rxbuf, loff_t from_addr,
				       const size_t n_rx)
{
	struct cqspi_st *cqspi = f_pdata->cqspi;
	struct device *dev = &cqspi->pdev->dev;
	void __iomem *reg_base = cqspi->iobase;
	void __iomem *ahb_base = cqspi->ahb_base;
	unsigned int remaining = n_rx;
	unsigned int mod_bytes = n_rx % 4;
	unsigned int bytes_to_read = 0;
	u8 *rxbuf_end = rxbuf + n_rx;
	int ret = 0;

	writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
	writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);

	/* Clear all interrupts. */
	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);

	/*
	 * On SoCFPGA platform reading the SRAM is slow due to
	 * hardware limitation and causing read interrupt storm to CPU,
	 * so enabling only watermark interrupt to disable all read
	 * interrupts later as we want to run "bytes to read" loop with
	 * all the read interrupts disabled for max performance.
	 */

	if (!cqspi->slow_sram)
		writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
	else
		writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);

	reinit_completion(&cqspi->transfer_complete);
	writel(CQSPI_REG_INDIRECTRD_START_MASK,
	       reg_base + CQSPI_REG_INDIRECTRD);

	while (remaining > 0) {
		if (!wait_for_completion_timeout(&cqspi->transfer_complete,
						 msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
			ret = -ETIMEDOUT;

		/*
		 * Disable all read interrupts until
		 * we are out of "bytes to read"
		 */
		if (cqspi->slow_sram)
			writel(0x0, reg_base + CQSPI_REG_IRQMASK);

		bytes_to_read = cqspi_get_rd_sram_level(cqspi);

		if (ret && bytes_to_read == 0) {
			dev_err(dev, "Indirect read timeout, no bytes\n");
			goto failrd;
		}

		while (bytes_to_read != 0) {
			unsigned int word_remain = round_down(remaining, 4);

			bytes_to_read *= cqspi->fifo_width;
			bytes_to_read = bytes_to_read > remaining ?
					remaining : bytes_to_read;
			bytes_to_read = round_down(bytes_to_read, 4);
			/* Read 4 byte word chunks then single bytes */
			if (bytes_to_read) {
				ioread32_rep(ahb_base, rxbuf,
					     (bytes_to_read / 4));
			} else if (!word_remain && mod_bytes) {
				unsigned int temp = ioread32(ahb_base);

				bytes_to_read = mod_bytes;
				memcpy(rxbuf, &temp, min((unsigned int)
							 (rxbuf_end - rxbuf),
							 bytes_to_read));
			}
			rxbuf += bytes_to_read;
			remaining -= bytes_to_read;
			bytes_to_read = cqspi_get_rd_sram_level(cqspi);
		}

		if (remaining > 0) {
			reinit_completion(&cqspi->transfer_complete);
			if (cqspi->slow_sram)
				writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
		}
	}

	/* Check indirect done status */
	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
				 CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
	if (ret) {
		dev_err(dev, "Indirect read completion error (%i)\n", ret);
		goto failrd;
	}

	/* Disable interrupt */
	writel(0, reg_base + CQSPI_REG_IRQMASK);

	/* Clear indirect completion status */
	writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);

	return 0;

failrd:
	/* Disable interrupt */
	writel(0, reg_base + CQSPI_REG_IRQMASK);

	/* Cancel the indirect read */
	writel(CQSPI_REG_INDIRECTRD_CANCEL_MASK,
	       reg_base + CQSPI_REG_INDIRECTRD);
	return ret;
}

static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
{
	void __iomem *reg_base = cqspi->iobase;
	unsigned int reg;

	reg = readl(reg_base + CQSPI_REG_CONFIG);

	if (enable)
		reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
	else
		reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;

	writel(reg, reg_base + CQSPI_REG_CONFIG);
}

static int cqspi_versal_indirect_read_dma(struct cqspi_flash_pdata *f_pdata,
					  u_char *rxbuf, loff_t from_addr,
					  size_t n_rx)
{
	struct cqspi_st *cqspi = f_pdata->cqspi;
	struct device *dev = &cqspi->pdev->dev;
	void __iomem *reg_base = cqspi->iobase;
	u32 reg, bytes_to_dma;
	loff_t addr = from_addr;
	void *buf = rxbuf;
	dma_addr_t dma_addr;
	u8 bytes_rem;
	int ret = 0;

	bytes_rem = n_rx % 4;
	bytes_to_dma = (n_rx - bytes_rem);

	if (!bytes_to_dma)
		goto nondmard;

	ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_DMA);
	if (ret)
		return ret;

	cqspi_controller_enable(cqspi, 0);

	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
	reg |= CQSPI_REG_CONFIG_DMA_MASK;
	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);

	cqspi_controller_enable(cqspi, 1);

	dma_addr = dma_map_single(dev, rxbuf, bytes_to_dma, DMA_FROM_DEVICE);
	if (dma_mapping_error(dev, dma_addr)) {
		dev_err(dev, "dma mapping failed\n");
		return -ENOMEM;
	}

	writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
	writel(bytes_to_dma, reg_base + CQSPI_REG_INDIRECTRDBYTES);
	writel(CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL,
	       reg_base + CQSPI_REG_INDTRIG_ADDRRANGE);

	/* Clear all interrupts. */
	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);

	/* Enable DMA done interrupt */
	writel(CQSPI_REG_VERSAL_DMA_DST_DONE_MASK,
	       reg_base + CQSPI_REG_VERSAL_DMA_DST_I_EN);

	/* Default DMA periph configuration */
	writel(CQSPI_REG_VERSAL_DMA_VAL, reg_base + CQSPI_REG_DMA);

	/* Configure DMA Dst address */
	writel(lower_32_bits(dma_addr),
	       reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR);
	writel(upper_32_bits(dma_addr),
	       reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB);

	/* Configure DMA Src address */
	writel(cqspi->trigger_address, reg_base +
	       CQSPI_REG_VERSAL_DMA_SRC_ADDR);

	/* Set DMA destination size */
	writel(bytes_to_dma, reg_base + CQSPI_REG_VERSAL_DMA_DST_SIZE);

	/* Set DMA destination control */
	writel(CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL,
	       reg_base + CQSPI_REG_VERSAL_DMA_DST_CTRL);

	writel(CQSPI_REG_INDIRECTRD_START_MASK,
	       reg_base + CQSPI_REG_INDIRECTRD);

	reinit_completion(&cqspi->transfer_complete);

	if (!wait_for_completion_timeout(&cqspi->transfer_complete,
					 msecs_to_jiffies(max_t(size_t, bytes_to_dma, 500)))) {
		ret = -ETIMEDOUT;
		goto failrd;
	}

	/* Disable DMA interrupt */
	writel(0x0, cqspi->iobase + CQSPI_REG_VERSAL_DMA_DST_I_DIS);

	/* Clear indirect completion status */
	writel(CQSPI_REG_INDIRECTRD_DONE_MASK,
	       cqspi->iobase + CQSPI_REG_INDIRECTRD);
	dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);

	cqspi_controller_enable(cqspi, 0);

	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
	reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);

	cqspi_controller_enable(cqspi, 1);

	ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id,
					PM_OSPI_MUX_SEL_LINEAR);
	if (ret)
		return ret;

nondmard:
	if (bytes_rem) {
		addr += bytes_to_dma;
		buf += bytes_to_dma;
		ret = cqspi_indirect_read_execute(f_pdata, buf, addr,
						  bytes_rem);
		if (ret)
			return ret;
	}

	return 0;

failrd:
	/* Disable DMA interrupt */
	writel(0x0, reg_base + CQSPI_REG_VERSAL_DMA_DST_I_DIS);

	/* Cancel the indirect read */
	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
	       reg_base + CQSPI_REG_INDIRECTRD);

	dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);

	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
	reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);

	zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_LINEAR);

	return ret;
}

static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
			     const struct spi_mem_op *op)
{
	unsigned int reg;
	int ret;
	struct cqspi_st *cqspi = f_pdata->cqspi;
	void __iomem *reg_base = cqspi->iobase;
	u8 opcode;

	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_WRITE_LSB);
	if (ret)
		return ret;

	if (op->cmd.dtr)
		opcode = op->cmd.opcode >> 8;
	else
		opcode = op->cmd.opcode;

	/* Set opcode. */
	reg = opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
	reg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_WR_INSTR_TYPE_DATA_LSB;
	reg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB;
	writel(reg, reg_base + CQSPI_REG_WR_INSTR);
	reg = cqspi_calc_rdreg(op);
	writel(reg, reg_base + CQSPI_REG_RD_INSTR);

	/*
	 * SPI NAND flashes require the address of the status register to be
	 * passed in the Read SR command. Also, some SPI NOR flashes like the
	 * cypress Semper flash expect a 4-byte dummy address in the Read SR
	 * command in DTR mode.
	 *
	 * But this controller does not support address phase in the Read SR
	 * command when doing auto-HW polling. So, disable write completion
	 * polling on the controller's side. spinand and spi-nor will take
	 * care of polling the status register.
	 */
	if (cqspi->wr_completion) {
		reg = readl(reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
		reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL;
		writel(reg, reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
		/*
		 * DAC mode require auto polling as flash needs to be polled
		 * for write completion in case of bubble in SPI transaction
		 * due to slow CPU/DMA master.
		 */
		cqspi->use_direct_mode_wr = false;
	}

	reg = readl(reg_base + CQSPI_REG_SIZE);
	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
	reg |= (op->addr.nbytes - 1);
	writel(reg, reg_base + CQSPI_REG_SIZE);
	return 0;
}

static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
					loff_t to_addr, const u8 *txbuf,
					const size_t n_tx)
{
	struct cqspi_st *cqspi = f_pdata->cqspi;
	struct device *dev = &cqspi->pdev->dev;
	void __iomem *reg_base = cqspi->iobase;
	unsigned int remaining = n_tx;
	unsigned int write_bytes;
	int ret;

	writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
	writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);

	/* Clear all interrupts. */
	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);

	writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);

	reinit_completion(&cqspi->transfer_complete);
	writel(CQSPI_REG_INDIRECTWR_START_MASK,
	       reg_base + CQSPI_REG_INDIRECTWR);
	/*
	 * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
	 * Controller programming sequence, couple of cycles of
	 * QSPI_REF_CLK delay is required for the above bit to
	 * be internally synchronized by the QSPI module. Provide 5
	 * cycles of delay.
	 */
	if (cqspi->wr_delay)
		ndelay(cqspi->wr_delay);

	/*
	 * If a hazard exists between the APB and AHB interfaces, perform a
	 * dummy readback from the controller to ensure synchronization.
	 */
	if (cqspi->apb_ahb_hazard)
		readl(reg_base + CQSPI_REG_INDIRECTWR);

	while (remaining > 0) {
		size_t write_words, mod_bytes;

		write_bytes = remaining;
		write_words = write_bytes / 4;
		mod_bytes = write_bytes % 4;
		/* Write 4 bytes at a time then single bytes. */
		if (write_words) {
			iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
			txbuf += (write_words * 4);
		}
		if (mod_bytes) {
			unsigned int temp = 0xFFFFFFFF;

			memcpy(&temp, txbuf, mod_bytes);
			iowrite32(temp, cqspi->ahb_base);
			txbuf += mod_bytes;
		}

		if (!wait_for_completion_timeout(&cqspi->transfer_complete,
						 msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
			dev_err(dev, "Indirect write timeout\n");
			ret = -ETIMEDOUT;
			goto failwr;
		}

		remaining -= write_bytes;

		if (remaining > 0)
			reinit_completion(&cqspi->transfer_complete);
	}

	/* Check indirect done status */
	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
				 CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
	if (ret) {
		dev_err(dev, "Indirect write completion error (%i)\n", ret);
		goto failwr;
	}

	/* Disable interrupt. */
	writel(0, reg_base + CQSPI_REG_IRQMASK);

	/* Clear indirect completion status */
	writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);

	cqspi_wait_idle(cqspi);

	return 0;

failwr:
	/* Disable interrupt. */
	writel(0, reg_base + CQSPI_REG_IRQMASK);

	/* Cancel the indirect write */
	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
	       reg_base + CQSPI_REG_INDIRECTWR);
	return ret;
}

static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
{
	struct cqspi_st *cqspi = f_pdata->cqspi;
	void __iomem *reg_base = cqspi->iobase;
	unsigned int chip_select = f_pdata->cs;
	unsigned int reg;

	reg = readl(reg_base + CQSPI_REG_CONFIG);
	if (cqspi->is_decoded_cs) {
		reg |= CQSPI_REG_CONFIG_DECODE_MASK;
	} else {
		reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;

		/* Convert CS if without decoder.
		 * CS0 to 4b'1110
		 * CS1 to 4b'1101
		 * CS2 to 4b'1011
		 * CS3 to 4b'0111
		 */
		chip_select = 0xF & ~(1 << chip_select);
	}

	reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
		 << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
	reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
	    << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
	writel(reg, reg_base + CQSPI_REG_CONFIG);
}

static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
					   const unsigned int ns_val)
{
	unsigned int ticks;

	ticks = ref_clk_hz / 1000;	/* kHz */
	ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);

	return ticks;
}

static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
{
	struct cqspi_st *cqspi = f_pdata->cqspi;
	void __iomem *iobase = cqspi->iobase;
	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
	unsigned int tshsl, tchsh, tslch, tsd2d;
	unsigned int reg;
	unsigned int tsclk;

	/* calculate the number of ref ticks for one sclk tick */
	tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);

	tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
	/* this particular value must be at least one sclk */
	if (tshsl < tsclk)
		tshsl = tsclk;

	tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
	tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
	tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);

	reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
	       << CQSPI_REG_DELAY_TSHSL_LSB;
	reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
		<< CQSPI_REG_DELAY_TCHSH_LSB;
	reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
		<< CQSPI_REG_DELAY_TSLCH_LSB;
	reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
		<< CQSPI_REG_DELAY_TSD2D_LSB;
	writel(reg, iobase + CQSPI_REG_DELAY);
}

static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
{
	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
	void __iomem *reg_base = cqspi->iobase;
	u32 reg, div;

	/* Recalculate the baudrate divisor based on QSPI specification. */
	div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;

	/* Maximum baud divisor */
	if (div > CQSPI_REG_CONFIG_BAUD_MASK) {
		div = CQSPI_REG_CONFIG_BAUD_MASK;
		dev_warn(&cqspi->pdev->dev,
			"Unable to adjust clock <= %d hz. Reduced to %d hz\n",
			cqspi->sclk, ref_clk_hz/((div+1)*2));
	}

	reg = readl(reg_base + CQSPI_REG_CONFIG);
	reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
	reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
	writel(reg, reg_base + CQSPI_REG_CONFIG);
}

static void cqspi_readdata_capture(struct cqspi_st *cqspi,
				   const bool bypass,
				   const unsigned int delay)
{
	void __iomem *reg_base = cqspi->iobase;
	unsigned int reg;

	reg = readl(reg_base + CQSPI_REG_READCAPTURE);

	if (bypass)
		reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
	else
		reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);

	reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
		 << CQSPI_REG_READCAPTURE_DELAY_LSB);

	reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
		<< CQSPI_REG_READCAPTURE_DELAY_LSB;

	writel(reg, reg_base + CQSPI_REG_READCAPTURE);
}

static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
			    unsigned long sclk)
{
	struct cqspi_st *cqspi = f_pdata->cqspi;
	int switch_cs = (cqspi->current_cs != f_pdata->cs);
	int switch_ck = (cqspi->sclk != sclk);

	if (switch_cs || switch_ck)
		cqspi_controller_enable(cqspi, 0);

	/* Switch chip select. */
	if (switch_cs) {
		cqspi->current_cs = f_pdata->cs;
		cqspi_chipselect(f_pdata);
	}

	/* Setup baudrate divisor and delays */
	if (switch_ck) {
		cqspi->sclk = sclk;
		cqspi_config_baudrate_div(cqspi);
		cqspi_delay(f_pdata);
		cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
				       f_pdata->read_delay);
	}

	if (switch_cs || switch_ck)
		cqspi_controller_enable(cqspi, 1);
}

static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
			   const struct spi_mem_op *op)
{
	struct cqspi_st *cqspi = f_pdata->cqspi;
	loff_t to = op->addr.val;
	size_t len = op->data.nbytes;
	const u_char *buf = op->data.buf.out;
	int ret;

	ret = cqspi_write_setup(f_pdata, op);
	if (ret)
		return ret;

	/*
	 * Some flashes like the Cypress Semper flash expect a dummy 4-byte
	 * address (all 0s) with the read status register command in DTR mode.
	 * But this controller does not support sending dummy address bytes to
	 * the flash when it is polling the write completion register in DTR
	 * mode. So, we can not use direct mode when in DTR mode for writing
	 * data.
	 */
	if (!op->cmd.dtr && cqspi->use_direct_mode &&
	    cqspi->use_direct_mode_wr && ((to + len) <= cqspi->ahb_size)) {
		memcpy_toio(cqspi->ahb_base + to, buf, len);
		return cqspi_wait_idle(cqspi);
	}

	return cqspi_indirect_write_execute(f_pdata, to, buf, len);
}

static void cqspi_rx_dma_callback(void *param)
{
	struct cqspi_st *cqspi = param;

	complete(&cqspi->rx_dma_complete);
}

static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
				     u_char *buf, loff_t from, size_t len)
{
	struct cqspi_st *cqspi = f_pdata->cqspi;
	struct device *dev = &cqspi->pdev->dev;
	enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
	dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
	int ret = 0;
	struct dma_async_tx_descriptor *tx;
	dma_cookie_t cookie;
	dma_addr_t dma_dst;
	struct device *ddev;

	if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
		memcpy_fromio(buf, cqspi->ahb_base + from, len);
		return 0;
	}

	ddev = cqspi->rx_chan->device->dev;
	dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
	if (dma_mapping_error(ddev, dma_dst)) {
		dev_err(dev, "dma mapping failed\n");
		return -ENOMEM;
	}
	tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
				       len, flags);
	if (!tx) {
		dev_err(dev, "device_prep_dma_memcpy error\n");
		ret = -EIO;
		goto err_unmap;
	}

	tx->callback = cqspi_rx_dma_callback;
	tx->callback_param = cqspi;
	cookie = tx->tx_submit(tx);
	reinit_completion(&cqspi->rx_dma_complete);

	ret = dma_submit_error(cookie);
	if (ret) {
		dev_err(dev, "dma_submit_error %d\n", cookie);
		ret = -EIO;
		goto err_unmap;
	}

	dma_async_issue_pending(cqspi->rx_chan);
	if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
					 msecs_to_jiffies(max_t(size_t, len, 500)))) {
		dmaengine_terminate_sync(cqspi->rx_chan);
		dev_err(dev, "DMA wait_for_completion_timeout\n");
		ret = -ETIMEDOUT;
		goto err_unmap;
	}

err_unmap:
	dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);

	return ret;
}

static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
			  const struct spi_mem_op *op)
{
	struct cqspi_st *cqspi = f_pdata->cqspi;
	struct device *dev = &cqspi->pdev->dev;
	const struct cqspi_driver_platdata *ddata;
	loff_t from = op->addr.val;
	size_t len = op->data.nbytes;
	u_char *buf = op->data.buf.in;
	u64 dma_align = (u64)(uintptr_t)buf;
	int ret;

	ddata = of_device_get_match_data(dev);

	ret = cqspi_read_setup(f_pdata, op);
	if (ret)
		return ret;

	if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size))
		return cqspi_direct_read_execute(f_pdata, buf, from, len);

	if (cqspi->use_dma_read && ddata && ddata->indirect_read_dma &&
	    virt_addr_valid(buf) && ((dma_align & CQSPI_DMA_UNALIGN) == 0))
		return ddata->indirect_read_dma(f_pdata, buf, from, len);

	return cqspi_indirect_read_execute(f_pdata, buf, from, len);
}

static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
{
	struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
	struct cqspi_flash_pdata *f_pdata;

	f_pdata = &cqspi->f_pdata[spi_get_chipselect(mem->spi, 0)];
	cqspi_configure(f_pdata, mem->spi->max_speed_hz);

	if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
	/*
	 * Performing reads in DAC mode forces to read minimum 4 bytes
	 * which is unsupported on some flash devices during register
	 * reads, prefer STIG mode for such small reads.
	 */
		if (!op->addr.nbytes ||
		    op->data.nbytes <= CQSPI_STIG_DATA_LEN_MAX)
			return cqspi_command_read(f_pdata, op);

		return cqspi_read(f_pdata, op);
	}

	if (!op->addr.nbytes || !op->data.buf.out)
		return cqspi_command_write(f_pdata, op);

	return cqspi_write(f_pdata, op);
}

static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
{
	int ret;

	ret = cqspi_mem_process(mem, op);
	if (ret)
		dev_err(&mem->spi->dev, "operation failed with %d\n", ret);

	return ret;
}

static bool cqspi_supports_mem_op(struct spi_mem *mem,
				  const struct spi_mem_op *op)
{
	bool all_true, all_false;

	/*
	 * op->dummy.dtr is required for converting nbytes into ncycles.
	 * Also, don't check the dtr field of the op phase having zero nbytes.
	 */
	all_true = op->cmd.dtr &&
		   (!op->addr.nbytes || op->addr.dtr) &&
		   (!op->dummy.nbytes || op->dummy.dtr) &&
		   (!op->data.nbytes || op->data.dtr);

	all_false = !op->cmd.dtr && !op->addr.dtr && !op->dummy.dtr &&
		    !op->data.dtr;

	if (all_true) {
		/* Right now we only support 8-8-8 DTR mode. */
		if (op->cmd.nbytes && op->cmd.buswidth != 8)
			return false;
		if (op->addr.nbytes && op->addr.buswidth != 8)
			return false;
		if (op->data.nbytes && op->data.buswidth != 8)
			return false;
	} else if (!all_false) {
		/* Mixed DTR modes are not supported. */
		return false;
	}

	return spi_mem_default_supports_op(mem, op);
}

static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
				    struct cqspi_flash_pdata *f_pdata,
				    struct device_node *np)
{
	if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
		dev_err(&pdev->dev, "couldn't determine read-delay\n");
		return -ENXIO;
	}

	if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
		dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
		return -ENXIO;
	}

	if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
		dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
		return -ENXIO;
	}

	if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
		dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
		return -ENXIO;
	}

	if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
		dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
		return -ENXIO;
	}

	if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
		dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
		return -ENXIO;
	}

	return 0;
}

static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
{
	struct device *dev = &cqspi->pdev->dev;
	struct device_node *np = dev->of_node;
	u32 id[2];

	cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");

	if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
		dev_err(dev, "couldn't determine fifo-depth\n");
		return -ENXIO;
	}

	if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
		dev_err(dev, "couldn't determine fifo-width\n");
		return -ENXIO;
	}

	if (of_property_read_u32(np, "cdns,trigger-address",
				 &cqspi->trigger_address)) {
		dev_err(dev, "couldn't determine trigger-address\n");
		return -ENXIO;
	}

	if (of_property_read_u32(np, "num-cs", &cqspi->num_chipselect))
		cqspi->num_chipselect = CQSPI_MAX_CHIPSELECT;

	cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");

	if (!of_property_read_u32_array(np, "power-domains", id,
					ARRAY_SIZE(id)))
		cqspi->pd_dev_id = id[1];

	return 0;
}

static void cqspi_controller_init(struct cqspi_st *cqspi)
{
	u32 reg;

	cqspi_controller_enable(cqspi, 0);

	/* Configure the remap address register, no remap */
	writel(0, cqspi->iobase + CQSPI_REG_REMAP);

	/* Disable all interrupts. */
	writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);

	/* Configure the SRAM split to 1:1 . */
	writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);

	/* Load indirect trigger address. */
	writel(cqspi->trigger_address,
	       cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);

	/* Program read watermark -- 1/2 of the FIFO. */
	writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
	       cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
	/* Program write watermark -- 1/8 of the FIFO. */
	writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
	       cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);

	/* Disable direct access controller */
	if (!cqspi->use_direct_mode) {
		reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
		reg &= ~CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
		writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
	}

	/* Enable DMA interface */
	if (cqspi->use_dma_read) {
		reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
		reg |= CQSPI_REG_CONFIG_DMA_MASK;
		writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
	}

	cqspi_controller_enable(cqspi, 1);
}

static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
{
	dma_cap_mask_t mask;

	dma_cap_zero(mask);
	dma_cap_set(DMA_MEMCPY, mask);

	cqspi->rx_chan = dma_request_chan_by_mask(&mask);
	if (IS_ERR(cqspi->rx_chan)) {
		int ret = PTR_ERR(cqspi->rx_chan);

		cqspi->rx_chan = NULL;
		return dev_err_probe(&cqspi->pdev->dev, ret, "No Rx DMA available\n");
	}
	init_completion(&cqspi->rx_dma_complete);

	return 0;
}

static const char *cqspi_get_name(struct spi_mem *mem)
{
	struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
	struct device *dev = &cqspi->pdev->dev;

	return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev),
			      spi_get_chipselect(mem->spi, 0));
}

static const struct spi_controller_mem_ops cqspi_mem_ops = {
	.exec_op = cqspi_exec_mem_op,
	.get_name = cqspi_get_name,
	.supports_op = cqspi_supports_mem_op,
};

static const struct spi_controller_mem_caps cqspi_mem_caps = {
	.dtr = true,
};

static int cqspi_setup_flash(struct cqspi_st *cqspi)
{
	struct platform_device *pdev = cqspi->pdev;
	struct device *dev = &pdev->dev;
	struct device_node *np = dev->of_node;
	struct cqspi_flash_pdata *f_pdata;
	unsigned int cs;
	int ret;

	/* Get flash device data */
	for_each_available_child_of_node(dev->of_node, np) {
		ret = of_property_read_u32(np, "reg", &cs);
		if (ret) {
			dev_err(dev, "Couldn't determine chip select.\n");
			of_node_put(np);
			return ret;
		}

		if (cs >= CQSPI_MAX_CHIPSELECT) {
			dev_err(dev, "Chip select %d out of range.\n", cs);
			of_node_put(np);
			return -EINVAL;
		}

		f_pdata = &cqspi->f_pdata[cs];
		f_pdata->cqspi = cqspi;
		f_pdata->cs = cs;

		ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
		if (ret) {
			of_node_put(np);
			return ret;
		}
	}

	return 0;
}

static int cqspi_jh7110_clk_init(struct platform_device *pdev, struct cqspi_st *cqspi)
{
	static struct clk_bulk_data qspiclk[] = {
		{ .id = "apb" },
		{ .id = "ahb" },
	};

	int ret = 0;

	ret = devm_clk_bulk_get(&pdev->dev, ARRAY_SIZE(qspiclk), qspiclk);
	if (ret) {
		dev_err(&pdev->dev, "%s: failed to get qspi clocks\n", __func__);
		return ret;
	}

	cqspi->clks[CLK_QSPI_APB] = qspiclk[0].clk;
	cqspi->clks[CLK_QSPI_AHB] = qspiclk[1].clk;

	ret = clk_prepare_enable(cqspi->clks[CLK_QSPI_APB]);
	if (ret) {
		dev_err(&pdev->dev, "%s: failed to enable CLK_QSPI_APB\n", __func__);
		return ret;
	}

	ret = clk_prepare_enable(cqspi->clks[CLK_QSPI_AHB]);
	if (ret) {
		dev_err(&pdev->dev, "%s: failed to enable CLK_QSPI_AHB\n", __func__);
		goto disable_apb_clk;
	}

	cqspi->is_jh7110 = true;

	return 0;

disable_apb_clk:
	clk_disable_unprepare(cqspi->clks[CLK_QSPI_APB]);

	return ret;
}

static void cqspi_jh7110_disable_clk(struct platform_device *pdev, struct cqspi_st *cqspi)
{
	clk_disable_unprepare(cqspi->clks[CLK_QSPI_AHB]);
	clk_disable_unprepare(cqspi->clks[CLK_QSPI_APB]);
}
static int cqspi_probe(struct platform_device *pdev)
{
	const struct cqspi_driver_platdata *ddata;
	struct reset_control *rstc, *rstc_ocp, *rstc_ref;
	struct device *dev = &pdev->dev;
	struct spi_controller *host;
	struct resource *res_ahb;
	struct cqspi_st *cqspi;
	int ret;
	int irq;

	host = devm_spi_alloc_host(&pdev->dev, sizeof(*cqspi));
	if (!host) {
		dev_err(&pdev->dev, "devm_spi_alloc_host failed\n");
		return -ENOMEM;
	}
	host->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL;
	host->mem_ops = &cqspi_mem_ops;
	host->mem_caps = &cqspi_mem_caps;
	host->dev.of_node = pdev->dev.of_node;

	cqspi = spi_controller_get_devdata(host);

	cqspi->pdev = pdev;
	cqspi->host = host;
	cqspi->is_jh7110 = false;
	platform_set_drvdata(pdev, cqspi);

	/* Obtain configuration from OF. */
	ret = cqspi_of_get_pdata(cqspi);
	if (ret) {
		dev_err(dev, "Cannot get mandatory OF data.\n");
		return -ENODEV;
	}

	/* Obtain QSPI clock. */
	cqspi->clk = devm_clk_get(dev, NULL);
	if (IS_ERR(cqspi->clk)) {
		dev_err(dev, "Cannot claim QSPI clock.\n");
		ret = PTR_ERR(cqspi->clk);
		return ret;
	}

	/* Obtain and remap controller address. */
	cqspi->iobase = devm_platform_ioremap_resource(pdev, 0);
	if (IS_ERR(cqspi->iobase)) {
		dev_err(dev, "Cannot remap controller address.\n");
		ret = PTR_ERR(cqspi->iobase);
		return ret;
	}

	/* Obtain and remap AHB address. */
	cqspi->ahb_base = devm_platform_get_and_ioremap_resource(pdev, 1, &res_ahb);
	if (IS_ERR(cqspi->ahb_base)) {
		dev_err(dev, "Cannot remap AHB address.\n");
		ret = PTR_ERR(cqspi->ahb_base);
		return ret;
	}
	cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
	cqspi->ahb_size = resource_size(res_ahb);

	init_completion(&cqspi->transfer_complete);

	/* Obtain IRQ line. */
	irq = platform_get_irq(pdev, 0);
	if (irq < 0)
		return -ENXIO;

	pm_runtime_enable(dev);
	ret = pm_runtime_resume_and_get(dev);
	if (ret < 0)
		goto probe_pm_failed;

	ret = clk_prepare_enable(cqspi->clk);
	if (ret) {
		dev_err(dev, "Cannot enable QSPI clock.\n");
		goto probe_clk_failed;
	}

	/* Obtain QSPI reset control */
	rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
	if (IS_ERR(rstc)) {
		ret = PTR_ERR(rstc);
		dev_err(dev, "Cannot get QSPI reset.\n");
		goto probe_reset_failed;
	}

	rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
	if (IS_ERR(rstc_ocp)) {
		ret = PTR_ERR(rstc_ocp);
		dev_err(dev, "Cannot get QSPI OCP reset.\n");
		goto probe_reset_failed;
	}

	if (of_device_is_compatible(pdev->dev.of_node, "starfive,jh7110-qspi")) {
		rstc_ref = devm_reset_control_get_optional_exclusive(dev, "rstc_ref");
		if (IS_ERR(rstc_ref)) {
			ret = PTR_ERR(rstc_ref);
			dev_err(dev, "Cannot get QSPI REF reset.\n");
			goto probe_reset_failed;
		}
		reset_control_assert(rstc_ref);
		reset_control_deassert(rstc_ref);
	}

	reset_control_assert(rstc);
	reset_control_deassert(rstc);

	reset_control_assert(rstc_ocp);
	reset_control_deassert(rstc_ocp);

	cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
	host->max_speed_hz = cqspi->master_ref_clk_hz;

	/* write completion is supported by default */
	cqspi->wr_completion = true;

	ddata  = of_device_get_match_data(dev);
	if (ddata) {
		if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
			cqspi->wr_delay = 50 * DIV_ROUND_UP(NSEC_PER_SEC,
						cqspi->master_ref_clk_hz);
		if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
			host->mode_bits |= SPI_RX_OCTAL | SPI_TX_OCTAL;
		if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE)) {
			cqspi->use_direct_mode = true;
			cqspi->use_direct_mode_wr = true;
		}
		if (ddata->quirks & CQSPI_SUPPORT_EXTERNAL_DMA)
			cqspi->use_dma_read = true;
		if (ddata->quirks & CQSPI_NO_SUPPORT_WR_COMPLETION)
			cqspi->wr_completion = false;
		if (ddata->quirks & CQSPI_SLOW_SRAM)
			cqspi->slow_sram = true;
		if (ddata->quirks & CQSPI_NEEDS_APB_AHB_HAZARD_WAR)
			cqspi->apb_ahb_hazard = true;

		if (ddata->jh7110_clk_init) {
			ret = cqspi_jh7110_clk_init(pdev, cqspi);
			if (ret)
				goto probe_clk_failed;
		}

		if (of_device_is_compatible(pdev->dev.of_node,
					    "xlnx,versal-ospi-1.0")) {
			ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
			if (ret)
				goto probe_reset_failed;
		}
	}

	ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
			       pdev->name, cqspi);
	if (ret) {
		dev_err(dev, "Cannot request IRQ.\n");
		goto probe_reset_failed;
	}

	cqspi_wait_idle(cqspi);
	cqspi_controller_init(cqspi);
	cqspi->current_cs = -1;
	cqspi->sclk = 0;

	host->num_chipselect = cqspi->num_chipselect;

	ret = cqspi_setup_flash(cqspi);
	if (ret) {
		dev_err(dev, "failed to setup flash parameters %d\n", ret);
		goto probe_setup_failed;
	}

	if (cqspi->use_direct_mode) {
		ret = cqspi_request_mmap_dma(cqspi);
		if (ret == -EPROBE_DEFER)
			goto probe_setup_failed;
	}

	ret = spi_register_controller(host);
	if (ret) {
		dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
		goto probe_setup_failed;
	}

	return 0;
probe_setup_failed:
	cqspi_controller_enable(cqspi, 0);
probe_reset_failed:
	clk_disable_unprepare(cqspi->clk);
probe_clk_failed:
	pm_runtime_put_sync(dev);
probe_pm_failed:
	pm_runtime_disable(dev);
	return ret;
}

static void cqspi_remove(struct platform_device *pdev)
{
	struct cqspi_st *cqspi = platform_get_drvdata(pdev);

	spi_unregister_controller(cqspi->host);
	cqspi_controller_enable(cqspi, 0);

	if (cqspi->rx_chan)
		dma_release_channel(cqspi->rx_chan);

	clk_disable_unprepare(cqspi->clk);

	if (cqspi->is_jh7110)
		cqspi_jh7110_disable_clk(pdev, cqspi);

	pm_runtime_put_sync(&pdev->dev);
	pm_runtime_disable(&pdev->dev);
}

static int cqspi_suspend(struct device *dev)
{
	struct cqspi_st *cqspi = dev_get_drvdata(dev);
	struct spi_controller *host = dev_get_drvdata(dev);
	int ret;

	ret = spi_controller_suspend(host);
	cqspi_controller_enable(cqspi, 0);

	clk_disable_unprepare(cqspi->clk);

	return ret;
}

static int cqspi_resume(struct device *dev)
{
	struct cqspi_st *cqspi = dev_get_drvdata(dev);
	struct spi_controller *host = dev_get_drvdata(dev);

	clk_prepare_enable(cqspi->clk);
	cqspi_wait_idle(cqspi);
	cqspi_controller_init(cqspi);

	cqspi->current_cs = -1;
	cqspi->sclk = 0;

	return spi_controller_resume(host);
}

static DEFINE_SIMPLE_DEV_PM_OPS(cqspi_dev_pm_ops, cqspi_suspend, cqspi_resume);

static const struct cqspi_driver_platdata cdns_qspi = {
	.quirks = CQSPI_DISABLE_DAC_MODE,
};

static const struct cqspi_driver_platdata k2g_qspi = {
	.quirks = CQSPI_NEEDS_WR_DELAY,
};

static const struct cqspi_driver_platdata am654_ospi = {
	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
	.quirks = CQSPI_NEEDS_WR_DELAY,
};

static const struct cqspi_driver_platdata intel_lgm_qspi = {
	.quirks = CQSPI_DISABLE_DAC_MODE,
};

static const struct cqspi_driver_platdata socfpga_qspi = {
	.quirks = CQSPI_DISABLE_DAC_MODE
			| CQSPI_NO_SUPPORT_WR_COMPLETION
			| CQSPI_SLOW_SRAM,
};

static const struct cqspi_driver_platdata versal_ospi = {
	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
	.quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_SUPPORT_EXTERNAL_DMA,
	.indirect_read_dma = cqspi_versal_indirect_read_dma,
	.get_dma_status = cqspi_get_versal_dma_status,
};

static const struct cqspi_driver_platdata jh7110_qspi = {
	.quirks = CQSPI_DISABLE_DAC_MODE,
	.jh7110_clk_init = cqspi_jh7110_clk_init,
};

static const struct cqspi_driver_platdata pensando_cdns_qspi = {
	.quirks = CQSPI_NEEDS_APB_AHB_HAZARD_WAR | CQSPI_DISABLE_DAC_MODE,
};

static const struct of_device_id cqspi_dt_ids[] = {
	{
		.compatible = "cdns,qspi-nor",
		.data = &cdns_qspi,
	},
	{
		.compatible = "ti,k2g-qspi",
		.data = &k2g_qspi,
	},
	{
		.compatible = "ti,am654-ospi",
		.data = &am654_ospi,
	},
	{
		.compatible = "intel,lgm-qspi",
		.data = &intel_lgm_qspi,
	},
	{
		.compatible = "xlnx,versal-ospi-1.0",
		.data = &versal_ospi,
	},
	{
		.compatible = "intel,socfpga-qspi",
		.data = &socfpga_qspi,
	},
	{
		.compatible = "starfive,jh7110-qspi",
		.data = &jh7110_qspi,
	},
	{
		.compatible = "amd,pensando-elba-qspi",
		.data = &pensando_cdns_qspi,
	},
	{ /* end of table */ }
};

MODULE_DEVICE_TABLE(of, cqspi_dt_ids);

static struct platform_driver cqspi_platform_driver = {
	.probe = cqspi_probe,
	.remove_new = cqspi_remove,
	.driver = {
		.name = CQSPI_NAME,
		.pm = &cqspi_dev_pm_ops,
		.of_match_table = cqspi_dt_ids,
	},
};

module_platform_driver(cqspi_platform_driver);

MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:" CQSPI_NAME);
MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");
MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>");
MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>");
MODULE_AUTHOR("Pratyush Yadav <p.yadav@ti.com>");