summaryrefslogtreecommitdiffstats
path: root/drivers/spi/spi-fsl-dspi.c
blob: 89a1e7a4fe5d7a6b716a8f4ee1cc94abda66835d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
/*
 * drivers/spi/spi-fsl-dspi.c
 *
 * Copyright 2013 Freescale Semiconductor, Inc.
 *
 * Freescale DSPI driver
 * This file contains a driver for the Freescale DSPI
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 */

#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/math64.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/pinctrl/consumer.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/sched.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi-fsl-dspi.h>
#include <linux/spi/spi_bitbang.h>
#include <linux/time.h>

#define DRIVER_NAME "fsl-dspi"

#define DSPI_FIFO_SIZE			4
#define DSPI_DMA_BUFSIZE		(DSPI_FIFO_SIZE * 1024)

#define SPI_MCR		0x00
#define SPI_MCR_MASTER		(1 << 31)
#define SPI_MCR_PCSIS		(0x3F << 16)
#define SPI_MCR_CLR_TXF	(1 << 11)
#define SPI_MCR_CLR_RXF	(1 << 10)
#define SPI_MCR_XSPI		(1 << 3)

#define SPI_TCR			0x08
#define SPI_TCR_GET_TCNT(x)	(((x) & 0xffff0000) >> 16)

#define SPI_CTAR(x)		(0x0c + (((x) & 0x3) * 4))
#define SPI_CTAR_FMSZ(x)	(((x) & 0x0000000f) << 27)
#define SPI_CTAR_CPOL(x)	((x) << 26)
#define SPI_CTAR_CPHA(x)	((x) << 25)
#define SPI_CTAR_LSBFE(x)	((x) << 24)
#define SPI_CTAR_PCSSCK(x)	(((x) & 0x00000003) << 22)
#define SPI_CTAR_PASC(x)	(((x) & 0x00000003) << 20)
#define SPI_CTAR_PDT(x)	(((x) & 0x00000003) << 18)
#define SPI_CTAR_PBR(x)	(((x) & 0x00000003) << 16)
#define SPI_CTAR_CSSCK(x)	(((x) & 0x0000000f) << 12)
#define SPI_CTAR_ASC(x)	(((x) & 0x0000000f) << 8)
#define SPI_CTAR_DT(x)		(((x) & 0x0000000f) << 4)
#define SPI_CTAR_BR(x)		((x) & 0x0000000f)
#define SPI_CTAR_SCALE_BITS	0xf

#define SPI_CTAR0_SLAVE	0x0c

#define SPI_SR			0x2c
#define SPI_SR_EOQF		0x10000000
#define SPI_SR_TCFQF		0x80000000
#define SPI_SR_CLEAR		0xdaad0000

#define SPI_RSER_TFFFE		BIT(25)
#define SPI_RSER_TFFFD		BIT(24)
#define SPI_RSER_RFDFE		BIT(17)
#define SPI_RSER_RFDFD		BIT(16)

#define SPI_RSER		0x30
#define SPI_RSER_EOQFE		0x10000000
#define SPI_RSER_TCFQE		0x80000000

#define SPI_PUSHR		0x34
#define SPI_PUSHR_CMD_CONT	(1 << 15)
#define SPI_PUSHR_CONT		(SPI_PUSHR_CMD_CONT << 16)
#define SPI_PUSHR_CMD_CTAS(x)	(((x) & 0x0003) << 12)
#define SPI_PUSHR_CTAS(x)	(SPI_PUSHR_CMD_CTAS(x) << 16)
#define SPI_PUSHR_CMD_EOQ	(1 << 11)
#define SPI_PUSHR_EOQ		(SPI_PUSHR_CMD_EOQ << 16)
#define SPI_PUSHR_CMD_CTCNT	(1 << 10)
#define SPI_PUSHR_CTCNT		(SPI_PUSHR_CMD_CTCNT << 16)
#define SPI_PUSHR_CMD_PCS(x)	((1 << x) & 0x003f)
#define SPI_PUSHR_PCS(x)	(SPI_PUSHR_CMD_PCS(x) << 16)
#define SPI_PUSHR_TXDATA(x)	((x) & 0x0000ffff)

#define SPI_PUSHR_SLAVE	0x34

#define SPI_POPR		0x38
#define SPI_POPR_RXDATA(x)	((x) & 0x0000ffff)

#define SPI_TXFR0		0x3c
#define SPI_TXFR1		0x40
#define SPI_TXFR2		0x44
#define SPI_TXFR3		0x48
#define SPI_RXFR0		0x7c
#define SPI_RXFR1		0x80
#define SPI_RXFR2		0x84
#define SPI_RXFR3		0x88

#define SPI_CTARE(x)		(0x11c + (((x) & 0x3) * 4))
#define SPI_CTARE_FMSZE(x)	(((x) & 0x1) << 16)
#define SPI_CTARE_DTCP(x)	((x) & 0x7ff)

#define SPI_SREX		0x13c

#define SPI_FRAME_BITS(bits)	SPI_CTAR_FMSZ((bits) - 1)
#define SPI_FRAME_BITS_MASK	SPI_CTAR_FMSZ(0xf)
#define SPI_FRAME_BITS_16	SPI_CTAR_FMSZ(0xf)
#define SPI_FRAME_BITS_8	SPI_CTAR_FMSZ(0x7)

#define SPI_FRAME_EBITS(bits)	SPI_CTARE_FMSZE(((bits) - 1) >> 4)
#define SPI_FRAME_EBITS_MASK	SPI_CTARE_FMSZE(1)

/* Register offsets for regmap_pushr */
#define PUSHR_CMD		0x0
#define PUSHR_TX		0x2

#define SPI_CS_INIT		0x01
#define SPI_CS_ASSERT		0x02
#define SPI_CS_DROP		0x04

#define DMA_COMPLETION_TIMEOUT	msecs_to_jiffies(3000)

struct chip_data {
	u32 ctar_val;
	u16 void_write_data;
};

enum dspi_trans_mode {
	DSPI_EOQ_MODE = 0,
	DSPI_TCFQ_MODE,
	DSPI_DMA_MODE,
};

struct fsl_dspi_devtype_data {
	enum dspi_trans_mode trans_mode;
	u8 max_clock_factor;
	bool xspi_mode;
};

static const struct fsl_dspi_devtype_data vf610_data = {
	.trans_mode = DSPI_DMA_MODE,
	.max_clock_factor = 2,
};

static const struct fsl_dspi_devtype_data ls1021a_v1_data = {
	.trans_mode = DSPI_TCFQ_MODE,
	.max_clock_factor = 8,
	.xspi_mode = true,
};

static const struct fsl_dspi_devtype_data ls2085a_data = {
	.trans_mode = DSPI_TCFQ_MODE,
	.max_clock_factor = 8,
};

static const struct fsl_dspi_devtype_data coldfire_data = {
	.trans_mode = DSPI_EOQ_MODE,
	.max_clock_factor = 8,
};

struct fsl_dspi_dma {
	/* Length of transfer in words of DSPI_FIFO_SIZE */
	u32 curr_xfer_len;

	u32 *tx_dma_buf;
	struct dma_chan *chan_tx;
	dma_addr_t tx_dma_phys;
	struct completion cmd_tx_complete;
	struct dma_async_tx_descriptor *tx_desc;

	u32 *rx_dma_buf;
	struct dma_chan *chan_rx;
	dma_addr_t rx_dma_phys;
	struct completion cmd_rx_complete;
	struct dma_async_tx_descriptor *rx_desc;
};

struct fsl_dspi {
	struct spi_master	*master;
	struct platform_device	*pdev;

	struct regmap		*regmap;
	struct regmap		*regmap_pushr;
	int			irq;
	struct clk		*clk;

	struct spi_transfer	*cur_transfer;
	struct spi_message	*cur_msg;
	struct chip_data	*cur_chip;
	size_t			len;
	const void		*tx;
	void			*rx;
	void			*rx_end;
	u16			void_write_data;
	u16			tx_cmd;
	u8			bits_per_word;
	u8			bytes_per_word;
	const struct fsl_dspi_devtype_data *devtype_data;

	wait_queue_head_t	waitq;
	u32			waitflags;

	struct fsl_dspi_dma	*dma;
};

static u32 dspi_pop_tx(struct fsl_dspi *dspi)
{
	u32 txdata = 0;

	if (dspi->tx) {
		if (dspi->bytes_per_word == 1)
			txdata = *(u8 *)dspi->tx;
		else if (dspi->bytes_per_word == 2)
			txdata = *(u16 *)dspi->tx;
		else  /* dspi->bytes_per_word == 4 */
			txdata = *(u32 *)dspi->tx;
		dspi->tx += dspi->bytes_per_word;
	}
	dspi->len -= dspi->bytes_per_word;
	return txdata;
}

static u32 dspi_pop_tx_pushr(struct fsl_dspi *dspi)
{
	u16 cmd = dspi->tx_cmd, data = dspi_pop_tx(dspi);

	if (dspi->len > 0)
		cmd |= SPI_PUSHR_CMD_CONT;
	return cmd << 16 | data;
}

static void dspi_push_rx(struct fsl_dspi *dspi, u32 rxdata)
{
	if (!dspi->rx)
		return;

	/* Mask of undefined bits */
	rxdata &= (1 << dspi->bits_per_word) - 1;

	if (dspi->bytes_per_word == 1)
		*(u8 *)dspi->rx = rxdata;
	else if (dspi->bytes_per_word == 2)
		*(u16 *)dspi->rx = rxdata;
	else /* dspi->bytes_per_word == 4 */
		*(u32 *)dspi->rx = rxdata;
	dspi->rx += dspi->bytes_per_word;
}

static void dspi_tx_dma_callback(void *arg)
{
	struct fsl_dspi *dspi = arg;
	struct fsl_dspi_dma *dma = dspi->dma;

	complete(&dma->cmd_tx_complete);
}

static void dspi_rx_dma_callback(void *arg)
{
	struct fsl_dspi *dspi = arg;
	struct fsl_dspi_dma *dma = dspi->dma;
	int i;

	if (dspi->rx) {
		for (i = 0; i < dma->curr_xfer_len; i++)
			dspi_push_rx(dspi, dspi->dma->rx_dma_buf[i]);
	}

	complete(&dma->cmd_rx_complete);
}

static int dspi_next_xfer_dma_submit(struct fsl_dspi *dspi)
{
	struct fsl_dspi_dma *dma = dspi->dma;
	struct device *dev = &dspi->pdev->dev;
	int time_left;
	int i;

	for (i = 0; i < dma->curr_xfer_len; i++)
		dspi->dma->tx_dma_buf[i] = dspi_pop_tx_pushr(dspi);

	dma->tx_desc = dmaengine_prep_slave_single(dma->chan_tx,
					dma->tx_dma_phys,
					dma->curr_xfer_len *
					DMA_SLAVE_BUSWIDTH_4_BYTES,
					DMA_MEM_TO_DEV,
					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
	if (!dma->tx_desc) {
		dev_err(dev, "Not able to get desc for DMA xfer\n");
		return -EIO;
	}

	dma->tx_desc->callback = dspi_tx_dma_callback;
	dma->tx_desc->callback_param = dspi;
	if (dma_submit_error(dmaengine_submit(dma->tx_desc))) {
		dev_err(dev, "DMA submit failed\n");
		return -EINVAL;
	}

	dma->rx_desc = dmaengine_prep_slave_single(dma->chan_rx,
					dma->rx_dma_phys,
					dma->curr_xfer_len *
					DMA_SLAVE_BUSWIDTH_4_BYTES,
					DMA_DEV_TO_MEM,
					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
	if (!dma->rx_desc) {
		dev_err(dev, "Not able to get desc for DMA xfer\n");
		return -EIO;
	}

	dma->rx_desc->callback = dspi_rx_dma_callback;
	dma->rx_desc->callback_param = dspi;
	if (dma_submit_error(dmaengine_submit(dma->rx_desc))) {
		dev_err(dev, "DMA submit failed\n");
		return -EINVAL;
	}

	reinit_completion(&dspi->dma->cmd_rx_complete);
	reinit_completion(&dspi->dma->cmd_tx_complete);

	dma_async_issue_pending(dma->chan_rx);
	dma_async_issue_pending(dma->chan_tx);

	time_left = wait_for_completion_timeout(&dspi->dma->cmd_tx_complete,
					DMA_COMPLETION_TIMEOUT);
	if (time_left == 0) {
		dev_err(dev, "DMA tx timeout\n");
		dmaengine_terminate_all(dma->chan_tx);
		dmaengine_terminate_all(dma->chan_rx);
		return -ETIMEDOUT;
	}

	time_left = wait_for_completion_timeout(&dspi->dma->cmd_rx_complete,
					DMA_COMPLETION_TIMEOUT);
	if (time_left == 0) {
		dev_err(dev, "DMA rx timeout\n");
		dmaengine_terminate_all(dma->chan_tx);
		dmaengine_terminate_all(dma->chan_rx);
		return -ETIMEDOUT;
	}

	return 0;
}

static int dspi_dma_xfer(struct fsl_dspi *dspi)
{
	struct fsl_dspi_dma *dma = dspi->dma;
	struct device *dev = &dspi->pdev->dev;
	int curr_remaining_bytes;
	int bytes_per_buffer;
	int ret = 0;

	curr_remaining_bytes = dspi->len;
	bytes_per_buffer = DSPI_DMA_BUFSIZE / DSPI_FIFO_SIZE;
	while (curr_remaining_bytes) {
		/* Check if current transfer fits the DMA buffer */
		dma->curr_xfer_len = curr_remaining_bytes
			/ dspi->bytes_per_word;
		if (dma->curr_xfer_len > bytes_per_buffer)
			dma->curr_xfer_len = bytes_per_buffer;

		ret = dspi_next_xfer_dma_submit(dspi);
		if (ret) {
			dev_err(dev, "DMA transfer failed\n");
			goto exit;

		} else {
			curr_remaining_bytes -= dma->curr_xfer_len
				* dspi->bytes_per_word;
			if (curr_remaining_bytes < 0)
				curr_remaining_bytes = 0;
		}
	}

exit:
	return ret;
}

static int dspi_request_dma(struct fsl_dspi *dspi, phys_addr_t phy_addr)
{
	struct fsl_dspi_dma *dma;
	struct dma_slave_config cfg;
	struct device *dev = &dspi->pdev->dev;
	int ret;

	dma = devm_kzalloc(dev, sizeof(*dma), GFP_KERNEL);
	if (!dma)
		return -ENOMEM;

	dma->chan_rx = dma_request_slave_channel(dev, "rx");
	if (!dma->chan_rx) {
		dev_err(dev, "rx dma channel not available\n");
		ret = -ENODEV;
		return ret;
	}

	dma->chan_tx = dma_request_slave_channel(dev, "tx");
	if (!dma->chan_tx) {
		dev_err(dev, "tx dma channel not available\n");
		ret = -ENODEV;
		goto err_tx_channel;
	}

	dma->tx_dma_buf = dma_alloc_coherent(dev, DSPI_DMA_BUFSIZE,
					&dma->tx_dma_phys, GFP_KERNEL);
	if (!dma->tx_dma_buf) {
		ret = -ENOMEM;
		goto err_tx_dma_buf;
	}

	dma->rx_dma_buf = dma_alloc_coherent(dev, DSPI_DMA_BUFSIZE,
					&dma->rx_dma_phys, GFP_KERNEL);
	if (!dma->rx_dma_buf) {
		ret = -ENOMEM;
		goto err_rx_dma_buf;
	}

	cfg.src_addr = phy_addr + SPI_POPR;
	cfg.dst_addr = phy_addr + SPI_PUSHR;
	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
	cfg.src_maxburst = 1;
	cfg.dst_maxburst = 1;

	cfg.direction = DMA_DEV_TO_MEM;
	ret = dmaengine_slave_config(dma->chan_rx, &cfg);
	if (ret) {
		dev_err(dev, "can't configure rx dma channel\n");
		ret = -EINVAL;
		goto err_slave_config;
	}

	cfg.direction = DMA_MEM_TO_DEV;
	ret = dmaengine_slave_config(dma->chan_tx, &cfg);
	if (ret) {
		dev_err(dev, "can't configure tx dma channel\n");
		ret = -EINVAL;
		goto err_slave_config;
	}

	dspi->dma = dma;
	init_completion(&dma->cmd_tx_complete);
	init_completion(&dma->cmd_rx_complete);

	return 0;

err_slave_config:
	dma_free_coherent(dev, DSPI_DMA_BUFSIZE,
			dma->rx_dma_buf, dma->rx_dma_phys);
err_rx_dma_buf:
	dma_free_coherent(dev, DSPI_DMA_BUFSIZE,
			dma->tx_dma_buf, dma->tx_dma_phys);
err_tx_dma_buf:
	dma_release_channel(dma->chan_tx);
err_tx_channel:
	dma_release_channel(dma->chan_rx);

	devm_kfree(dev, dma);
	dspi->dma = NULL;

	return ret;
}

static void dspi_release_dma(struct fsl_dspi *dspi)
{
	struct fsl_dspi_dma *dma = dspi->dma;
	struct device *dev = &dspi->pdev->dev;

	if (dma) {
		if (dma->chan_tx) {
			dma_unmap_single(dev, dma->tx_dma_phys,
					DSPI_DMA_BUFSIZE, DMA_TO_DEVICE);
			dma_release_channel(dma->chan_tx);
		}

		if (dma->chan_rx) {
			dma_unmap_single(dev, dma->rx_dma_phys,
					DSPI_DMA_BUFSIZE, DMA_FROM_DEVICE);
			dma_release_channel(dma->chan_rx);
		}
	}
}

static void hz_to_spi_baud(char *pbr, char *br, int speed_hz,
		unsigned long clkrate)
{
	/* Valid baud rate pre-scaler values */
	int pbr_tbl[4] = {2, 3, 5, 7};
	int brs[16] = {	2,	4,	6,	8,
		16,	32,	64,	128,
		256,	512,	1024,	2048,
		4096,	8192,	16384,	32768 };
	int scale_needed, scale, minscale = INT_MAX;
	int i, j;

	scale_needed = clkrate / speed_hz;
	if (clkrate % speed_hz)
		scale_needed++;

	for (i = 0; i < ARRAY_SIZE(brs); i++)
		for (j = 0; j < ARRAY_SIZE(pbr_tbl); j++) {
			scale = brs[i] * pbr_tbl[j];
			if (scale >= scale_needed) {
				if (scale < minscale) {
					minscale = scale;
					*br = i;
					*pbr = j;
				}
				break;
			}
		}

	if (minscale == INT_MAX) {
		pr_warn("Can not find valid baud rate,speed_hz is %d,clkrate is %ld, we use the max prescaler value.\n",
			speed_hz, clkrate);
		*pbr = ARRAY_SIZE(pbr_tbl) - 1;
		*br =  ARRAY_SIZE(brs) - 1;
	}
}

static void ns_delay_scale(char *psc, char *sc, int delay_ns,
		unsigned long clkrate)
{
	int pscale_tbl[4] = {1, 3, 5, 7};
	int scale_needed, scale, minscale = INT_MAX;
	int i, j;
	u32 remainder;

	scale_needed = div_u64_rem((u64)delay_ns * clkrate, NSEC_PER_SEC,
			&remainder);
	if (remainder)
		scale_needed++;

	for (i = 0; i < ARRAY_SIZE(pscale_tbl); i++)
		for (j = 0; j <= SPI_CTAR_SCALE_BITS; j++) {
			scale = pscale_tbl[i] * (2 << j);
			if (scale >= scale_needed) {
				if (scale < minscale) {
					minscale = scale;
					*psc = i;
					*sc = j;
				}
				break;
			}
		}

	if (minscale == INT_MAX) {
		pr_warn("Cannot find correct scale values for %dns delay at clkrate %ld, using max prescaler value",
			delay_ns, clkrate);
		*psc = ARRAY_SIZE(pscale_tbl) - 1;
		*sc = SPI_CTAR_SCALE_BITS;
	}
}

static void fifo_write(struct fsl_dspi *dspi)
{
	regmap_write(dspi->regmap, SPI_PUSHR, dspi_pop_tx_pushr(dspi));
}

static void cmd_fifo_write(struct fsl_dspi *dspi)
{
	u16 cmd = dspi->tx_cmd;

	if (dspi->len > 0)
		cmd |= SPI_PUSHR_CMD_CONT;
	regmap_write(dspi->regmap_pushr, PUSHR_CMD, cmd);
}

static void tx_fifo_write(struct fsl_dspi *dspi, u16 txdata)
{
	regmap_write(dspi->regmap_pushr, PUSHR_TX, txdata);
}

static void dspi_tcfq_write(struct fsl_dspi *dspi)
{
	/* Clear transfer count */
	dspi->tx_cmd |= SPI_PUSHR_CMD_CTCNT;

	if (dspi->devtype_data->xspi_mode && dspi->bits_per_word > 16) {
		/* Write two TX FIFO entries first, and then the corresponding
		 * CMD FIFO entry.
		 */
		u32 data = dspi_pop_tx(dspi);

		if (dspi->cur_chip->ctar_val & SPI_CTAR_LSBFE(1)) {
			/* LSB */
			tx_fifo_write(dspi, data & 0xFFFF);
			tx_fifo_write(dspi, data >> 16);
		} else {
			/* MSB */
			tx_fifo_write(dspi, data >> 16);
			tx_fifo_write(dspi, data & 0xFFFF);
		}
		cmd_fifo_write(dspi);
	} else {
		/* Write one entry to both TX FIFO and CMD FIFO
		 * simultaneously.
		 */
		fifo_write(dspi);
	}
}

static u32 fifo_read(struct fsl_dspi *dspi)
{
	u32 rxdata = 0;

	regmap_read(dspi->regmap, SPI_POPR, &rxdata);
	return rxdata;
}

static void dspi_tcfq_read(struct fsl_dspi *dspi)
{
	dspi_push_rx(dspi, fifo_read(dspi));
}

static void dspi_eoq_write(struct fsl_dspi *dspi)
{
	int fifo_size = DSPI_FIFO_SIZE;

	/* Fill TX FIFO with as many transfers as possible */
	while (dspi->len && fifo_size--) {
		/* Request EOQF for last transfer in FIFO */
		if (dspi->len == dspi->bytes_per_word || fifo_size == 0)
			dspi->tx_cmd |= SPI_PUSHR_CMD_EOQ;
		/* Clear transfer count for first transfer in FIFO */
		if (fifo_size == (DSPI_FIFO_SIZE - 1))
			dspi->tx_cmd |= SPI_PUSHR_CMD_CTCNT;
		/* Write combined TX FIFO and CMD FIFO entry */
		fifo_write(dspi);
	}
}

static void dspi_eoq_read(struct fsl_dspi *dspi)
{
	int fifo_size = DSPI_FIFO_SIZE;

	/* Read one FIFO entry at and push to rx buffer */
	while ((dspi->rx < dspi->rx_end) && fifo_size--)
		dspi_push_rx(dspi, fifo_read(dspi));
}

static int dspi_transfer_one_message(struct spi_master *master,
		struct spi_message *message)
{
	struct fsl_dspi *dspi = spi_master_get_devdata(master);
	struct spi_device *spi = message->spi;
	struct spi_transfer *transfer;
	int status = 0;
	enum dspi_trans_mode trans_mode;

	message->actual_length = 0;

	list_for_each_entry(transfer, &message->transfers, transfer_list) {
		dspi->cur_transfer = transfer;
		dspi->cur_msg = message;
		dspi->cur_chip = spi_get_ctldata(spi);
		/* Prepare command word for CMD FIFO */
		dspi->tx_cmd = SPI_PUSHR_CMD_CTAS(0) |
			SPI_PUSHR_CMD_PCS(spi->chip_select);
		if (list_is_last(&dspi->cur_transfer->transfer_list,
				 &dspi->cur_msg->transfers)) {
			/* Leave PCS activated after last transfer when
			 * cs_change is set.
			 */
			if (transfer->cs_change)
				dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
		} else {
			/* Keep PCS active between transfers in same message
			 * when cs_change is not set, and de-activate PCS
			 * between transfers in the same message when
			 * cs_change is set.
			 */
			if (!transfer->cs_change)
				dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
		}

		dspi->void_write_data = dspi->cur_chip->void_write_data;

		dspi->tx = transfer->tx_buf;
		dspi->rx = transfer->rx_buf;
		dspi->rx_end = dspi->rx + transfer->len;
		dspi->len = transfer->len;
		/* Validated transfer specific frame size (defaults applied) */
		dspi->bits_per_word = transfer->bits_per_word;
		if (transfer->bits_per_word <= 8)
			dspi->bytes_per_word = 1;
		else if (transfer->bits_per_word <= 16)
			dspi->bytes_per_word = 2;
		else
			dspi->bytes_per_word = 4;

		regmap_update_bits(dspi->regmap, SPI_MCR,
				   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
				   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
		regmap_write(dspi->regmap, SPI_CTAR(0),
			     dspi->cur_chip->ctar_val |
			     SPI_FRAME_BITS(transfer->bits_per_word));
		if (dspi->devtype_data->xspi_mode)
			regmap_write(dspi->regmap, SPI_CTARE(0),
				     SPI_FRAME_EBITS(transfer->bits_per_word)
				     | SPI_CTARE_DTCP(1));

		trans_mode = dspi->devtype_data->trans_mode;
		switch (trans_mode) {
		case DSPI_EOQ_MODE:
			regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_EOQFE);
			dspi_eoq_write(dspi);
			break;
		case DSPI_TCFQ_MODE:
			regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_TCFQE);
			dspi_tcfq_write(dspi);
			break;
		case DSPI_DMA_MODE:
			regmap_write(dspi->regmap, SPI_RSER,
				SPI_RSER_TFFFE | SPI_RSER_TFFFD |
				SPI_RSER_RFDFE | SPI_RSER_RFDFD);
			status = dspi_dma_xfer(dspi);
			break;
		default:
			dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
				trans_mode);
			status = -EINVAL;
			goto out;
		}

		if (trans_mode != DSPI_DMA_MODE) {
			if (wait_event_interruptible(dspi->waitq,
						dspi->waitflags))
				dev_err(&dspi->pdev->dev,
					"wait transfer complete fail!\n");
			dspi->waitflags = 0;
		}

		if (transfer->delay_usecs)
			udelay(transfer->delay_usecs);
	}

out:
	message->status = status;
	spi_finalize_current_message(master);

	return status;
}

static int dspi_setup(struct spi_device *spi)
{
	struct chip_data *chip;
	struct fsl_dspi *dspi = spi_master_get_devdata(spi->master);
	struct fsl_dspi_platform_data *pdata;
	u32 cs_sck_delay = 0, sck_cs_delay = 0;
	unsigned char br = 0, pbr = 0, pcssck = 0, cssck = 0;
	unsigned char pasc = 0, asc = 0;
	unsigned long clkrate;

	/* Only alloc on first setup */
	chip = spi_get_ctldata(spi);
	if (chip == NULL) {
		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
		if (!chip)
			return -ENOMEM;
	}

	pdata = dev_get_platdata(&dspi->pdev->dev);

	if (!pdata) {
		of_property_read_u32(spi->dev.of_node, "fsl,spi-cs-sck-delay",
				&cs_sck_delay);

		of_property_read_u32(spi->dev.of_node, "fsl,spi-sck-cs-delay",
				&sck_cs_delay);
	} else {
		cs_sck_delay = pdata->cs_sck_delay;
		sck_cs_delay = pdata->sck_cs_delay;
	}

	chip->void_write_data = 0;

	clkrate = clk_get_rate(dspi->clk);
	hz_to_spi_baud(&pbr, &br, spi->max_speed_hz, clkrate);

	/* Set PCS to SCK delay scale values */
	ns_delay_scale(&pcssck, &cssck, cs_sck_delay, clkrate);

	/* Set After SCK delay scale values */
	ns_delay_scale(&pasc, &asc, sck_cs_delay, clkrate);

	chip->ctar_val = SPI_CTAR_CPOL(spi->mode & SPI_CPOL ? 1 : 0)
		| SPI_CTAR_CPHA(spi->mode & SPI_CPHA ? 1 : 0)
		| SPI_CTAR_LSBFE(spi->mode & SPI_LSB_FIRST ? 1 : 0)
		| SPI_CTAR_PCSSCK(pcssck)
		| SPI_CTAR_CSSCK(cssck)
		| SPI_CTAR_PASC(pasc)
		| SPI_CTAR_ASC(asc)
		| SPI_CTAR_PBR(pbr)
		| SPI_CTAR_BR(br);

	spi_set_ctldata(spi, chip);

	return 0;
}

static void dspi_cleanup(struct spi_device *spi)
{
	struct chip_data *chip = spi_get_ctldata((struct spi_device *)spi);

	dev_dbg(&spi->dev, "spi_device %u.%u cleanup\n",
			spi->master->bus_num, spi->chip_select);

	kfree(chip);
}

static irqreturn_t dspi_interrupt(int irq, void *dev_id)
{
	struct fsl_dspi *dspi = (struct fsl_dspi *)dev_id;
	struct spi_message *msg = dspi->cur_msg;
	enum dspi_trans_mode trans_mode;
	u32 spi_sr, spi_tcr;
	u16 spi_tcnt;

	regmap_read(dspi->regmap, SPI_SR, &spi_sr);
	regmap_write(dspi->regmap, SPI_SR, spi_sr);


	if (spi_sr & (SPI_SR_EOQF | SPI_SR_TCFQF)) {
		/* Get transfer counter (in number of SPI transfers). It was
		 * reset to 0 when transfer(s) were started.
		 */
		regmap_read(dspi->regmap, SPI_TCR, &spi_tcr);
		spi_tcnt = SPI_TCR_GET_TCNT(spi_tcr);
		/* Update total number of bytes that were transferred */
		msg->actual_length += spi_tcnt * dspi->bytes_per_word;

		trans_mode = dspi->devtype_data->trans_mode;
		switch (trans_mode) {
		case DSPI_EOQ_MODE:
			dspi_eoq_read(dspi);
			break;
		case DSPI_TCFQ_MODE:
			dspi_tcfq_read(dspi);
			break;
		default:
			dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
				trans_mode);
				return IRQ_HANDLED;
		}

		if (!dspi->len) {
			dspi->waitflags = 1;
			wake_up_interruptible(&dspi->waitq);
		} else {
			switch (trans_mode) {
			case DSPI_EOQ_MODE:
				dspi_eoq_write(dspi);
				break;
			case DSPI_TCFQ_MODE:
				dspi_tcfq_write(dspi);
				break;
			default:
				dev_err(&dspi->pdev->dev,
					"unsupported trans_mode %u\n",
					trans_mode);
			}
		}
	}

	return IRQ_HANDLED;
}

static const struct of_device_id fsl_dspi_dt_ids[] = {
	{ .compatible = "fsl,vf610-dspi", .data = &vf610_data, },
	{ .compatible = "fsl,ls1021a-v1.0-dspi", .data = &ls1021a_v1_data, },
	{ .compatible = "fsl,ls2085a-dspi", .data = &ls2085a_data, },
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, fsl_dspi_dt_ids);

#ifdef CONFIG_PM_SLEEP
static int dspi_suspend(struct device *dev)
{
	struct spi_master *master = dev_get_drvdata(dev);
	struct fsl_dspi *dspi = spi_master_get_devdata(master);

	spi_master_suspend(master);
	clk_disable_unprepare(dspi->clk);

	pinctrl_pm_select_sleep_state(dev);

	return 0;
}

static int dspi_resume(struct device *dev)
{
	struct spi_master *master = dev_get_drvdata(dev);
	struct fsl_dspi *dspi = spi_master_get_devdata(master);
	int ret;

	pinctrl_pm_select_default_state(dev);

	ret = clk_prepare_enable(dspi->clk);
	if (ret)
		return ret;
	spi_master_resume(master);

	return 0;
}
#endif /* CONFIG_PM_SLEEP */

static SIMPLE_DEV_PM_OPS(dspi_pm, dspi_suspend, dspi_resume);

static const struct regmap_range dspi_volatile_ranges[] = {
	regmap_reg_range(SPI_MCR, SPI_TCR),
	regmap_reg_range(SPI_SR, SPI_SR),
	regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
};

static const struct regmap_access_table dspi_volatile_table = {
	.yes_ranges     = dspi_volatile_ranges,
	.n_yes_ranges   = ARRAY_SIZE(dspi_volatile_ranges),
};

static const struct regmap_config dspi_regmap_config = {
	.reg_bits = 32,
	.val_bits = 32,
	.reg_stride = 4,
	.max_register = 0x88,
	.volatile_table = &dspi_volatile_table,
};

static const struct regmap_range dspi_xspi_volatile_ranges[] = {
	regmap_reg_range(SPI_MCR, SPI_TCR),
	regmap_reg_range(SPI_SR, SPI_SR),
	regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
	regmap_reg_range(SPI_SREX, SPI_SREX),
};

static const struct regmap_access_table dspi_xspi_volatile_table = {
	.yes_ranges     = dspi_xspi_volatile_ranges,
	.n_yes_ranges   = ARRAY_SIZE(dspi_xspi_volatile_ranges),
};

static const struct regmap_config dspi_xspi_regmap_config[] = {
	{
		.reg_bits = 32,
		.val_bits = 32,
		.reg_stride = 4,
		.max_register = 0x13c,
		.volatile_table = &dspi_xspi_volatile_table,
	},
	{
		.name = "pushr",
		.reg_bits = 16,
		.val_bits = 16,
		.reg_stride = 2,
		.max_register = 0x2,
	},
};

static void dspi_init(struct fsl_dspi *dspi)
{
	regmap_write(dspi->regmap, SPI_MCR, SPI_MCR_MASTER | SPI_MCR_PCSIS |
		     (dspi->devtype_data->xspi_mode ? SPI_MCR_XSPI : 0));
	regmap_write(dspi->regmap, SPI_SR, SPI_SR_CLEAR);
	if (dspi->devtype_data->xspi_mode)
		regmap_write(dspi->regmap, SPI_CTARE(0),
			     SPI_CTARE_FMSZE(0) | SPI_CTARE_DTCP(1));
}

static int dspi_probe(struct platform_device *pdev)
{
	struct device_node *np = pdev->dev.of_node;
	struct spi_master *master;
	struct fsl_dspi *dspi;
	struct resource *res;
	const struct regmap_config *regmap_config;
	void __iomem *base;
	struct fsl_dspi_platform_data *pdata;
	int ret = 0, cs_num, bus_num;

	master = spi_alloc_master(&pdev->dev, sizeof(struct fsl_dspi));
	if (!master)
		return -ENOMEM;

	dspi = spi_master_get_devdata(master);
	dspi->pdev = pdev;
	dspi->master = master;

	master->transfer = NULL;
	master->setup = dspi_setup;
	master->transfer_one_message = dspi_transfer_one_message;
	master->dev.of_node = pdev->dev.of_node;

	master->cleanup = dspi_cleanup;
	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;

	pdata = dev_get_platdata(&pdev->dev);
	if (pdata) {
		master->num_chipselect = pdata->cs_num;
		master->bus_num = pdata->bus_num;

		dspi->devtype_data = &coldfire_data;
	} else {

		ret = of_property_read_u32(np, "spi-num-chipselects", &cs_num);
		if (ret < 0) {
			dev_err(&pdev->dev, "can't get spi-num-chipselects\n");
			goto out_master_put;
		}
		master->num_chipselect = cs_num;

		ret = of_property_read_u32(np, "bus-num", &bus_num);
		if (ret < 0) {
			dev_err(&pdev->dev, "can't get bus-num\n");
			goto out_master_put;
		}
		master->bus_num = bus_num;

		dspi->devtype_data = of_device_get_match_data(&pdev->dev);
		if (!dspi->devtype_data) {
			dev_err(&pdev->dev, "can't get devtype_data\n");
			ret = -EFAULT;
			goto out_master_put;
		}
	}

	if (dspi->devtype_data->xspi_mode)
		master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
	else
		master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	base = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(base)) {
		ret = PTR_ERR(base);
		goto out_master_put;
	}

	if (dspi->devtype_data->xspi_mode)
		regmap_config = &dspi_xspi_regmap_config[0];
	else
		regmap_config = &dspi_regmap_config;
	dspi->regmap = devm_regmap_init_mmio(&pdev->dev, base, regmap_config);
	if (IS_ERR(dspi->regmap)) {
		dev_err(&pdev->dev, "failed to init regmap: %ld\n",
				PTR_ERR(dspi->regmap));
		ret = PTR_ERR(dspi->regmap);
		goto out_master_put;
	}

	if (dspi->devtype_data->xspi_mode) {
		dspi->regmap_pushr = devm_regmap_init_mmio(
			&pdev->dev, base + SPI_PUSHR,
			&dspi_xspi_regmap_config[1]);
		if (IS_ERR(dspi->regmap_pushr)) {
			dev_err(&pdev->dev,
				"failed to init pushr regmap: %ld\n",
				PTR_ERR(dspi->regmap_pushr));
			ret = PTR_ERR(dspi->regmap_pushr);
			goto out_master_put;
		}
	}

	dspi->clk = devm_clk_get(&pdev->dev, "dspi");
	if (IS_ERR(dspi->clk)) {
		ret = PTR_ERR(dspi->clk);
		dev_err(&pdev->dev, "unable to get clock\n");
		goto out_master_put;
	}
	ret = clk_prepare_enable(dspi->clk);
	if (ret)
		goto out_master_put;

	dspi_init(dspi);
	dspi->irq = platform_get_irq(pdev, 0);
	if (dspi->irq < 0) {
		dev_err(&pdev->dev, "can't get platform irq\n");
		ret = dspi->irq;
		goto out_clk_put;
	}

	ret = devm_request_irq(&pdev->dev, dspi->irq, dspi_interrupt, 0,
			pdev->name, dspi);
	if (ret < 0) {
		dev_err(&pdev->dev, "Unable to attach DSPI interrupt\n");
		goto out_clk_put;
	}

	if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
		ret = dspi_request_dma(dspi, res->start);
		if (ret < 0) {
			dev_err(&pdev->dev, "can't get dma channels\n");
			goto out_clk_put;
		}
	}

	master->max_speed_hz =
		clk_get_rate(dspi->clk) / dspi->devtype_data->max_clock_factor;

	init_waitqueue_head(&dspi->waitq);
	platform_set_drvdata(pdev, master);

	ret = spi_register_master(master);
	if (ret != 0) {
		dev_err(&pdev->dev, "Problem registering DSPI master\n");
		goto out_clk_put;
	}

	return ret;

out_clk_put:
	clk_disable_unprepare(dspi->clk);
out_master_put:
	spi_master_put(master);

	return ret;
}

static int dspi_remove(struct platform_device *pdev)
{
	struct spi_master *master = platform_get_drvdata(pdev);
	struct fsl_dspi *dspi = spi_master_get_devdata(master);

	/* Disconnect from the SPI framework */
	dspi_release_dma(dspi);
	clk_disable_unprepare(dspi->clk);
	spi_unregister_master(dspi->master);

	return 0;
}

static struct platform_driver fsl_dspi_driver = {
	.driver.name    = DRIVER_NAME,
	.driver.of_match_table = fsl_dspi_dt_ids,
	.driver.owner   = THIS_MODULE,
	.driver.pm = &dspi_pm,
	.probe          = dspi_probe,
	.remove		= dspi_remove,
};
module_platform_driver(fsl_dspi_driver);

MODULE_DESCRIPTION("Freescale DSPI Controller Driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:" DRIVER_NAME);