1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Intel IFC VF NIC driver for virtio dataplane offloading
*
* Copyright (C) 2020 Intel Corporation.
*
* Author: Zhu Lingshan <lingshan.zhu@intel.com>
*
*/
#include "ifcvf_base.h"
static inline u8 ifc_ioread8(u8 __iomem *addr)
{
return ioread8(addr);
}
static inline u16 ifc_ioread16 (__le16 __iomem *addr)
{
return ioread16(addr);
}
static inline u32 ifc_ioread32(__le32 __iomem *addr)
{
return ioread32(addr);
}
static inline void ifc_iowrite8(u8 value, u8 __iomem *addr)
{
iowrite8(value, addr);
}
static inline void ifc_iowrite16(u16 value, __le16 __iomem *addr)
{
iowrite16(value, addr);
}
static inline void ifc_iowrite32(u32 value, __le32 __iomem *addr)
{
iowrite32(value, addr);
}
static void ifc_iowrite64_twopart(u64 val,
__le32 __iomem *lo, __le32 __iomem *hi)
{
ifc_iowrite32((u32)val, lo);
ifc_iowrite32(val >> 32, hi);
}
struct ifcvf_adapter *vf_to_adapter(struct ifcvf_hw *hw)
{
return container_of(hw, struct ifcvf_adapter, vf);
}
static void __iomem *get_cap_addr(struct ifcvf_hw *hw,
struct virtio_pci_cap *cap)
{
struct ifcvf_adapter *ifcvf;
struct pci_dev *pdev;
u32 length, offset;
u8 bar;
length = le32_to_cpu(cap->length);
offset = le32_to_cpu(cap->offset);
bar = cap->bar;
ifcvf= vf_to_adapter(hw);
pdev = ifcvf->pdev;
if (bar >= IFCVF_PCI_MAX_RESOURCE) {
IFCVF_DBG(pdev,
"Invalid bar number %u to get capabilities\n", bar);
return NULL;
}
if (offset + length > pci_resource_len(pdev, bar)) {
IFCVF_DBG(pdev,
"offset(%u) + len(%u) overflows bar%u's capability\n",
offset, length, bar);
return NULL;
}
return hw->base[bar] + offset;
}
static int ifcvf_read_config_range(struct pci_dev *dev,
uint32_t *val, int size, int where)
{
int ret, i;
for (i = 0; i < size; i += 4) {
ret = pci_read_config_dword(dev, where + i, val + i / 4);
if (ret < 0)
return ret;
}
return 0;
}
int ifcvf_init_hw(struct ifcvf_hw *hw, struct pci_dev *pdev)
{
struct virtio_pci_cap cap;
u16 notify_off;
int ret;
u8 pos;
u32 i;
ret = pci_read_config_byte(pdev, PCI_CAPABILITY_LIST, &pos);
if (ret < 0) {
IFCVF_ERR(pdev, "Failed to read PCI capability list\n");
return -EIO;
}
while (pos) {
ret = ifcvf_read_config_range(pdev, (u32 *)&cap,
sizeof(cap), pos);
if (ret < 0) {
IFCVF_ERR(pdev,
"Failed to get PCI capability at %x\n", pos);
break;
}
if (cap.cap_vndr != PCI_CAP_ID_VNDR)
goto next;
switch (cap.cfg_type) {
case VIRTIO_PCI_CAP_COMMON_CFG:
hw->common_cfg = get_cap_addr(hw, &cap);
IFCVF_DBG(pdev, "hw->common_cfg = %p\n",
hw->common_cfg);
break;
case VIRTIO_PCI_CAP_NOTIFY_CFG:
pci_read_config_dword(pdev, pos + sizeof(cap),
&hw->notify_off_multiplier);
hw->notify_bar = cap.bar;
hw->notify_base = get_cap_addr(hw, &cap);
IFCVF_DBG(pdev, "hw->notify_base = %p\n",
hw->notify_base);
break;
case VIRTIO_PCI_CAP_ISR_CFG:
hw->isr = get_cap_addr(hw, &cap);
IFCVF_DBG(pdev, "hw->isr = %p\n", hw->isr);
break;
case VIRTIO_PCI_CAP_DEVICE_CFG:
hw->net_cfg = get_cap_addr(hw, &cap);
IFCVF_DBG(pdev, "hw->net_cfg = %p\n", hw->net_cfg);
break;
}
next:
pos = cap.cap_next;
}
if (hw->common_cfg == NULL || hw->notify_base == NULL ||
hw->isr == NULL || hw->net_cfg == NULL) {
IFCVF_ERR(pdev, "Incomplete PCI capabilities\n");
return -EIO;
}
for (i = 0; i < IFCVF_MAX_QUEUE_PAIRS * 2; i++) {
ifc_iowrite16(i, &hw->common_cfg->queue_select);
notify_off = ifc_ioread16(&hw->common_cfg->queue_notify_off);
hw->vring[i].notify_addr = hw->notify_base +
notify_off * hw->notify_off_multiplier;
}
hw->lm_cfg = hw->base[IFCVF_LM_BAR];
IFCVF_DBG(pdev,
"PCI capability mapping: common cfg: %p, notify base: %p\n, isr cfg: %p, device cfg: %p, multiplier: %u\n",
hw->common_cfg, hw->notify_base, hw->isr,
hw->net_cfg, hw->notify_off_multiplier);
return 0;
}
u8 ifcvf_get_status(struct ifcvf_hw *hw)
{
return ifc_ioread8(&hw->common_cfg->device_status);
}
void ifcvf_set_status(struct ifcvf_hw *hw, u8 status)
{
ifc_iowrite8(status, &hw->common_cfg->device_status);
}
void ifcvf_reset(struct ifcvf_hw *hw)
{
ifcvf_set_status(hw, 0);
/* flush set_status, make sure VF is stopped, reset */
ifcvf_get_status(hw);
}
static void ifcvf_add_status(struct ifcvf_hw *hw, u8 status)
{
if (status != 0)
status |= ifcvf_get_status(hw);
ifcvf_set_status(hw, status);
ifcvf_get_status(hw);
}
u64 ifcvf_get_features(struct ifcvf_hw *hw)
{
struct virtio_pci_common_cfg __iomem *cfg = hw->common_cfg;
u32 features_lo, features_hi;
ifc_iowrite32(0, &cfg->device_feature_select);
features_lo = ifc_ioread32(&cfg->device_feature);
ifc_iowrite32(1, &cfg->device_feature_select);
features_hi = ifc_ioread32(&cfg->device_feature);
return ((u64)features_hi << 32) | features_lo;
}
void ifcvf_read_net_config(struct ifcvf_hw *hw, u64 offset,
void *dst, int length)
{
u8 old_gen, new_gen, *p;
int i;
WARN_ON(offset + length > sizeof(struct virtio_net_config));
do {
old_gen = ifc_ioread8(&hw->common_cfg->config_generation);
p = dst;
for (i = 0; i < length; i++)
*p++ = ifc_ioread8(hw->net_cfg + offset + i);
new_gen = ifc_ioread8(&hw->common_cfg->config_generation);
} while (old_gen != new_gen);
}
void ifcvf_write_net_config(struct ifcvf_hw *hw, u64 offset,
const void *src, int length)
{
const u8 *p;
int i;
p = src;
WARN_ON(offset + length > sizeof(struct virtio_net_config));
for (i = 0; i < length; i++)
ifc_iowrite8(*p++, hw->net_cfg + offset + i);
}
static void ifcvf_set_features(struct ifcvf_hw *hw, u64 features)
{
struct virtio_pci_common_cfg __iomem *cfg = hw->common_cfg;
ifc_iowrite32(0, &cfg->guest_feature_select);
ifc_iowrite32((u32)features, &cfg->guest_feature);
ifc_iowrite32(1, &cfg->guest_feature_select);
ifc_iowrite32(features >> 32, &cfg->guest_feature);
}
static int ifcvf_config_features(struct ifcvf_hw *hw)
{
struct ifcvf_adapter *ifcvf;
ifcvf = vf_to_adapter(hw);
ifcvf_set_features(hw, hw->req_features);
ifcvf_add_status(hw, VIRTIO_CONFIG_S_FEATURES_OK);
if (!(ifcvf_get_status(hw) & VIRTIO_CONFIG_S_FEATURES_OK)) {
IFCVF_ERR(ifcvf->pdev, "Failed to set FEATURES_OK status\n");
return -EIO;
}
return 0;
}
u64 ifcvf_get_vq_state(struct ifcvf_hw *hw, u16 qid)
{
struct ifcvf_lm_cfg __iomem *ifcvf_lm;
void __iomem *avail_idx_addr;
u16 last_avail_idx;
u32 q_pair_id;
ifcvf_lm = (struct ifcvf_lm_cfg __iomem *)hw->lm_cfg;
q_pair_id = qid / (IFCVF_MAX_QUEUE_PAIRS * 2);
avail_idx_addr = &ifcvf_lm->vring_lm_cfg[q_pair_id].idx_addr[qid % 2];
last_avail_idx = ifc_ioread16(avail_idx_addr);
return last_avail_idx;
}
int ifcvf_set_vq_state(struct ifcvf_hw *hw, u16 qid, u64 num)
{
struct ifcvf_lm_cfg __iomem *ifcvf_lm;
void __iomem *avail_idx_addr;
u32 q_pair_id;
ifcvf_lm = (struct ifcvf_lm_cfg __iomem *)hw->lm_cfg;
q_pair_id = qid / (IFCVF_MAX_QUEUE_PAIRS * 2);
avail_idx_addr = &ifcvf_lm->vring_lm_cfg[q_pair_id].idx_addr[qid % 2];
hw->vring[qid].last_avail_idx = num;
ifc_iowrite16(num, avail_idx_addr);
return 0;
}
static int ifcvf_hw_enable(struct ifcvf_hw *hw)
{
struct virtio_pci_common_cfg __iomem *cfg;
struct ifcvf_adapter *ifcvf;
u32 i;
ifcvf = vf_to_adapter(hw);
cfg = hw->common_cfg;
ifc_iowrite16(IFCVF_MSI_CONFIG_OFF, &cfg->msix_config);
if (ifc_ioread16(&cfg->msix_config) == VIRTIO_MSI_NO_VECTOR) {
IFCVF_ERR(ifcvf->pdev, "No msix vector for device config\n");
return -EINVAL;
}
for (i = 0; i < hw->nr_vring; i++) {
if (!hw->vring[i].ready)
break;
ifc_iowrite16(i, &cfg->queue_select);
ifc_iowrite64_twopart(hw->vring[i].desc, &cfg->queue_desc_lo,
&cfg->queue_desc_hi);
ifc_iowrite64_twopart(hw->vring[i].avail, &cfg->queue_avail_lo,
&cfg->queue_avail_hi);
ifc_iowrite64_twopart(hw->vring[i].used, &cfg->queue_used_lo,
&cfg->queue_used_hi);
ifc_iowrite16(hw->vring[i].size, &cfg->queue_size);
ifc_iowrite16(i + IFCVF_MSI_QUEUE_OFF, &cfg->queue_msix_vector);
if (ifc_ioread16(&cfg->queue_msix_vector) ==
VIRTIO_MSI_NO_VECTOR) {
IFCVF_ERR(ifcvf->pdev,
"No msix vector for queue %u\n", i);
return -EINVAL;
}
ifcvf_set_vq_state(hw, i, hw->vring[i].last_avail_idx);
ifc_iowrite16(1, &cfg->queue_enable);
}
return 0;
}
static void ifcvf_hw_disable(struct ifcvf_hw *hw)
{
struct virtio_pci_common_cfg __iomem *cfg;
u32 i;
cfg = hw->common_cfg;
ifc_iowrite16(VIRTIO_MSI_NO_VECTOR, &cfg->msix_config);
for (i = 0; i < hw->nr_vring; i++) {
ifc_iowrite16(i, &cfg->queue_select);
ifc_iowrite16(VIRTIO_MSI_NO_VECTOR, &cfg->queue_msix_vector);
}
ifc_ioread16(&cfg->queue_msix_vector);
}
int ifcvf_start_hw(struct ifcvf_hw *hw)
{
ifcvf_reset(hw);
ifcvf_add_status(hw, VIRTIO_CONFIG_S_ACKNOWLEDGE);
ifcvf_add_status(hw, VIRTIO_CONFIG_S_DRIVER);
if (ifcvf_config_features(hw) < 0)
return -EINVAL;
if (ifcvf_hw_enable(hw) < 0)
return -EINVAL;
ifcvf_add_status(hw, VIRTIO_CONFIG_S_DRIVER_OK);
return 0;
}
void ifcvf_stop_hw(struct ifcvf_hw *hw)
{
ifcvf_hw_disable(hw);
ifcvf_reset(hw);
}
void ifcvf_notify_queue(struct ifcvf_hw *hw, u16 qid)
{
ifc_iowrite16(qid, hw->vring[qid].notify_addr);
}
|