summaryrefslogtreecommitdiffstats
path: root/fs/btrfs/tree-mod-log.c
blob: b10170e691d17f95731d1c8a1b4d98bfc6b0a7d6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
// SPDX-License-Identifier: GPL-2.0

#include "tree-mod-log.h"
#include "disk-io.h"

struct tree_mod_root {
	u64 logical;
	u8 level;
};

struct tree_mod_elem {
	struct rb_node node;
	u64 logical;
	u64 seq;
	enum btrfs_mod_log_op op;

	/*
	 * This is used for BTRFS_MOD_LOG_KEY_* and BTRFS_MOD_LOG_MOVE_KEYS
	 * operations.
	 */
	int slot;

	/* This is used for BTRFS_MOD_LOG_KEY* and BTRFS_MOD_LOG_ROOT_REPLACE. */
	u64 generation;

	/* Those are used for op == BTRFS_MOD_LOG_KEY_{REPLACE,REMOVE}. */
	struct btrfs_disk_key key;
	u64 blockptr;

	/* This is used for op == BTRFS_MOD_LOG_MOVE_KEYS. */
	struct {
		int dst_slot;
		int nr_items;
	} move;

	/* This is used for op == BTRFS_MOD_LOG_ROOT_REPLACE. */
	struct tree_mod_root old_root;
};

/*
 * Pull a new tree mod seq number for our operation.
 */
static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
{
	return atomic64_inc_return(&fs_info->tree_mod_seq);
}

/*
 * This adds a new blocker to the tree mod log's blocker list if the @elem
 * passed does not already have a sequence number set. So when a caller expects
 * to record tree modifications, it should ensure to set elem->seq to zero
 * before calling btrfs_get_tree_mod_seq.
 * Returns a fresh, unused tree log modification sequence number, even if no new
 * blocker was added.
 */
u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
			   struct btrfs_seq_list *elem)
{
	write_lock(&fs_info->tree_mod_log_lock);
	if (!elem->seq) {
		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
		set_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags);
	}
	write_unlock(&fs_info->tree_mod_log_lock);

	return elem->seq;
}

void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
			    struct btrfs_seq_list *elem)
{
	struct rb_root *tm_root;
	struct rb_node *node;
	struct rb_node *next;
	struct tree_mod_elem *tm;
	u64 min_seq = BTRFS_SEQ_LAST;
	u64 seq_putting = elem->seq;

	if (!seq_putting)
		return;

	write_lock(&fs_info->tree_mod_log_lock);
	list_del(&elem->list);
	elem->seq = 0;

	if (list_empty(&fs_info->tree_mod_seq_list)) {
		clear_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags);
	} else {
		struct btrfs_seq_list *first;

		first = list_first_entry(&fs_info->tree_mod_seq_list,
					 struct btrfs_seq_list, list);
		if (seq_putting > first->seq) {
			/*
			 * Blocker with lower sequence number exists, we cannot
			 * remove anything from the log.
			 */
			write_unlock(&fs_info->tree_mod_log_lock);
			return;
		}
		min_seq = first->seq;
	}

	/*
	 * Anything that's lower than the lowest existing (read: blocked)
	 * sequence number can be removed from the tree.
	 */
	tm_root = &fs_info->tree_mod_log;
	for (node = rb_first(tm_root); node; node = next) {
		next = rb_next(node);
		tm = rb_entry(node, struct tree_mod_elem, node);
		if (tm->seq >= min_seq)
			continue;
		rb_erase(node, tm_root);
		kfree(tm);
	}
	write_unlock(&fs_info->tree_mod_log_lock);
}

/*
 * Key order of the log:
 *       node/leaf start address -> sequence
 *
 * The 'start address' is the logical address of the *new* root node for root
 * replace operations, or the logical address of the affected block for all
 * other operations.
 */
static noinline int tree_mod_log_insert(struct btrfs_fs_info *fs_info,
					struct tree_mod_elem *tm)
{
	struct rb_root *tm_root;
	struct rb_node **new;
	struct rb_node *parent = NULL;
	struct tree_mod_elem *cur;

	lockdep_assert_held_write(&fs_info->tree_mod_log_lock);

	tm->seq = btrfs_inc_tree_mod_seq(fs_info);

	tm_root = &fs_info->tree_mod_log;
	new = &tm_root->rb_node;
	while (*new) {
		cur = rb_entry(*new, struct tree_mod_elem, node);
		parent = *new;
		if (cur->logical < tm->logical)
			new = &((*new)->rb_left);
		else if (cur->logical > tm->logical)
			new = &((*new)->rb_right);
		else if (cur->seq < tm->seq)
			new = &((*new)->rb_left);
		else if (cur->seq > tm->seq)
			new = &((*new)->rb_right);
		else
			return -EEXIST;
	}

	rb_link_node(&tm->node, parent, new);
	rb_insert_color(&tm->node, tm_root);
	return 0;
}

/*
 * Determines if logging can be omitted. Returns true if it can. Otherwise, it
 * returns false with the tree_mod_log_lock acquired. The caller must hold
 * this until all tree mod log insertions are recorded in the rb tree and then
 * write unlock fs_info::tree_mod_log_lock.
 */
static inline bool tree_mod_dont_log(struct btrfs_fs_info *fs_info,
				    struct extent_buffer *eb)
{
	if (!test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags))
		return true;
	if (eb && btrfs_header_level(eb) == 0)
		return true;

	write_lock(&fs_info->tree_mod_log_lock);
	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
		write_unlock(&fs_info->tree_mod_log_lock);
		return true;
	}

	return false;
}

/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
static inline bool tree_mod_need_log(const struct btrfs_fs_info *fs_info,
				    struct extent_buffer *eb)
{
	if (!test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags))
		return false;
	if (eb && btrfs_header_level(eb) == 0)
		return false;

	return true;
}

static struct tree_mod_elem *alloc_tree_mod_elem(struct extent_buffer *eb,
						 int slot,
						 enum btrfs_mod_log_op op,
						 gfp_t flags)
{
	struct tree_mod_elem *tm;

	tm = kzalloc(sizeof(*tm), flags);
	if (!tm)
		return NULL;

	tm->logical = eb->start;
	if (op != BTRFS_MOD_LOG_KEY_ADD) {
		btrfs_node_key(eb, &tm->key, slot);
		tm->blockptr = btrfs_node_blockptr(eb, slot);
	}
	tm->op = op;
	tm->slot = slot;
	tm->generation = btrfs_node_ptr_generation(eb, slot);
	RB_CLEAR_NODE(&tm->node);

	return tm;
}

int btrfs_tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
				  enum btrfs_mod_log_op op, gfp_t flags)
{
	struct tree_mod_elem *tm;
	int ret;

	if (!tree_mod_need_log(eb->fs_info, eb))
		return 0;

	tm = alloc_tree_mod_elem(eb, slot, op, flags);
	if (!tm)
		return -ENOMEM;

	if (tree_mod_dont_log(eb->fs_info, eb)) {
		kfree(tm);
		return 0;
	}

	ret = tree_mod_log_insert(eb->fs_info, tm);
	write_unlock(&eb->fs_info->tree_mod_log_lock);
	if (ret)
		kfree(tm);

	return ret;
}

int btrfs_tree_mod_log_insert_move(struct extent_buffer *eb,
				   int dst_slot, int src_slot,
				   int nr_items)
{
	struct tree_mod_elem *tm = NULL;
	struct tree_mod_elem **tm_list = NULL;
	int ret = 0;
	int i;
	bool locked = false;

	if (!tree_mod_need_log(eb->fs_info, eb))
		return 0;

	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
	if (!tm_list)
		return -ENOMEM;

	tm = kzalloc(sizeof(*tm), GFP_NOFS);
	if (!tm) {
		ret = -ENOMEM;
		goto free_tms;
	}

	tm->logical = eb->start;
	tm->slot = src_slot;
	tm->move.dst_slot = dst_slot;
	tm->move.nr_items = nr_items;
	tm->op = BTRFS_MOD_LOG_MOVE_KEYS;

	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
				BTRFS_MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
		if (!tm_list[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

	if (tree_mod_dont_log(eb->fs_info, eb))
		goto free_tms;
	locked = true;

	/*
	 * When we override something during the move, we log these removals.
	 * This can only happen when we move towards the beginning of the
	 * buffer, i.e. dst_slot < src_slot.
	 */
	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
		ret = tree_mod_log_insert(eb->fs_info, tm_list[i]);
		if (ret)
			goto free_tms;
	}

	ret = tree_mod_log_insert(eb->fs_info, tm);
	if (ret)
		goto free_tms;
	write_unlock(&eb->fs_info->tree_mod_log_lock);
	kfree(tm_list);

	return 0;

free_tms:
	for (i = 0; i < nr_items; i++) {
		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
			rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
		kfree(tm_list[i]);
	}
	if (locked)
		write_unlock(&eb->fs_info->tree_mod_log_lock);
	kfree(tm_list);
	kfree(tm);

	return ret;
}

static inline int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
				       struct tree_mod_elem **tm_list,
				       int nritems)
{
	int i, j;
	int ret;

	for (i = nritems - 1; i >= 0; i--) {
		ret = tree_mod_log_insert(fs_info, tm_list[i]);
		if (ret) {
			for (j = nritems - 1; j > i; j--)
				rb_erase(&tm_list[j]->node,
					 &fs_info->tree_mod_log);
			return ret;
		}
	}

	return 0;
}

int btrfs_tree_mod_log_insert_root(struct extent_buffer *old_root,
				   struct extent_buffer *new_root,
				   bool log_removal)
{
	struct btrfs_fs_info *fs_info = old_root->fs_info;
	struct tree_mod_elem *tm = NULL;
	struct tree_mod_elem **tm_list = NULL;
	int nritems = 0;
	int ret = 0;
	int i;

	if (!tree_mod_need_log(fs_info, NULL))
		return 0;

	if (log_removal && btrfs_header_level(old_root) > 0) {
		nritems = btrfs_header_nritems(old_root);
		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
				  GFP_NOFS);
		if (!tm_list) {
			ret = -ENOMEM;
			goto free_tms;
		}
		for (i = 0; i < nritems; i++) {
			tm_list[i] = alloc_tree_mod_elem(old_root, i,
			    BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
			if (!tm_list[i]) {
				ret = -ENOMEM;
				goto free_tms;
			}
		}
	}

	tm = kzalloc(sizeof(*tm), GFP_NOFS);
	if (!tm) {
		ret = -ENOMEM;
		goto free_tms;
	}

	tm->logical = new_root->start;
	tm->old_root.logical = old_root->start;
	tm->old_root.level = btrfs_header_level(old_root);
	tm->generation = btrfs_header_generation(old_root);
	tm->op = BTRFS_MOD_LOG_ROOT_REPLACE;

	if (tree_mod_dont_log(fs_info, NULL))
		goto free_tms;

	if (tm_list)
		ret = tree_mod_log_free_eb(fs_info, tm_list, nritems);
	if (!ret)
		ret = tree_mod_log_insert(fs_info, tm);

	write_unlock(&fs_info->tree_mod_log_lock);
	if (ret)
		goto free_tms;
	kfree(tm_list);

	return ret;

free_tms:
	if (tm_list) {
		for (i = 0; i < nritems; i++)
			kfree(tm_list[i]);
		kfree(tm_list);
	}
	kfree(tm);

	return ret;
}

static struct tree_mod_elem *__tree_mod_log_search(struct btrfs_fs_info *fs_info,
						   u64 start, u64 min_seq,
						   bool smallest)
{
	struct rb_root *tm_root;
	struct rb_node *node;
	struct tree_mod_elem *cur = NULL;
	struct tree_mod_elem *found = NULL;

	read_lock(&fs_info->tree_mod_log_lock);
	tm_root = &fs_info->tree_mod_log;
	node = tm_root->rb_node;
	while (node) {
		cur = rb_entry(node, struct tree_mod_elem, node);
		if (cur->logical < start) {
			node = node->rb_left;
		} else if (cur->logical > start) {
			node = node->rb_right;
		} else if (cur->seq < min_seq) {
			node = node->rb_left;
		} else if (!smallest) {
			/* We want the node with the highest seq */
			if (found)
				BUG_ON(found->seq > cur->seq);
			found = cur;
			node = node->rb_left;
		} else if (cur->seq > min_seq) {
			/* We want the node with the smallest seq */
			if (found)
				BUG_ON(found->seq < cur->seq);
			found = cur;
			node = node->rb_right;
		} else {
			found = cur;
			break;
		}
	}
	read_unlock(&fs_info->tree_mod_log_lock);

	return found;
}

/*
 * This returns the element from the log with the smallest time sequence
 * value that's in the log (the oldest log item). Any element with a time
 * sequence lower than min_seq will be ignored.
 */
static struct tree_mod_elem *tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info,
							u64 start, u64 min_seq)
{
	return __tree_mod_log_search(fs_info, start, min_seq, true);
}

/*
 * This returns the element from the log with the largest time sequence
 * value that's in the log (the most recent log item). Any element with
 * a time sequence lower than min_seq will be ignored.
 */
static struct tree_mod_elem *tree_mod_log_search(struct btrfs_fs_info *fs_info,
						 u64 start, u64 min_seq)
{
	return __tree_mod_log_search(fs_info, start, min_seq, false);
}

int btrfs_tree_mod_log_eb_copy(struct extent_buffer *dst,
			       struct extent_buffer *src,
			       unsigned long dst_offset,
			       unsigned long src_offset,
			       int nr_items)
{
	struct btrfs_fs_info *fs_info = dst->fs_info;
	int ret = 0;
	struct tree_mod_elem **tm_list = NULL;
	struct tree_mod_elem **tm_list_add, **tm_list_rem;
	int i;
	bool locked = false;

	if (!tree_mod_need_log(fs_info, NULL))
		return 0;

	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
		return 0;

	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
			  GFP_NOFS);
	if (!tm_list)
		return -ENOMEM;

	tm_list_add = tm_list;
	tm_list_rem = tm_list + nr_items;
	for (i = 0; i < nr_items; i++) {
		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
		    BTRFS_MOD_LOG_KEY_REMOVE, GFP_NOFS);
		if (!tm_list_rem[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}

		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
						BTRFS_MOD_LOG_KEY_ADD, GFP_NOFS);
		if (!tm_list_add[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

	if (tree_mod_dont_log(fs_info, NULL))
		goto free_tms;
	locked = true;

	for (i = 0; i < nr_items; i++) {
		ret = tree_mod_log_insert(fs_info, tm_list_rem[i]);
		if (ret)
			goto free_tms;
		ret = tree_mod_log_insert(fs_info, tm_list_add[i]);
		if (ret)
			goto free_tms;
	}

	write_unlock(&fs_info->tree_mod_log_lock);
	kfree(tm_list);

	return 0;

free_tms:
	for (i = 0; i < nr_items * 2; i++) {
		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
		kfree(tm_list[i]);
	}
	if (locked)
		write_unlock(&fs_info->tree_mod_log_lock);
	kfree(tm_list);

	return ret;
}

int btrfs_tree_mod_log_free_eb(struct extent_buffer *eb)
{
	struct tree_mod_elem **tm_list = NULL;
	int nritems = 0;
	int i;
	int ret = 0;

	if (!tree_mod_need_log(eb->fs_info, eb))
		return 0;

	nritems = btrfs_header_nritems(eb);
	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
	if (!tm_list)
		return -ENOMEM;

	for (i = 0; i < nritems; i++) {
		tm_list[i] = alloc_tree_mod_elem(eb, i,
		    BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
		if (!tm_list[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

	if (tree_mod_dont_log(eb->fs_info, eb))
		goto free_tms;

	ret = tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
	write_unlock(&eb->fs_info->tree_mod_log_lock);
	if (ret)
		goto free_tms;
	kfree(tm_list);

	return 0;

free_tms:
	for (i = 0; i < nritems; i++)
		kfree(tm_list[i]);
	kfree(tm_list);

	return ret;
}

/*
 * Returns the logical address of the oldest predecessor of the given root.
 * Entries older than time_seq are ignored.
 */
static struct tree_mod_elem *tree_mod_log_oldest_root(struct extent_buffer *eb_root,
						      u64 time_seq)
{
	struct tree_mod_elem *tm;
	struct tree_mod_elem *found = NULL;
	u64 root_logical = eb_root->start;
	bool looped = false;

	if (!time_seq)
		return NULL;

	/*
	 * The very last operation that's logged for a root is the replacement
	 * operation (if it is replaced at all). This has the logical address
	 * of the *new* root, making it the very first operation that's logged
	 * for this root.
	 */
	while (1) {
		tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
						time_seq);
		if (!looped && !tm)
			return NULL;
		/*
		 * If there are no tree operation for the oldest root, we simply
		 * return it. This should only happen if that (old) root is at
		 * level 0.
		 */
		if (!tm)
			break;

		/*
		 * If there's an operation that's not a root replacement, we
		 * found the oldest version of our root. Normally, we'll find a
		 * BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
		 */
		if (tm->op != BTRFS_MOD_LOG_ROOT_REPLACE)
			break;

		found = tm;
		root_logical = tm->old_root.logical;
		looped = true;
	}

	/* If there's no old root to return, return what we found instead */
	if (!found)
		found = tm;

	return found;
}


/*
 * tm is a pointer to the first operation to rewind within eb. Then, all
 * previous operations will be rewound (until we reach something older than
 * time_seq).
 */
static void tree_mod_log_rewind(struct btrfs_fs_info *fs_info,
				struct extent_buffer *eb,
				u64 time_seq,
				struct tree_mod_elem *first_tm)
{
	u32 n;
	struct rb_node *next;
	struct tree_mod_elem *tm = first_tm;
	unsigned long o_dst;
	unsigned long o_src;
	unsigned long p_size = sizeof(struct btrfs_key_ptr);

	n = btrfs_header_nritems(eb);
	read_lock(&fs_info->tree_mod_log_lock);
	while (tm && tm->seq >= time_seq) {
		/*
		 * All the operations are recorded with the operator used for
		 * the modification. As we're going backwards, we do the
		 * opposite of each operation here.
		 */
		switch (tm->op) {
		case BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING:
			BUG_ON(tm->slot < n);
			fallthrough;
		case BTRFS_MOD_LOG_KEY_REMOVE_WHILE_MOVING:
		case BTRFS_MOD_LOG_KEY_REMOVE:
			btrfs_set_node_key(eb, &tm->key, tm->slot);
			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
			btrfs_set_node_ptr_generation(eb, tm->slot,
						      tm->generation);
			n++;
			break;
		case BTRFS_MOD_LOG_KEY_REPLACE:
			BUG_ON(tm->slot >= n);
			btrfs_set_node_key(eb, &tm->key, tm->slot);
			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
			btrfs_set_node_ptr_generation(eb, tm->slot,
						      tm->generation);
			break;
		case BTRFS_MOD_LOG_KEY_ADD:
			/* if a move operation is needed it's in the log */
			n--;
			break;
		case BTRFS_MOD_LOG_MOVE_KEYS:
			o_dst = btrfs_node_key_ptr_offset(tm->slot);
			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
			memmove_extent_buffer(eb, o_dst, o_src,
					      tm->move.nr_items * p_size);
			break;
		case BTRFS_MOD_LOG_ROOT_REPLACE:
			/*
			 * This operation is special. For roots, this must be
			 * handled explicitly before rewinding.
			 * For non-roots, this operation may exist if the node
			 * was a root: root A -> child B; then A gets empty and
			 * B is promoted to the new root. In the mod log, we'll
			 * have a root-replace operation for B, a tree block
			 * that is no root. We simply ignore that operation.
			 */
			break;
		}
		next = rb_next(&tm->node);
		if (!next)
			break;
		tm = rb_entry(next, struct tree_mod_elem, node);
		if (tm->logical != first_tm->logical)
			break;
	}
	read_unlock(&fs_info->tree_mod_log_lock);
	btrfs_set_header_nritems(eb, n);
}

/*
 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
 * is returned. If rewind operations happen, a fresh buffer is returned. The
 * returned buffer is always read-locked. If the returned buffer is not the
 * input buffer, the lock on the input buffer is released and the input buffer
 * is freed (its refcount is decremented).
 */
struct extent_buffer *btrfs_tree_mod_log_rewind(struct btrfs_fs_info *fs_info,
						struct btrfs_path *path,
						struct extent_buffer *eb,
						u64 time_seq)
{
	struct extent_buffer *eb_rewin;
	struct tree_mod_elem *tm;

	if (!time_seq)
		return eb;

	if (btrfs_header_level(eb) == 0)
		return eb;

	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
	if (!tm)
		return eb;

	if (tm->op == BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
		BUG_ON(tm->slot != 0);
		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
		if (!eb_rewin) {
			btrfs_tree_read_unlock(eb);
			free_extent_buffer(eb);
			return NULL;
		}
		btrfs_set_header_bytenr(eb_rewin, eb->start);
		btrfs_set_header_backref_rev(eb_rewin,
					     btrfs_header_backref_rev(eb));
		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
	} else {
		eb_rewin = btrfs_clone_extent_buffer(eb);
		if (!eb_rewin) {
			btrfs_tree_read_unlock(eb);
			free_extent_buffer(eb);
			return NULL;
		}
	}

	btrfs_tree_read_unlock(eb);
	free_extent_buffer(eb);

	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb_rewin),
				       eb_rewin, btrfs_header_level(eb_rewin));
	btrfs_tree_read_lock(eb_rewin);
	tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
	WARN_ON(btrfs_header_nritems(eb_rewin) >
		BTRFS_NODEPTRS_PER_BLOCK(fs_info));

	return eb_rewin;
}

/*
 * Rewind the state of @root's root node to the given @time_seq value.
 * If there are no changes, the current root->root_node is returned. If anything
 * changed in between, there's a fresh buffer allocated on which the rewind
 * operations are done. In any case, the returned buffer is read locked.
 * Returns NULL on error (with no locks held).
 */
struct extent_buffer *btrfs_get_old_root(struct btrfs_root *root, u64 time_seq)
{
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct tree_mod_elem *tm;
	struct extent_buffer *eb = NULL;
	struct extent_buffer *eb_root;
	u64 eb_root_owner = 0;
	struct extent_buffer *old;
	struct tree_mod_root *old_root = NULL;
	u64 old_generation = 0;
	u64 logical;
	int level;

	eb_root = btrfs_read_lock_root_node(root);
	tm = tree_mod_log_oldest_root(eb_root, time_seq);
	if (!tm)
		return eb_root;

	if (tm->op == BTRFS_MOD_LOG_ROOT_REPLACE) {
		old_root = &tm->old_root;
		old_generation = tm->generation;
		logical = old_root->logical;
		level = old_root->level;
	} else {
		logical = eb_root->start;
		level = btrfs_header_level(eb_root);
	}

	tm = tree_mod_log_search(fs_info, logical, time_seq);
	if (old_root && tm && tm->op != BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
		btrfs_tree_read_unlock(eb_root);
		free_extent_buffer(eb_root);
		old = read_tree_block(fs_info, logical, root->root_key.objectid,
				      0, level, NULL);
		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
			if (!IS_ERR(old))
				free_extent_buffer(old);
			btrfs_warn(fs_info,
				   "failed to read tree block %llu from get_old_root",
				   logical);
		} else {
			btrfs_tree_read_lock(old);
			eb = btrfs_clone_extent_buffer(old);
			btrfs_tree_read_unlock(old);
			free_extent_buffer(old);
		}
	} else if (old_root) {
		eb_root_owner = btrfs_header_owner(eb_root);
		btrfs_tree_read_unlock(eb_root);
		free_extent_buffer(eb_root);
		eb = alloc_dummy_extent_buffer(fs_info, logical);
	} else {
		eb = btrfs_clone_extent_buffer(eb_root);
		btrfs_tree_read_unlock(eb_root);
		free_extent_buffer(eb_root);
	}

	if (!eb)
		return NULL;
	if (old_root) {
		btrfs_set_header_bytenr(eb, eb->start);
		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
		btrfs_set_header_owner(eb, eb_root_owner);
		btrfs_set_header_level(eb, old_root->level);
		btrfs_set_header_generation(eb, old_generation);
	}
	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), eb,
				       btrfs_header_level(eb));
	btrfs_tree_read_lock(eb);
	if (tm)
		tree_mod_log_rewind(fs_info, eb, time_seq, tm);
	else
		WARN_ON(btrfs_header_level(eb) != 0);
	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));

	return eb;
}

int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
{
	struct tree_mod_elem *tm;
	int level;
	struct extent_buffer *eb_root = btrfs_root_node(root);

	tm = tree_mod_log_oldest_root(eb_root, time_seq);
	if (tm && tm->op == BTRFS_MOD_LOG_ROOT_REPLACE)
		level = tm->old_root.level;
	else
		level = btrfs_header_level(eb_root);

	free_extent_buffer(eb_root);

	return level;
}