summaryrefslogtreecommitdiffstats
path: root/fs/crypto/keyinfo.c
blob: 4f85af8ab239c2840ccaae7f55365ba19a272b8c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
// SPDX-License-Identifier: GPL-2.0
/*
 * key management facility for FS encryption support.
 *
 * Copyright (C) 2015, Google, Inc.
 *
 * This contains encryption key functions.
 *
 * Written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar, 2015.
 */

#include <keys/user-type.h>
#include <linux/hashtable.h>
#include <linux/scatterlist.h>
#include <linux/ratelimit.h>
#include <crypto/aes.h>
#include <crypto/algapi.h>
#include <crypto/sha.h>
#include <crypto/skcipher.h>
#include "fscrypt_private.h"

static struct crypto_shash *essiv_hash_tfm;

/* Table of keys referenced by FS_POLICY_FLAG_DIRECT_KEY policies */
static DEFINE_HASHTABLE(fscrypt_master_keys, 6); /* 6 bits = 64 buckets */
static DEFINE_SPINLOCK(fscrypt_master_keys_lock);

/*
 * Key derivation function.  This generates the derived key by encrypting the
 * master key with AES-128-ECB using the inode's nonce as the AES key.
 *
 * The master key must be at least as long as the derived key.  If the master
 * key is longer, then only the first 'derived_keysize' bytes are used.
 */
static int derive_key_aes(const u8 *master_key,
			  const struct fscrypt_context *ctx,
			  u8 *derived_key, unsigned int derived_keysize)
{
	int res = 0;
	struct skcipher_request *req = NULL;
	DECLARE_CRYPTO_WAIT(wait);
	struct scatterlist src_sg, dst_sg;
	struct crypto_skcipher *tfm = crypto_alloc_skcipher("ecb(aes)", 0, 0);

	if (IS_ERR(tfm)) {
		res = PTR_ERR(tfm);
		tfm = NULL;
		goto out;
	}
	crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
	req = skcipher_request_alloc(tfm, GFP_NOFS);
	if (!req) {
		res = -ENOMEM;
		goto out;
	}
	skcipher_request_set_callback(req,
			CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
			crypto_req_done, &wait);
	res = crypto_skcipher_setkey(tfm, ctx->nonce, sizeof(ctx->nonce));
	if (res < 0)
		goto out;

	sg_init_one(&src_sg, master_key, derived_keysize);
	sg_init_one(&dst_sg, derived_key, derived_keysize);
	skcipher_request_set_crypt(req, &src_sg, &dst_sg, derived_keysize,
				   NULL);
	res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
out:
	skcipher_request_free(req);
	crypto_free_skcipher(tfm);
	return res;
}

/*
 * Search the current task's subscribed keyrings for a "logon" key with
 * description prefix:descriptor, and if found acquire a read lock on it and
 * return a pointer to its validated payload in *payload_ret.
 */
static struct key *
find_and_lock_process_key(const char *prefix,
			  const u8 descriptor[FS_KEY_DESCRIPTOR_SIZE],
			  unsigned int min_keysize,
			  const struct fscrypt_key **payload_ret)
{
	char *description;
	struct key *key;
	const struct user_key_payload *ukp;
	const struct fscrypt_key *payload;

	description = kasprintf(GFP_NOFS, "%s%*phN", prefix,
				FS_KEY_DESCRIPTOR_SIZE, descriptor);
	if (!description)
		return ERR_PTR(-ENOMEM);

	key = request_key(&key_type_logon, description, NULL, NULL);
	kfree(description);
	if (IS_ERR(key))
		return key;

	down_read(&key->sem);
	ukp = user_key_payload_locked(key);

	if (!ukp) /* was the key revoked before we acquired its semaphore? */
		goto invalid;

	payload = (const struct fscrypt_key *)ukp->data;

	if (ukp->datalen != sizeof(struct fscrypt_key) ||
	    payload->size < 1 || payload->size > FS_MAX_KEY_SIZE) {
		fscrypt_warn(NULL,
			     "key with description '%s' has invalid payload",
			     key->description);
		goto invalid;
	}

	if (payload->size < min_keysize) {
		fscrypt_warn(NULL,
			     "key with description '%s' is too short (got %u bytes, need %u+ bytes)",
			     key->description, payload->size, min_keysize);
		goto invalid;
	}

	*payload_ret = payload;
	return key;

invalid:
	up_read(&key->sem);
	key_put(key);
	return ERR_PTR(-ENOKEY);
}

static struct fscrypt_mode available_modes[] = {
	[FS_ENCRYPTION_MODE_AES_256_XTS] = {
		.friendly_name = "AES-256-XTS",
		.cipher_str = "xts(aes)",
		.keysize = 64,
		.ivsize = 16,
	},
	[FS_ENCRYPTION_MODE_AES_256_CTS] = {
		.friendly_name = "AES-256-CTS-CBC",
		.cipher_str = "cts(cbc(aes))",
		.keysize = 32,
		.ivsize = 16,
	},
	[FS_ENCRYPTION_MODE_AES_128_CBC] = {
		.friendly_name = "AES-128-CBC",
		.cipher_str = "cbc(aes)",
		.keysize = 16,
		.ivsize = 16,
		.needs_essiv = true,
	},
	[FS_ENCRYPTION_MODE_AES_128_CTS] = {
		.friendly_name = "AES-128-CTS-CBC",
		.cipher_str = "cts(cbc(aes))",
		.keysize = 16,
		.ivsize = 16,
	},
	[FS_ENCRYPTION_MODE_ADIANTUM] = {
		.friendly_name = "Adiantum",
		.cipher_str = "adiantum(xchacha12,aes)",
		.keysize = 32,
		.ivsize = 32,
	},
};

static struct fscrypt_mode *
select_encryption_mode(const struct fscrypt_info *ci, const struct inode *inode)
{
	if (!fscrypt_valid_enc_modes(ci->ci_data_mode, ci->ci_filename_mode)) {
		fscrypt_warn(inode->i_sb,
			     "inode %lu uses unsupported encryption modes (contents mode %d, filenames mode %d)",
			     inode->i_ino, ci->ci_data_mode,
			     ci->ci_filename_mode);
		return ERR_PTR(-EINVAL);
	}

	if (S_ISREG(inode->i_mode))
		return &available_modes[ci->ci_data_mode];

	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
		return &available_modes[ci->ci_filename_mode];

	WARN_ONCE(1, "fscrypt: filesystem tried to load encryption info for inode %lu, which is not encryptable (file type %d)\n",
		  inode->i_ino, (inode->i_mode & S_IFMT));
	return ERR_PTR(-EINVAL);
}

/* Find the master key, then derive the inode's actual encryption key */
static int find_and_derive_key(const struct inode *inode,
			       const struct fscrypt_context *ctx,
			       u8 *derived_key, const struct fscrypt_mode *mode)
{
	struct key *key;
	const struct fscrypt_key *payload;
	int err;

	key = find_and_lock_process_key(FS_KEY_DESC_PREFIX,
					ctx->master_key_descriptor,
					mode->keysize, &payload);
	if (key == ERR_PTR(-ENOKEY) && inode->i_sb->s_cop->key_prefix) {
		key = find_and_lock_process_key(inode->i_sb->s_cop->key_prefix,
						ctx->master_key_descriptor,
						mode->keysize, &payload);
	}
	if (IS_ERR(key))
		return PTR_ERR(key);

	if (ctx->flags & FS_POLICY_FLAG_DIRECT_KEY) {
		if (mode->ivsize < offsetofend(union fscrypt_iv, nonce)) {
			fscrypt_warn(inode->i_sb,
				     "direct key mode not allowed with %s",
				     mode->friendly_name);
			err = -EINVAL;
		} else if (ctx->contents_encryption_mode !=
			   ctx->filenames_encryption_mode) {
			fscrypt_warn(inode->i_sb,
				     "direct key mode not allowed with different contents and filenames modes");
			err = -EINVAL;
		} else {
			memcpy(derived_key, payload->raw, mode->keysize);
			err = 0;
		}
	} else {
		err = derive_key_aes(payload->raw, ctx, derived_key,
				     mode->keysize);
	}
	up_read(&key->sem);
	key_put(key);
	return err;
}

/* Allocate and key a symmetric cipher object for the given encryption mode */
static struct crypto_skcipher *
allocate_skcipher_for_mode(struct fscrypt_mode *mode, const u8 *raw_key,
			   const struct inode *inode)
{
	struct crypto_skcipher *tfm;
	int err;

	tfm = crypto_alloc_skcipher(mode->cipher_str, 0, 0);
	if (IS_ERR(tfm)) {
		fscrypt_warn(inode->i_sb,
			     "error allocating '%s' transform for inode %lu: %ld",
			     mode->cipher_str, inode->i_ino, PTR_ERR(tfm));
		return tfm;
	}
	if (unlikely(!mode->logged_impl_name)) {
		/*
		 * fscrypt performance can vary greatly depending on which
		 * crypto algorithm implementation is used.  Help people debug
		 * performance problems by logging the ->cra_driver_name the
		 * first time a mode is used.  Note that multiple threads can
		 * race here, but it doesn't really matter.
		 */
		mode->logged_impl_name = true;
		pr_info("fscrypt: %s using implementation \"%s\"\n",
			mode->friendly_name,
			crypto_skcipher_alg(tfm)->base.cra_driver_name);
	}
	crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
	err = crypto_skcipher_setkey(tfm, raw_key, mode->keysize);
	if (err)
		goto err_free_tfm;

	return tfm;

err_free_tfm:
	crypto_free_skcipher(tfm);
	return ERR_PTR(err);
}

/* Master key referenced by FS_POLICY_FLAG_DIRECT_KEY policy */
struct fscrypt_master_key {
	struct hlist_node mk_node;
	refcount_t mk_refcount;
	const struct fscrypt_mode *mk_mode;
	struct crypto_skcipher *mk_ctfm;
	u8 mk_descriptor[FS_KEY_DESCRIPTOR_SIZE];
	u8 mk_raw[FS_MAX_KEY_SIZE];
};

static void free_master_key(struct fscrypt_master_key *mk)
{
	if (mk) {
		crypto_free_skcipher(mk->mk_ctfm);
		kzfree(mk);
	}
}

static void put_master_key(struct fscrypt_master_key *mk)
{
	if (!refcount_dec_and_lock(&mk->mk_refcount, &fscrypt_master_keys_lock))
		return;
	hash_del(&mk->mk_node);
	spin_unlock(&fscrypt_master_keys_lock);

	free_master_key(mk);
}

/*
 * Find/insert the given master key into the fscrypt_master_keys table.  If
 * found, it is returned with elevated refcount, and 'to_insert' is freed if
 * non-NULL.  If not found, 'to_insert' is inserted and returned if it's
 * non-NULL; otherwise NULL is returned.
 */
static struct fscrypt_master_key *
find_or_insert_master_key(struct fscrypt_master_key *to_insert,
			  const u8 *raw_key, const struct fscrypt_mode *mode,
			  const struct fscrypt_info *ci)
{
	unsigned long hash_key;
	struct fscrypt_master_key *mk;

	/*
	 * Careful: to avoid potentially leaking secret key bytes via timing
	 * information, we must key the hash table by descriptor rather than by
	 * raw key, and use crypto_memneq() when comparing raw keys.
	 */

	BUILD_BUG_ON(sizeof(hash_key) > FS_KEY_DESCRIPTOR_SIZE);
	memcpy(&hash_key, ci->ci_master_key_descriptor, sizeof(hash_key));

	spin_lock(&fscrypt_master_keys_lock);
	hash_for_each_possible(fscrypt_master_keys, mk, mk_node, hash_key) {
		if (memcmp(ci->ci_master_key_descriptor, mk->mk_descriptor,
			   FS_KEY_DESCRIPTOR_SIZE) != 0)
			continue;
		if (mode != mk->mk_mode)
			continue;
		if (crypto_memneq(raw_key, mk->mk_raw, mode->keysize))
			continue;
		/* using existing tfm with same (descriptor, mode, raw_key) */
		refcount_inc(&mk->mk_refcount);
		spin_unlock(&fscrypt_master_keys_lock);
		free_master_key(to_insert);
		return mk;
	}
	if (to_insert)
		hash_add(fscrypt_master_keys, &to_insert->mk_node, hash_key);
	spin_unlock(&fscrypt_master_keys_lock);
	return to_insert;
}

/* Prepare to encrypt directly using the master key in the given mode */
static struct fscrypt_master_key *
fscrypt_get_master_key(const struct fscrypt_info *ci, struct fscrypt_mode *mode,
		       const u8 *raw_key, const struct inode *inode)
{
	struct fscrypt_master_key *mk;
	int err;

	/* Is there already a tfm for this key? */
	mk = find_or_insert_master_key(NULL, raw_key, mode, ci);
	if (mk)
		return mk;

	/* Nope, allocate one. */
	mk = kzalloc(sizeof(*mk), GFP_NOFS);
	if (!mk)
		return ERR_PTR(-ENOMEM);
	refcount_set(&mk->mk_refcount, 1);
	mk->mk_mode = mode;
	mk->mk_ctfm = allocate_skcipher_for_mode(mode, raw_key, inode);
	if (IS_ERR(mk->mk_ctfm)) {
		err = PTR_ERR(mk->mk_ctfm);
		mk->mk_ctfm = NULL;
		goto err_free_mk;
	}
	memcpy(mk->mk_descriptor, ci->ci_master_key_descriptor,
	       FS_KEY_DESCRIPTOR_SIZE);
	memcpy(mk->mk_raw, raw_key, mode->keysize);

	return find_or_insert_master_key(mk, raw_key, mode, ci);

err_free_mk:
	free_master_key(mk);
	return ERR_PTR(err);
}

static int derive_essiv_salt(const u8 *key, int keysize, u8 *salt)
{
	struct crypto_shash *tfm = READ_ONCE(essiv_hash_tfm);

	/* init hash transform on demand */
	if (unlikely(!tfm)) {
		struct crypto_shash *prev_tfm;

		tfm = crypto_alloc_shash("sha256", 0, 0);
		if (IS_ERR(tfm)) {
			fscrypt_warn(NULL,
				     "error allocating SHA-256 transform: %ld",
				     PTR_ERR(tfm));
			return PTR_ERR(tfm);
		}
		prev_tfm = cmpxchg(&essiv_hash_tfm, NULL, tfm);
		if (prev_tfm) {
			crypto_free_shash(tfm);
			tfm = prev_tfm;
		}
	}

	{
		SHASH_DESC_ON_STACK(desc, tfm);
		desc->tfm = tfm;

		return crypto_shash_digest(desc, key, keysize, salt);
	}
}

static int init_essiv_generator(struct fscrypt_info *ci, const u8 *raw_key,
				int keysize)
{
	int err;
	struct crypto_cipher *essiv_tfm;
	u8 salt[SHA256_DIGEST_SIZE];

	essiv_tfm = crypto_alloc_cipher("aes", 0, 0);
	if (IS_ERR(essiv_tfm))
		return PTR_ERR(essiv_tfm);

	ci->ci_essiv_tfm = essiv_tfm;

	err = derive_essiv_salt(raw_key, keysize, salt);
	if (err)
		goto out;

	/*
	 * Using SHA256 to derive the salt/key will result in AES-256 being
	 * used for IV generation. File contents encryption will still use the
	 * configured keysize (AES-128) nevertheless.
	 */
	err = crypto_cipher_setkey(essiv_tfm, salt, sizeof(salt));
	if (err)
		goto out;

out:
	memzero_explicit(salt, sizeof(salt));
	return err;
}

void __exit fscrypt_essiv_cleanup(void)
{
	crypto_free_shash(essiv_hash_tfm);
}

/*
 * Given the encryption mode and key (normally the derived key, but for
 * FS_POLICY_FLAG_DIRECT_KEY mode it's the master key), set up the inode's
 * symmetric cipher transform object(s).
 */
static int setup_crypto_transform(struct fscrypt_info *ci,
				  struct fscrypt_mode *mode,
				  const u8 *raw_key, const struct inode *inode)
{
	struct fscrypt_master_key *mk;
	struct crypto_skcipher *ctfm;
	int err;

	if (ci->ci_flags & FS_POLICY_FLAG_DIRECT_KEY) {
		mk = fscrypt_get_master_key(ci, mode, raw_key, inode);
		if (IS_ERR(mk))
			return PTR_ERR(mk);
		ctfm = mk->mk_ctfm;
	} else {
		mk = NULL;
		ctfm = allocate_skcipher_for_mode(mode, raw_key, inode);
		if (IS_ERR(ctfm))
			return PTR_ERR(ctfm);
	}
	ci->ci_master_key = mk;
	ci->ci_ctfm = ctfm;

	if (mode->needs_essiv) {
		/* ESSIV implies 16-byte IVs which implies !DIRECT_KEY */
		WARN_ON(mode->ivsize != AES_BLOCK_SIZE);
		WARN_ON(ci->ci_flags & FS_POLICY_FLAG_DIRECT_KEY);

		err = init_essiv_generator(ci, raw_key, mode->keysize);
		if (err) {
			fscrypt_warn(inode->i_sb,
				     "error initializing ESSIV generator for inode %lu: %d",
				     inode->i_ino, err);
			return err;
		}
	}
	return 0;
}

static void put_crypt_info(struct fscrypt_info *ci)
{
	if (!ci)
		return;

	if (ci->ci_master_key) {
		put_master_key(ci->ci_master_key);
	} else {
		crypto_free_skcipher(ci->ci_ctfm);
		crypto_free_cipher(ci->ci_essiv_tfm);
	}
	kmem_cache_free(fscrypt_info_cachep, ci);
}

int fscrypt_get_encryption_info(struct inode *inode)
{
	struct fscrypt_info *crypt_info;
	struct fscrypt_context ctx;
	struct fscrypt_mode *mode;
	u8 *raw_key = NULL;
	int res;

	if (fscrypt_has_encryption_key(inode))
		return 0;

	res = fscrypt_initialize(inode->i_sb->s_cop->flags);
	if (res)
		return res;

	res = inode->i_sb->s_cop->get_context(inode, &ctx, sizeof(ctx));
	if (res < 0) {
		if (!fscrypt_dummy_context_enabled(inode) ||
		    IS_ENCRYPTED(inode))
			return res;
		/* Fake up a context for an unencrypted directory */
		memset(&ctx, 0, sizeof(ctx));
		ctx.format = FS_ENCRYPTION_CONTEXT_FORMAT_V1;
		ctx.contents_encryption_mode = FS_ENCRYPTION_MODE_AES_256_XTS;
		ctx.filenames_encryption_mode = FS_ENCRYPTION_MODE_AES_256_CTS;
		memset(ctx.master_key_descriptor, 0x42, FS_KEY_DESCRIPTOR_SIZE);
	} else if (res != sizeof(ctx)) {
		return -EINVAL;
	}

	if (ctx.format != FS_ENCRYPTION_CONTEXT_FORMAT_V1)
		return -EINVAL;

	if (ctx.flags & ~FS_POLICY_FLAGS_VALID)
		return -EINVAL;

	crypt_info = kmem_cache_zalloc(fscrypt_info_cachep, GFP_NOFS);
	if (!crypt_info)
		return -ENOMEM;

	crypt_info->ci_flags = ctx.flags;
	crypt_info->ci_data_mode = ctx.contents_encryption_mode;
	crypt_info->ci_filename_mode = ctx.filenames_encryption_mode;
	memcpy(crypt_info->ci_master_key_descriptor, ctx.master_key_descriptor,
	       FS_KEY_DESCRIPTOR_SIZE);
	memcpy(crypt_info->ci_nonce, ctx.nonce, FS_KEY_DERIVATION_NONCE_SIZE);

	mode = select_encryption_mode(crypt_info, inode);
	if (IS_ERR(mode)) {
		res = PTR_ERR(mode);
		goto out;
	}
	WARN_ON(mode->ivsize > FSCRYPT_MAX_IV_SIZE);
	crypt_info->ci_mode = mode;

	/*
	 * This cannot be a stack buffer because it may be passed to the
	 * scatterlist crypto API as part of key derivation.
	 */
	res = -ENOMEM;
	raw_key = kmalloc(mode->keysize, GFP_NOFS);
	if (!raw_key)
		goto out;

	res = find_and_derive_key(inode, &ctx, raw_key, mode);
	if (res)
		goto out;

	res = setup_crypto_transform(crypt_info, mode, raw_key, inode);
	if (res)
		goto out;

	if (cmpxchg_release(&inode->i_crypt_info, NULL, crypt_info) == NULL)
		crypt_info = NULL;
out:
	if (res == -ENOKEY)
		res = 0;
	put_crypt_info(crypt_info);
	kzfree(raw_key);
	return res;
}
EXPORT_SYMBOL(fscrypt_get_encryption_info);

/**
 * fscrypt_put_encryption_info - free most of an inode's fscrypt data
 *
 * Free the inode's fscrypt_info.  Filesystems must call this when the inode is
 * being evicted.  An RCU grace period need not have elapsed yet.
 */
void fscrypt_put_encryption_info(struct inode *inode)
{
	put_crypt_info(inode->i_crypt_info);
	inode->i_crypt_info = NULL;
}
EXPORT_SYMBOL(fscrypt_put_encryption_info);

/**
 * fscrypt_free_inode - free an inode's fscrypt data requiring RCU delay
 *
 * Free the inode's cached decrypted symlink target, if any.  Filesystems must
 * call this after an RCU grace period, just before they free the inode.
 */
void fscrypt_free_inode(struct inode *inode)
{
	if (IS_ENCRYPTED(inode) && S_ISLNK(inode->i_mode)) {
		kfree(inode->i_link);
		inode->i_link = NULL;
	}
}
EXPORT_SYMBOL(fscrypt_free_inode);