1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
|
/*
* linux/fs/ext4/crypto_key.c
*
* Copyright (C) 2015, Google, Inc.
*
* This contains encryption key functions for ext4
*
* Written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar, 2015.
*/
#include <keys/encrypted-type.h>
#include <keys/user-type.h>
#include <linux/random.h>
#include <linux/scatterlist.h>
#include <uapi/linux/keyctl.h>
#include "ext4.h"
#include "xattr.h"
static void derive_crypt_complete(struct crypto_async_request *req, int rc)
{
struct ext4_completion_result *ecr = req->data;
if (rc == -EINPROGRESS)
return;
ecr->res = rc;
complete(&ecr->completion);
}
/**
* ext4_derive_key_aes() - Derive a key using AES-128-ECB
* @deriving_key: Encryption key used for derivation.
* @source_key: Source key to which to apply derivation.
* @derived_key: Derived key.
*
* Return: Zero on success; non-zero otherwise.
*/
static int ext4_derive_key_aes(char deriving_key[EXT4_AES_128_ECB_KEY_SIZE],
char source_key[EXT4_AES_256_XTS_KEY_SIZE],
char derived_key[EXT4_AES_256_XTS_KEY_SIZE])
{
int res = 0;
struct ablkcipher_request *req = NULL;
DECLARE_EXT4_COMPLETION_RESULT(ecr);
struct scatterlist src_sg, dst_sg;
struct crypto_ablkcipher *tfm = crypto_alloc_ablkcipher("ecb(aes)", 0,
0);
if (IS_ERR(tfm)) {
res = PTR_ERR(tfm);
tfm = NULL;
goto out;
}
crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_REQ_WEAK_KEY);
req = ablkcipher_request_alloc(tfm, GFP_NOFS);
if (!req) {
res = -ENOMEM;
goto out;
}
ablkcipher_request_set_callback(req,
CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
derive_crypt_complete, &ecr);
res = crypto_ablkcipher_setkey(tfm, deriving_key,
EXT4_AES_128_ECB_KEY_SIZE);
if (res < 0)
goto out;
sg_init_one(&src_sg, source_key, EXT4_AES_256_XTS_KEY_SIZE);
sg_init_one(&dst_sg, derived_key, EXT4_AES_256_XTS_KEY_SIZE);
ablkcipher_request_set_crypt(req, &src_sg, &dst_sg,
EXT4_AES_256_XTS_KEY_SIZE, NULL);
res = crypto_ablkcipher_encrypt(req);
if (res == -EINPROGRESS || res == -EBUSY) {
wait_for_completion(&ecr.completion);
res = ecr.res;
}
out:
if (req)
ablkcipher_request_free(req);
if (tfm)
crypto_free_ablkcipher(tfm);
return res;
}
void ext4_free_crypt_info(struct ext4_crypt_info *ci)
{
if (!ci)
return;
if (ci->ci_keyring_key)
key_put(ci->ci_keyring_key);
crypto_free_ablkcipher(ci->ci_ctfm);
kmem_cache_free(ext4_crypt_info_cachep, ci);
}
void ext4_free_encryption_info(struct inode *inode,
struct ext4_crypt_info *ci)
{
struct ext4_inode_info *ei = EXT4_I(inode);
struct ext4_crypt_info *prev;
if (ci == NULL)
ci = ACCESS_ONCE(ei->i_crypt_info);
if (ci == NULL)
return;
prev = cmpxchg(&ei->i_crypt_info, ci, NULL);
if (prev != ci)
return;
ext4_free_crypt_info(ci);
}
int _ext4_get_encryption_info(struct inode *inode)
{
struct ext4_inode_info *ei = EXT4_I(inode);
struct ext4_crypt_info *crypt_info;
char full_key_descriptor[EXT4_KEY_DESC_PREFIX_SIZE +
(EXT4_KEY_DESCRIPTOR_SIZE * 2) + 1];
struct key *keyring_key = NULL;
struct ext4_encryption_key *master_key;
struct ext4_encryption_context ctx;
struct user_key_payload *ukp;
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
struct crypto_ablkcipher *ctfm;
const char *cipher_str;
char raw_key[EXT4_MAX_KEY_SIZE];
char mode;
int res;
if (!ext4_read_workqueue) {
res = ext4_init_crypto();
if (res)
return res;
}
retry:
crypt_info = ACCESS_ONCE(ei->i_crypt_info);
if (crypt_info) {
if (!crypt_info->ci_keyring_key ||
key_validate(crypt_info->ci_keyring_key) == 0)
return 0;
ext4_free_encryption_info(inode, crypt_info);
goto retry;
}
res = ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
&ctx, sizeof(ctx));
if (res < 0) {
if (!DUMMY_ENCRYPTION_ENABLED(sbi))
return res;
ctx.contents_encryption_mode = EXT4_ENCRYPTION_MODE_AES_256_XTS;
ctx.filenames_encryption_mode =
EXT4_ENCRYPTION_MODE_AES_256_CTS;
ctx.flags = 0;
} else if (res != sizeof(ctx))
return -EINVAL;
res = 0;
crypt_info = kmem_cache_alloc(ext4_crypt_info_cachep, GFP_KERNEL);
if (!crypt_info)
return -ENOMEM;
crypt_info->ci_flags = ctx.flags;
crypt_info->ci_data_mode = ctx.contents_encryption_mode;
crypt_info->ci_filename_mode = ctx.filenames_encryption_mode;
crypt_info->ci_ctfm = NULL;
crypt_info->ci_keyring_key = NULL;
memcpy(crypt_info->ci_master_key, ctx.master_key_descriptor,
sizeof(crypt_info->ci_master_key));
if (S_ISREG(inode->i_mode))
mode = crypt_info->ci_data_mode;
else if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
mode = crypt_info->ci_filename_mode;
else
BUG();
switch (mode) {
case EXT4_ENCRYPTION_MODE_AES_256_XTS:
cipher_str = "xts(aes)";
break;
case EXT4_ENCRYPTION_MODE_AES_256_CTS:
cipher_str = "cts(cbc(aes))";
break;
default:
printk_once(KERN_WARNING
"ext4: unsupported key mode %d (ino %u)\n",
mode, (unsigned) inode->i_ino);
res = -ENOKEY;
goto out;
}
if (DUMMY_ENCRYPTION_ENABLED(sbi)) {
memset(raw_key, 0x42, EXT4_AES_256_XTS_KEY_SIZE);
goto got_key;
}
memcpy(full_key_descriptor, EXT4_KEY_DESC_PREFIX,
EXT4_KEY_DESC_PREFIX_SIZE);
sprintf(full_key_descriptor + EXT4_KEY_DESC_PREFIX_SIZE,
"%*phN", EXT4_KEY_DESCRIPTOR_SIZE,
ctx.master_key_descriptor);
full_key_descriptor[EXT4_KEY_DESC_PREFIX_SIZE +
(2 * EXT4_KEY_DESCRIPTOR_SIZE)] = '\0';
keyring_key = request_key(&key_type_logon, full_key_descriptor, NULL);
if (IS_ERR(keyring_key)) {
res = PTR_ERR(keyring_key);
keyring_key = NULL;
goto out;
}
crypt_info->ci_keyring_key = keyring_key;
if (keyring_key->type != &key_type_logon) {
printk_once(KERN_WARNING
"ext4: key type must be logon\n");
res = -ENOKEY;
goto out;
}
ukp = ((struct user_key_payload *)keyring_key->payload.data);
if (ukp->datalen != sizeof(struct ext4_encryption_key)) {
res = -EINVAL;
goto out;
}
master_key = (struct ext4_encryption_key *)ukp->data;
BUILD_BUG_ON(EXT4_AES_128_ECB_KEY_SIZE !=
EXT4_KEY_DERIVATION_NONCE_SIZE);
if (master_key->size != EXT4_AES_256_XTS_KEY_SIZE) {
printk_once(KERN_WARNING
"ext4: key size incorrect: %d\n",
master_key->size);
res = -ENOKEY;
goto out;
}
res = ext4_derive_key_aes(ctx.nonce, master_key->raw,
raw_key);
if (res)
goto out;
got_key:
ctfm = crypto_alloc_ablkcipher(cipher_str, 0, 0);
if (!ctfm || IS_ERR(ctfm)) {
res = ctfm ? PTR_ERR(ctfm) : -ENOMEM;
printk(KERN_DEBUG
"%s: error %d (inode %u) allocating crypto tfm\n",
__func__, res, (unsigned) inode->i_ino);
goto out;
}
crypt_info->ci_ctfm = ctfm;
crypto_ablkcipher_clear_flags(ctfm, ~0);
crypto_tfm_set_flags(crypto_ablkcipher_tfm(ctfm),
CRYPTO_TFM_REQ_WEAK_KEY);
res = crypto_ablkcipher_setkey(ctfm, raw_key,
ext4_encryption_key_size(mode));
if (res)
goto out;
memzero_explicit(raw_key, sizeof(raw_key));
if (cmpxchg(&ei->i_crypt_info, NULL, crypt_info) != NULL) {
ext4_free_crypt_info(crypt_info);
goto retry;
}
return 0;
out:
if (res == -ENOKEY)
res = 0;
ext4_free_crypt_info(crypt_info);
memzero_explicit(raw_key, sizeof(raw_key));
return res;
}
int ext4_has_encryption_key(struct inode *inode)
{
struct ext4_inode_info *ei = EXT4_I(inode);
return (ei->i_crypt_info != NULL);
}
|