summaryrefslogtreecommitdiffstats
path: root/fs/netfs/io.c
blob: 4289258992826bd298323fde25592209dcbfaad3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
// SPDX-License-Identifier: GPL-2.0-or-later
/* Network filesystem high-level read support.
 *
 * Copyright (C) 2021 Red Hat, Inc. All Rights Reserved.
 * Written by David Howells (dhowells@redhat.com)
 */

#include <linux/module.h>
#include <linux/export.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/slab.h>
#include <linux/uio.h>
#include <linux/sched/mm.h>
#include <linux/task_io_accounting_ops.h>
#include "internal.h"

/*
 * Clear the unread part of an I/O request.
 */
static void netfs_clear_unread(struct netfs_io_subrequest *subreq)
{
	struct iov_iter iter;

	iov_iter_xarray(&iter, READ, &subreq->rreq->mapping->i_pages,
			subreq->start + subreq->transferred,
			subreq->len   - subreq->transferred);
	iov_iter_zero(iov_iter_count(&iter), &iter);
}

static void netfs_cache_read_terminated(void *priv, ssize_t transferred_or_error,
					bool was_async)
{
	struct netfs_io_subrequest *subreq = priv;

	netfs_subreq_terminated(subreq, transferred_or_error, was_async);
}

/*
 * Issue a read against the cache.
 * - Eats the caller's ref on subreq.
 */
static void netfs_read_from_cache(struct netfs_io_request *rreq,
				  struct netfs_io_subrequest *subreq,
				  enum netfs_read_from_hole read_hole)
{
	struct netfs_cache_resources *cres = &rreq->cache_resources;
	struct iov_iter iter;

	netfs_stat(&netfs_n_rh_read);
	iov_iter_xarray(&iter, READ, &rreq->mapping->i_pages,
			subreq->start + subreq->transferred,
			subreq->len   - subreq->transferred);

	cres->ops->read(cres, subreq->start, &iter, read_hole,
			netfs_cache_read_terminated, subreq);
}

/*
 * Fill a subrequest region with zeroes.
 */
static void netfs_fill_with_zeroes(struct netfs_io_request *rreq,
				   struct netfs_io_subrequest *subreq)
{
	netfs_stat(&netfs_n_rh_zero);
	__set_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags);
	netfs_subreq_terminated(subreq, 0, false);
}

/*
 * Ask the netfs to issue a read request to the server for us.
 *
 * The netfs is expected to read from subreq->pos + subreq->transferred to
 * subreq->pos + subreq->len - 1.  It may not backtrack and write data into the
 * buffer prior to the transferred point as it might clobber dirty data
 * obtained from the cache.
 *
 * Alternatively, the netfs is allowed to indicate one of two things:
 *
 * - NETFS_SREQ_SHORT_READ: A short read - it will get called again to try and
 *   make progress.
 *
 * - NETFS_SREQ_CLEAR_TAIL: A short read - the rest of the buffer will be
 *   cleared.
 */
static void netfs_read_from_server(struct netfs_io_request *rreq,
				   struct netfs_io_subrequest *subreq)
{
	netfs_stat(&netfs_n_rh_download);
	rreq->netfs_ops->issue_read(subreq);
}

/*
 * Release those waiting.
 */
static void netfs_rreq_completed(struct netfs_io_request *rreq, bool was_async)
{
	trace_netfs_rreq(rreq, netfs_rreq_trace_done);
	netfs_clear_subrequests(rreq, was_async);
	netfs_put_request(rreq, was_async, netfs_rreq_trace_put_complete);
}

/*
 * Deal with the completion of writing the data to the cache.  We have to clear
 * the PG_fscache bits on the folios involved and release the caller's ref.
 *
 * May be called in softirq mode and we inherit a ref from the caller.
 */
static void netfs_rreq_unmark_after_write(struct netfs_io_request *rreq,
					  bool was_async)
{
	struct netfs_io_subrequest *subreq;
	struct folio *folio;
	pgoff_t unlocked = 0;
	bool have_unlocked = false;

	rcu_read_lock();

	list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
		XA_STATE(xas, &rreq->mapping->i_pages, subreq->start / PAGE_SIZE);

		xas_for_each(&xas, folio, (subreq->start + subreq->len - 1) / PAGE_SIZE) {
			/* We might have multiple writes from the same huge
			 * folio, but we mustn't unlock a folio more than once.
			 */
			if (have_unlocked && folio_index(folio) <= unlocked)
				continue;
			unlocked = folio_index(folio);
			folio_end_fscache(folio);
			have_unlocked = true;
		}
	}

	rcu_read_unlock();
	netfs_rreq_completed(rreq, was_async);
}

static void netfs_rreq_copy_terminated(void *priv, ssize_t transferred_or_error,
				       bool was_async)
{
	struct netfs_io_subrequest *subreq = priv;
	struct netfs_io_request *rreq = subreq->rreq;

	if (IS_ERR_VALUE(transferred_or_error)) {
		netfs_stat(&netfs_n_rh_write_failed);
		trace_netfs_failure(rreq, subreq, transferred_or_error,
				    netfs_fail_copy_to_cache);
	} else {
		netfs_stat(&netfs_n_rh_write_done);
	}

	trace_netfs_sreq(subreq, netfs_sreq_trace_write_term);

	/* If we decrement nr_copy_ops to 0, the ref belongs to us. */
	if (atomic_dec_and_test(&rreq->nr_copy_ops))
		netfs_rreq_unmark_after_write(rreq, was_async);

	netfs_put_subrequest(subreq, was_async, netfs_sreq_trace_put_terminated);
}

/*
 * Perform any outstanding writes to the cache.  We inherit a ref from the
 * caller.
 */
static void netfs_rreq_do_write_to_cache(struct netfs_io_request *rreq)
{
	struct netfs_cache_resources *cres = &rreq->cache_resources;
	struct netfs_io_subrequest *subreq, *next, *p;
	struct iov_iter iter;
	int ret;

	trace_netfs_rreq(rreq, netfs_rreq_trace_copy);

	/* We don't want terminating writes trying to wake us up whilst we're
	 * still going through the list.
	 */
	atomic_inc(&rreq->nr_copy_ops);

	list_for_each_entry_safe(subreq, p, &rreq->subrequests, rreq_link) {
		if (!test_bit(NETFS_SREQ_COPY_TO_CACHE, &subreq->flags)) {
			list_del_init(&subreq->rreq_link);
			netfs_put_subrequest(subreq, false,
					     netfs_sreq_trace_put_no_copy);
		}
	}

	list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
		/* Amalgamate adjacent writes */
		while (!list_is_last(&subreq->rreq_link, &rreq->subrequests)) {
			next = list_next_entry(subreq, rreq_link);
			if (next->start != subreq->start + subreq->len)
				break;
			subreq->len += next->len;
			list_del_init(&next->rreq_link);
			netfs_put_subrequest(next, false,
					     netfs_sreq_trace_put_merged);
		}

		ret = cres->ops->prepare_write(cres, &subreq->start, &subreq->len,
					       rreq->i_size, true);
		if (ret < 0) {
			trace_netfs_failure(rreq, subreq, ret, netfs_fail_prepare_write);
			trace_netfs_sreq(subreq, netfs_sreq_trace_write_skip);
			continue;
		}

		iov_iter_xarray(&iter, WRITE, &rreq->mapping->i_pages,
				subreq->start, subreq->len);

		atomic_inc(&rreq->nr_copy_ops);
		netfs_stat(&netfs_n_rh_write);
		netfs_get_subrequest(subreq, netfs_sreq_trace_get_copy_to_cache);
		trace_netfs_sreq(subreq, netfs_sreq_trace_write);
		cres->ops->write(cres, subreq->start, &iter,
				 netfs_rreq_copy_terminated, subreq);
	}

	/* If we decrement nr_copy_ops to 0, the usage ref belongs to us. */
	if (atomic_dec_and_test(&rreq->nr_copy_ops))
		netfs_rreq_unmark_after_write(rreq, false);
}

static void netfs_rreq_write_to_cache_work(struct work_struct *work)
{
	struct netfs_io_request *rreq =
		container_of(work, struct netfs_io_request, work);

	netfs_rreq_do_write_to_cache(rreq);
}

static void netfs_rreq_write_to_cache(struct netfs_io_request *rreq)
{
	rreq->work.func = netfs_rreq_write_to_cache_work;
	if (!queue_work(system_unbound_wq, &rreq->work))
		BUG();
}

/*
 * Handle a short read.
 */
static void netfs_rreq_short_read(struct netfs_io_request *rreq,
				  struct netfs_io_subrequest *subreq)
{
	__clear_bit(NETFS_SREQ_SHORT_IO, &subreq->flags);
	__set_bit(NETFS_SREQ_SEEK_DATA_READ, &subreq->flags);

	netfs_stat(&netfs_n_rh_short_read);
	trace_netfs_sreq(subreq, netfs_sreq_trace_resubmit_short);

	netfs_get_subrequest(subreq, netfs_sreq_trace_get_short_read);
	atomic_inc(&rreq->nr_outstanding);
	if (subreq->source == NETFS_READ_FROM_CACHE)
		netfs_read_from_cache(rreq, subreq, NETFS_READ_HOLE_CLEAR);
	else
		netfs_read_from_server(rreq, subreq);
}

/*
 * Resubmit any short or failed operations.  Returns true if we got the rreq
 * ref back.
 */
static bool netfs_rreq_perform_resubmissions(struct netfs_io_request *rreq)
{
	struct netfs_io_subrequest *subreq;

	WARN_ON(in_interrupt());

	trace_netfs_rreq(rreq, netfs_rreq_trace_resubmit);

	/* We don't want terminating submissions trying to wake us up whilst
	 * we're still going through the list.
	 */
	atomic_inc(&rreq->nr_outstanding);

	__clear_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags);
	list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
		if (subreq->error) {
			if (subreq->source != NETFS_READ_FROM_CACHE)
				break;
			subreq->source = NETFS_DOWNLOAD_FROM_SERVER;
			subreq->error = 0;
			netfs_stat(&netfs_n_rh_download_instead);
			trace_netfs_sreq(subreq, netfs_sreq_trace_download_instead);
			netfs_get_subrequest(subreq, netfs_sreq_trace_get_resubmit);
			atomic_inc(&rreq->nr_outstanding);
			netfs_read_from_server(rreq, subreq);
		} else if (test_bit(NETFS_SREQ_SHORT_IO, &subreq->flags)) {
			netfs_rreq_short_read(rreq, subreq);
		}
	}

	/* If we decrement nr_outstanding to 0, the usage ref belongs to us. */
	if (atomic_dec_and_test(&rreq->nr_outstanding))
		return true;

	wake_up_var(&rreq->nr_outstanding);
	return false;
}

/*
 * Check to see if the data read is still valid.
 */
static void netfs_rreq_is_still_valid(struct netfs_io_request *rreq)
{
	struct netfs_io_subrequest *subreq;

	if (!rreq->netfs_ops->is_still_valid ||
	    rreq->netfs_ops->is_still_valid(rreq))
		return;

	list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
		if (subreq->source == NETFS_READ_FROM_CACHE) {
			subreq->error = -ESTALE;
			__set_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags);
		}
	}
}

/*
 * Assess the state of a read request and decide what to do next.
 *
 * Note that we could be in an ordinary kernel thread, on a workqueue or in
 * softirq context at this point.  We inherit a ref from the caller.
 */
static void netfs_rreq_assess(struct netfs_io_request *rreq, bool was_async)
{
	trace_netfs_rreq(rreq, netfs_rreq_trace_assess);

again:
	netfs_rreq_is_still_valid(rreq);

	if (!test_bit(NETFS_RREQ_FAILED, &rreq->flags) &&
	    test_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags)) {
		if (netfs_rreq_perform_resubmissions(rreq))
			goto again;
		return;
	}

	netfs_rreq_unlock_folios(rreq);

	clear_bit_unlock(NETFS_RREQ_IN_PROGRESS, &rreq->flags);
	wake_up_bit(&rreq->flags, NETFS_RREQ_IN_PROGRESS);

	if (test_bit(NETFS_RREQ_COPY_TO_CACHE, &rreq->flags))
		return netfs_rreq_write_to_cache(rreq);

	netfs_rreq_completed(rreq, was_async);
}

static void netfs_rreq_work(struct work_struct *work)
{
	struct netfs_io_request *rreq =
		container_of(work, struct netfs_io_request, work);
	netfs_rreq_assess(rreq, false);
}

/*
 * Handle the completion of all outstanding I/O operations on a read request.
 * We inherit a ref from the caller.
 */
static void netfs_rreq_terminated(struct netfs_io_request *rreq,
				  bool was_async)
{
	if (test_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags) &&
	    was_async) {
		if (!queue_work(system_unbound_wq, &rreq->work))
			BUG();
	} else {
		netfs_rreq_assess(rreq, was_async);
	}
}

/**
 * netfs_subreq_terminated - Note the termination of an I/O operation.
 * @subreq: The I/O request that has terminated.
 * @transferred_or_error: The amount of data transferred or an error code.
 * @was_async: The termination was asynchronous
 *
 * This tells the read helper that a contributory I/O operation has terminated,
 * one way or another, and that it should integrate the results.
 *
 * The caller indicates in @transferred_or_error the outcome of the operation,
 * supplying a positive value to indicate the number of bytes transferred, 0 to
 * indicate a failure to transfer anything that should be retried or a negative
 * error code.  The helper will look after reissuing I/O operations as
 * appropriate and writing downloaded data to the cache.
 *
 * If @was_async is true, the caller might be running in softirq or interrupt
 * context and we can't sleep.
 */
void netfs_subreq_terminated(struct netfs_io_subrequest *subreq,
			     ssize_t transferred_or_error,
			     bool was_async)
{
	struct netfs_io_request *rreq = subreq->rreq;
	int u;

	_enter("[%u]{%llx,%lx},%zd",
	       subreq->debug_index, subreq->start, subreq->flags,
	       transferred_or_error);

	switch (subreq->source) {
	case NETFS_READ_FROM_CACHE:
		netfs_stat(&netfs_n_rh_read_done);
		break;
	case NETFS_DOWNLOAD_FROM_SERVER:
		netfs_stat(&netfs_n_rh_download_done);
		break;
	default:
		break;
	}

	if (IS_ERR_VALUE(transferred_or_error)) {
		subreq->error = transferred_or_error;
		trace_netfs_failure(rreq, subreq, transferred_or_error,
				    netfs_fail_read);
		goto failed;
	}

	if (WARN(transferred_or_error > subreq->len - subreq->transferred,
		 "Subreq overread: R%x[%x] %zd > %zu - %zu",
		 rreq->debug_id, subreq->debug_index,
		 transferred_or_error, subreq->len, subreq->transferred))
		transferred_or_error = subreq->len - subreq->transferred;

	subreq->error = 0;
	subreq->transferred += transferred_or_error;
	if (subreq->transferred < subreq->len)
		goto incomplete;

complete:
	__clear_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags);
	if (test_bit(NETFS_SREQ_COPY_TO_CACHE, &subreq->flags))
		set_bit(NETFS_RREQ_COPY_TO_CACHE, &rreq->flags);

out:
	trace_netfs_sreq(subreq, netfs_sreq_trace_terminated);

	/* If we decrement nr_outstanding to 0, the ref belongs to us. */
	u = atomic_dec_return(&rreq->nr_outstanding);
	if (u == 0)
		netfs_rreq_terminated(rreq, was_async);
	else if (u == 1)
		wake_up_var(&rreq->nr_outstanding);

	netfs_put_subrequest(subreq, was_async, netfs_sreq_trace_put_terminated);
	return;

incomplete:
	if (test_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags)) {
		netfs_clear_unread(subreq);
		subreq->transferred = subreq->len;
		goto complete;
	}

	if (transferred_or_error == 0) {
		if (__test_and_set_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags)) {
			subreq->error = -ENODATA;
			goto failed;
		}
	} else {
		__clear_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags);
	}

	__set_bit(NETFS_SREQ_SHORT_IO, &subreq->flags);
	set_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags);
	goto out;

failed:
	if (subreq->source == NETFS_READ_FROM_CACHE) {
		netfs_stat(&netfs_n_rh_read_failed);
		set_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags);
	} else {
		netfs_stat(&netfs_n_rh_download_failed);
		set_bit(NETFS_RREQ_FAILED, &rreq->flags);
		rreq->error = subreq->error;
	}
	goto out;
}
EXPORT_SYMBOL(netfs_subreq_terminated);

static enum netfs_io_source netfs_cache_prepare_read(struct netfs_io_subrequest *subreq,
						       loff_t i_size)
{
	struct netfs_io_request *rreq = subreq->rreq;
	struct netfs_cache_resources *cres = &rreq->cache_resources;

	if (cres->ops)
		return cres->ops->prepare_read(subreq, i_size);
	if (subreq->start >= rreq->i_size)
		return NETFS_FILL_WITH_ZEROES;
	return NETFS_DOWNLOAD_FROM_SERVER;
}

/*
 * Work out what sort of subrequest the next one will be.
 */
static enum netfs_io_source
netfs_rreq_prepare_read(struct netfs_io_request *rreq,
			struct netfs_io_subrequest *subreq)
{
	enum netfs_io_source source;

	_enter("%llx-%llx,%llx", subreq->start, subreq->start + subreq->len, rreq->i_size);

	source = netfs_cache_prepare_read(subreq, rreq->i_size);
	if (source == NETFS_INVALID_READ)
		goto out;

	if (source == NETFS_DOWNLOAD_FROM_SERVER) {
		/* Call out to the netfs to let it shrink the request to fit
		 * its own I/O sizes and boundaries.  If it shinks it here, it
		 * will be called again to make simultaneous calls; if it wants
		 * to make serial calls, it can indicate a short read and then
		 * we will call it again.
		 */
		if (subreq->len > rreq->i_size - subreq->start)
			subreq->len = rreq->i_size - subreq->start;

		if (rreq->netfs_ops->clamp_length &&
		    !rreq->netfs_ops->clamp_length(subreq)) {
			source = NETFS_INVALID_READ;
			goto out;
		}
	}

	if (WARN_ON(subreq->len == 0))
		source = NETFS_INVALID_READ;

out:
	subreq->source = source;
	trace_netfs_sreq(subreq, netfs_sreq_trace_prepare);
	return source;
}

/*
 * Slice off a piece of a read request and submit an I/O request for it.
 */
static bool netfs_rreq_submit_slice(struct netfs_io_request *rreq,
				    unsigned int *_debug_index)
{
	struct netfs_io_subrequest *subreq;
	enum netfs_io_source source;

	subreq = netfs_alloc_subrequest(rreq);
	if (!subreq)
		return false;

	subreq->debug_index	= (*_debug_index)++;
	subreq->start		= rreq->start + rreq->submitted;
	subreq->len		= rreq->len   - rreq->submitted;

	_debug("slice %llx,%zx,%zx", subreq->start, subreq->len, rreq->submitted);
	list_add_tail(&subreq->rreq_link, &rreq->subrequests);

	/* Call out to the cache to find out what it can do with the remaining
	 * subset.  It tells us in subreq->flags what it decided should be done
	 * and adjusts subreq->len down if the subset crosses a cache boundary.
	 *
	 * Then when we hand the subset, it can choose to take a subset of that
	 * (the starts must coincide), in which case, we go around the loop
	 * again and ask it to download the next piece.
	 */
	source = netfs_rreq_prepare_read(rreq, subreq);
	if (source == NETFS_INVALID_READ)
		goto subreq_failed;

	atomic_inc(&rreq->nr_outstanding);

	rreq->submitted += subreq->len;

	trace_netfs_sreq(subreq, netfs_sreq_trace_submit);
	switch (source) {
	case NETFS_FILL_WITH_ZEROES:
		netfs_fill_with_zeroes(rreq, subreq);
		break;
	case NETFS_DOWNLOAD_FROM_SERVER:
		netfs_read_from_server(rreq, subreq);
		break;
	case NETFS_READ_FROM_CACHE:
		netfs_read_from_cache(rreq, subreq, NETFS_READ_HOLE_IGNORE);
		break;
	default:
		BUG();
	}

	return true;

subreq_failed:
	rreq->error = subreq->error;
	netfs_put_subrequest(subreq, false, netfs_sreq_trace_put_failed);
	return false;
}

/*
 * Begin the process of reading in a chunk of data, where that data may be
 * stitched together from multiple sources, including multiple servers and the
 * local cache.
 */
int netfs_begin_read(struct netfs_io_request *rreq, bool sync)
{
	unsigned int debug_index = 0;
	int ret;

	_enter("R=%x %llx-%llx",
	       rreq->debug_id, rreq->start, rreq->start + rreq->len - 1);

	if (rreq->len == 0) {
		pr_err("Zero-sized read [R=%x]\n", rreq->debug_id);
		netfs_put_request(rreq, false, netfs_rreq_trace_put_zero_len);
		return -EIO;
	}

	INIT_WORK(&rreq->work, netfs_rreq_work);

	if (sync)
		netfs_get_request(rreq, netfs_rreq_trace_get_hold);

	/* Chop the read into slices according to what the cache and the netfs
	 * want and submit each one.
	 */
	atomic_set(&rreq->nr_outstanding, 1);
	do {
		if (!netfs_rreq_submit_slice(rreq, &debug_index))
			break;

	} while (rreq->submitted < rreq->len);

	if (sync) {
		/* Keep nr_outstanding incremented so that the ref always belongs to
		 * us, and the service code isn't punted off to a random thread pool to
		 * process.
		 */
		for (;;) {
			wait_var_event(&rreq->nr_outstanding,
				       atomic_read(&rreq->nr_outstanding) == 1);
			netfs_rreq_assess(rreq, false);
			if (!test_bit(NETFS_RREQ_IN_PROGRESS, &rreq->flags))
				break;
			cond_resched();
		}

		ret = rreq->error;
		if (ret == 0 && rreq->submitted < rreq->len) {
			trace_netfs_failure(rreq, NULL, ret, netfs_fail_short_read);
			ret = -EIO;
		}
		netfs_put_request(rreq, false, netfs_rreq_trace_put_hold);
	} else {
		/* If we decrement nr_outstanding to 0, the ref belongs to us. */
		if (atomic_dec_and_test(&rreq->nr_outstanding))
			netfs_rreq_assess(rreq, false);
		ret = 0;
	}
	return ret;
}