summaryrefslogtreecommitdiffstats
path: root/fs/ubifs/debug.c
blob: 79d8924aca5b262dc5b606244f331fa86f727dac (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
/*
 * This file is part of UBIFS.
 *
 * Copyright (C) 2006-2008 Nokia Corporation
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published by
 * the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 51
 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 *
 * Authors: Artem Bityutskiy (Битюцкий Артём)
 *          Adrian Hunter
 */

/*
 * This file implements most of the debugging stuff which is compiled in only
 * when it is enabled. But some debugging check functions are implemented in
 * corresponding subsystem, just because they are closely related and utilize
 * various local functions of those subsystems.
 */

#define UBIFS_DBG_PRESERVE_UBI

#include "ubifs.h"
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/debugfs.h>
#include <linux/math64.h>

#ifdef CONFIG_UBIFS_FS_DEBUG

DEFINE_SPINLOCK(dbg_lock);

static char dbg_key_buf0[128];
static char dbg_key_buf1[128];

unsigned int ubifs_chk_flags;
unsigned int ubifs_tst_flags;

module_param_named(debug_chks, ubifs_chk_flags, uint, S_IRUGO | S_IWUSR);
module_param_named(debug_tsts, ubifs_tst_flags, uint, S_IRUGO | S_IWUSR);

MODULE_PARM_DESC(debug_chks, "Debug check flags");
MODULE_PARM_DESC(debug_tsts, "Debug special test flags");

static const char *get_key_fmt(int fmt)
{
	switch (fmt) {
	case UBIFS_SIMPLE_KEY_FMT:
		return "simple";
	default:
		return "unknown/invalid format";
	}
}

static const char *get_key_hash(int hash)
{
	switch (hash) {
	case UBIFS_KEY_HASH_R5:
		return "R5";
	case UBIFS_KEY_HASH_TEST:
		return "test";
	default:
		return "unknown/invalid name hash";
	}
}

static const char *get_key_type(int type)
{
	switch (type) {
	case UBIFS_INO_KEY:
		return "inode";
	case UBIFS_DENT_KEY:
		return "direntry";
	case UBIFS_XENT_KEY:
		return "xentry";
	case UBIFS_DATA_KEY:
		return "data";
	case UBIFS_TRUN_KEY:
		return "truncate";
	default:
		return "unknown/invalid key";
	}
}

static const char *get_dent_type(int type)
{
	switch (type) {
	case UBIFS_ITYPE_REG:
		return "file";
	case UBIFS_ITYPE_DIR:
		return "dir";
	case UBIFS_ITYPE_LNK:
		return "symlink";
	case UBIFS_ITYPE_BLK:
		return "blkdev";
	case UBIFS_ITYPE_CHR:
		return "char dev";
	case UBIFS_ITYPE_FIFO:
		return "fifo";
	case UBIFS_ITYPE_SOCK:
		return "socket";
	default:
		return "unknown/invalid type";
	}
}

static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key,
			char *buffer)
{
	char *p = buffer;
	int type = key_type(c, key);

	if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
		switch (type) {
		case UBIFS_INO_KEY:
			sprintf(p, "(%lu, %s)", (unsigned long)key_inum(c, key),
			       get_key_type(type));
			break;
		case UBIFS_DENT_KEY:
		case UBIFS_XENT_KEY:
			sprintf(p, "(%lu, %s, %#08x)",
				(unsigned long)key_inum(c, key),
				get_key_type(type), key_hash(c, key));
			break;
		case UBIFS_DATA_KEY:
			sprintf(p, "(%lu, %s, %u)",
				(unsigned long)key_inum(c, key),
				get_key_type(type), key_block(c, key));
			break;
		case UBIFS_TRUN_KEY:
			sprintf(p, "(%lu, %s)",
				(unsigned long)key_inum(c, key),
				get_key_type(type));
			break;
		default:
			sprintf(p, "(bad key type: %#08x, %#08x)",
				key->u32[0], key->u32[1]);
		}
	} else
		sprintf(p, "bad key format %d", c->key_fmt);
}

const char *dbg_key_str0(const struct ubifs_info *c, const union ubifs_key *key)
{
	/* dbg_lock must be held */
	sprintf_key(c, key, dbg_key_buf0);
	return dbg_key_buf0;
}

const char *dbg_key_str1(const struct ubifs_info *c, const union ubifs_key *key)
{
	/* dbg_lock must be held */
	sprintf_key(c, key, dbg_key_buf1);
	return dbg_key_buf1;
}

const char *dbg_ntype(int type)
{
	switch (type) {
	case UBIFS_PAD_NODE:
		return "padding node";
	case UBIFS_SB_NODE:
		return "superblock node";
	case UBIFS_MST_NODE:
		return "master node";
	case UBIFS_REF_NODE:
		return "reference node";
	case UBIFS_INO_NODE:
		return "inode node";
	case UBIFS_DENT_NODE:
		return "direntry node";
	case UBIFS_XENT_NODE:
		return "xentry node";
	case UBIFS_DATA_NODE:
		return "data node";
	case UBIFS_TRUN_NODE:
		return "truncate node";
	case UBIFS_IDX_NODE:
		return "indexing node";
	case UBIFS_CS_NODE:
		return "commit start node";
	case UBIFS_ORPH_NODE:
		return "orphan node";
	default:
		return "unknown node";
	}
}

static const char *dbg_gtype(int type)
{
	switch (type) {
	case UBIFS_NO_NODE_GROUP:
		return "no node group";
	case UBIFS_IN_NODE_GROUP:
		return "in node group";
	case UBIFS_LAST_OF_NODE_GROUP:
		return "last of node group";
	default:
		return "unknown";
	}
}

const char *dbg_cstate(int cmt_state)
{
	switch (cmt_state) {
	case COMMIT_RESTING:
		return "commit resting";
	case COMMIT_BACKGROUND:
		return "background commit requested";
	case COMMIT_REQUIRED:
		return "commit required";
	case COMMIT_RUNNING_BACKGROUND:
		return "BACKGROUND commit running";
	case COMMIT_RUNNING_REQUIRED:
		return "commit running and required";
	case COMMIT_BROKEN:
		return "broken commit";
	default:
		return "unknown commit state";
	}
}

const char *dbg_jhead(int jhead)
{
	switch (jhead) {
	case GCHD:
		return "0 (GC)";
	case BASEHD:
		return "1 (base)";
	case DATAHD:
		return "2 (data)";
	default:
		return "unknown journal head";
	}
}

static void dump_ch(const struct ubifs_ch *ch)
{
	printk(KERN_DEBUG "\tmagic          %#x\n", le32_to_cpu(ch->magic));
	printk(KERN_DEBUG "\tcrc            %#x\n", le32_to_cpu(ch->crc));
	printk(KERN_DEBUG "\tnode_type      %d (%s)\n", ch->node_type,
	       dbg_ntype(ch->node_type));
	printk(KERN_DEBUG "\tgroup_type     %d (%s)\n", ch->group_type,
	       dbg_gtype(ch->group_type));
	printk(KERN_DEBUG "\tsqnum          %llu\n",
	       (unsigned long long)le64_to_cpu(ch->sqnum));
	printk(KERN_DEBUG "\tlen            %u\n", le32_to_cpu(ch->len));
}

void dbg_dump_inode(struct ubifs_info *c, const struct inode *inode)
{
	const struct ubifs_inode *ui = ubifs_inode(inode);
	struct qstr nm = { .name = NULL };
	union ubifs_key key;
	struct ubifs_dent_node *dent, *pdent = NULL;
	int count = 2;

	printk(KERN_DEBUG "Dump in-memory inode:");
	printk(KERN_DEBUG "\tinode          %lu\n", inode->i_ino);
	printk(KERN_DEBUG "\tsize           %llu\n",
	       (unsigned long long)i_size_read(inode));
	printk(KERN_DEBUG "\tnlink          %u\n", inode->i_nlink);
	printk(KERN_DEBUG "\tuid            %u\n", (unsigned int)inode->i_uid);
	printk(KERN_DEBUG "\tgid            %u\n", (unsigned int)inode->i_gid);
	printk(KERN_DEBUG "\tatime          %u.%u\n",
	       (unsigned int)inode->i_atime.tv_sec,
	       (unsigned int)inode->i_atime.tv_nsec);
	printk(KERN_DEBUG "\tmtime          %u.%u\n",
	       (unsigned int)inode->i_mtime.tv_sec,
	       (unsigned int)inode->i_mtime.tv_nsec);
	printk(KERN_DEBUG "\tctime          %u.%u\n",
	       (unsigned int)inode->i_ctime.tv_sec,
	       (unsigned int)inode->i_ctime.tv_nsec);
	printk(KERN_DEBUG "\tcreat_sqnum    %llu\n", ui->creat_sqnum);
	printk(KERN_DEBUG "\txattr_size     %u\n", ui->xattr_size);
	printk(KERN_DEBUG "\txattr_cnt      %u\n", ui->xattr_cnt);
	printk(KERN_DEBUG "\txattr_names    %u\n", ui->xattr_names);
	printk(KERN_DEBUG "\tdirty          %u\n", ui->dirty);
	printk(KERN_DEBUG "\txattr          %u\n", ui->xattr);
	printk(KERN_DEBUG "\tbulk_read      %u\n", ui->xattr);
	printk(KERN_DEBUG "\tsynced_i_size  %llu\n",
	       (unsigned long long)ui->synced_i_size);
	printk(KERN_DEBUG "\tui_size        %llu\n",
	       (unsigned long long)ui->ui_size);
	printk(KERN_DEBUG "\tflags          %d\n", ui->flags);
	printk(KERN_DEBUG "\tcompr_type     %d\n", ui->compr_type);
	printk(KERN_DEBUG "\tlast_page_read %lu\n", ui->last_page_read);
	printk(KERN_DEBUG "\tread_in_a_row  %lu\n", ui->read_in_a_row);
	printk(KERN_DEBUG "\tdata_len       %d\n", ui->data_len);

	if (!S_ISDIR(inode->i_mode))
		return;

	printk(KERN_DEBUG "List of directory entries:\n");
	ubifs_assert(!mutex_is_locked(&c->tnc_mutex));

	lowest_dent_key(c, &key, inode->i_ino);
	while (1) {
		dent = ubifs_tnc_next_ent(c, &key, &nm);
		if (IS_ERR(dent)) {
			if (PTR_ERR(dent) != -ENOENT)
				printk(KERN_DEBUG "error %ld\n", PTR_ERR(dent));
			break;
		}

		printk(KERN_DEBUG "\t%d: %s (%s)\n",
		       count++, dent->name, get_dent_type(dent->type));

		nm.name = dent->name;
		nm.len = le16_to_cpu(dent->nlen);
		kfree(pdent);
		pdent = dent;
		key_read(c, &dent->key, &key);
	}
	kfree(pdent);
}

void dbg_dump_node(const struct ubifs_info *c, const void *node)
{
	int i, n;
	union ubifs_key key;
	const struct ubifs_ch *ch = node;

	if (dbg_is_tst_rcvry(c))
		return;

	/* If the magic is incorrect, just hexdump the first bytes */
	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
		printk(KERN_DEBUG "Not a node, first %zu bytes:", UBIFS_CH_SZ);
		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
			       (void *)node, UBIFS_CH_SZ, 1);
		return;
	}

	spin_lock(&dbg_lock);
	dump_ch(node);

	switch (ch->node_type) {
	case UBIFS_PAD_NODE:
	{
		const struct ubifs_pad_node *pad = node;

		printk(KERN_DEBUG "\tpad_len        %u\n",
		       le32_to_cpu(pad->pad_len));
		break;
	}
	case UBIFS_SB_NODE:
	{
		const struct ubifs_sb_node *sup = node;
		unsigned int sup_flags = le32_to_cpu(sup->flags);

		printk(KERN_DEBUG "\tkey_hash       %d (%s)\n",
		       (int)sup->key_hash, get_key_hash(sup->key_hash));
		printk(KERN_DEBUG "\tkey_fmt        %d (%s)\n",
		       (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
		printk(KERN_DEBUG "\tflags          %#x\n", sup_flags);
		printk(KERN_DEBUG "\t  big_lpt      %u\n",
		       !!(sup_flags & UBIFS_FLG_BIGLPT));
		printk(KERN_DEBUG "\t  space_fixup  %u\n",
		       !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
		printk(KERN_DEBUG "\tmin_io_size    %u\n",
		       le32_to_cpu(sup->min_io_size));
		printk(KERN_DEBUG "\tleb_size       %u\n",
		       le32_to_cpu(sup->leb_size));
		printk(KERN_DEBUG "\tleb_cnt        %u\n",
		       le32_to_cpu(sup->leb_cnt));
		printk(KERN_DEBUG "\tmax_leb_cnt    %u\n",
		       le32_to_cpu(sup->max_leb_cnt));
		printk(KERN_DEBUG "\tmax_bud_bytes  %llu\n",
		       (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
		printk(KERN_DEBUG "\tlog_lebs       %u\n",
		       le32_to_cpu(sup->log_lebs));
		printk(KERN_DEBUG "\tlpt_lebs       %u\n",
		       le32_to_cpu(sup->lpt_lebs));
		printk(KERN_DEBUG "\torph_lebs      %u\n",
		       le32_to_cpu(sup->orph_lebs));
		printk(KERN_DEBUG "\tjhead_cnt      %u\n",
		       le32_to_cpu(sup->jhead_cnt));
		printk(KERN_DEBUG "\tfanout         %u\n",
		       le32_to_cpu(sup->fanout));
		printk(KERN_DEBUG "\tlsave_cnt      %u\n",
		       le32_to_cpu(sup->lsave_cnt));
		printk(KERN_DEBUG "\tdefault_compr  %u\n",
		       (int)le16_to_cpu(sup->default_compr));
		printk(KERN_DEBUG "\trp_size        %llu\n",
		       (unsigned long long)le64_to_cpu(sup->rp_size));
		printk(KERN_DEBUG "\trp_uid         %u\n",
		       le32_to_cpu(sup->rp_uid));
		printk(KERN_DEBUG "\trp_gid         %u\n",
		       le32_to_cpu(sup->rp_gid));
		printk(KERN_DEBUG "\tfmt_version    %u\n",
		       le32_to_cpu(sup->fmt_version));
		printk(KERN_DEBUG "\ttime_gran      %u\n",
		       le32_to_cpu(sup->time_gran));
		printk(KERN_DEBUG "\tUUID           %pUB\n",
		       sup->uuid);
		break;
	}
	case UBIFS_MST_NODE:
	{
		const struct ubifs_mst_node *mst = node;

		printk(KERN_DEBUG "\thighest_inum   %llu\n",
		       (unsigned long long)le64_to_cpu(mst->highest_inum));
		printk(KERN_DEBUG "\tcommit number  %llu\n",
		       (unsigned long long)le64_to_cpu(mst->cmt_no));
		printk(KERN_DEBUG "\tflags          %#x\n",
		       le32_to_cpu(mst->flags));
		printk(KERN_DEBUG "\tlog_lnum       %u\n",
		       le32_to_cpu(mst->log_lnum));
		printk(KERN_DEBUG "\troot_lnum      %u\n",
		       le32_to_cpu(mst->root_lnum));
		printk(KERN_DEBUG "\troot_offs      %u\n",
		       le32_to_cpu(mst->root_offs));
		printk(KERN_DEBUG "\troot_len       %u\n",
		       le32_to_cpu(mst->root_len));
		printk(KERN_DEBUG "\tgc_lnum        %u\n",
		       le32_to_cpu(mst->gc_lnum));
		printk(KERN_DEBUG "\tihead_lnum     %u\n",
		       le32_to_cpu(mst->ihead_lnum));
		printk(KERN_DEBUG "\tihead_offs     %u\n",
		       le32_to_cpu(mst->ihead_offs));
		printk(KERN_DEBUG "\tindex_size     %llu\n",
		       (unsigned long long)le64_to_cpu(mst->index_size));
		printk(KERN_DEBUG "\tlpt_lnum       %u\n",
		       le32_to_cpu(mst->lpt_lnum));
		printk(KERN_DEBUG "\tlpt_offs       %u\n",
		       le32_to_cpu(mst->lpt_offs));
		printk(KERN_DEBUG "\tnhead_lnum     %u\n",
		       le32_to_cpu(mst->nhead_lnum));
		printk(KERN_DEBUG "\tnhead_offs     %u\n",
		       le32_to_cpu(mst->nhead_offs));
		printk(KERN_DEBUG "\tltab_lnum      %u\n",
		       le32_to_cpu(mst->ltab_lnum));
		printk(KERN_DEBUG "\tltab_offs      %u\n",
		       le32_to_cpu(mst->ltab_offs));
		printk(KERN_DEBUG "\tlsave_lnum     %u\n",
		       le32_to_cpu(mst->lsave_lnum));
		printk(KERN_DEBUG "\tlsave_offs     %u\n",
		       le32_to_cpu(mst->lsave_offs));
		printk(KERN_DEBUG "\tlscan_lnum     %u\n",
		       le32_to_cpu(mst->lscan_lnum));
		printk(KERN_DEBUG "\tleb_cnt        %u\n",
		       le32_to_cpu(mst->leb_cnt));
		printk(KERN_DEBUG "\tempty_lebs     %u\n",
		       le32_to_cpu(mst->empty_lebs));
		printk(KERN_DEBUG "\tidx_lebs       %u\n",
		       le32_to_cpu(mst->idx_lebs));
		printk(KERN_DEBUG "\ttotal_free     %llu\n",
		       (unsigned long long)le64_to_cpu(mst->total_free));
		printk(KERN_DEBUG "\ttotal_dirty    %llu\n",
		       (unsigned long long)le64_to_cpu(mst->total_dirty));
		printk(KERN_DEBUG "\ttotal_used     %llu\n",
		       (unsigned long long)le64_to_cpu(mst->total_used));
		printk(KERN_DEBUG "\ttotal_dead     %llu\n",
		       (unsigned long long)le64_to_cpu(mst->total_dead));
		printk(KERN_DEBUG "\ttotal_dark     %llu\n",
		       (unsigned long long)le64_to_cpu(mst->total_dark));
		break;
	}
	case UBIFS_REF_NODE:
	{
		const struct ubifs_ref_node *ref = node;

		printk(KERN_DEBUG "\tlnum           %u\n",
		       le32_to_cpu(ref->lnum));
		printk(KERN_DEBUG "\toffs           %u\n",
		       le32_to_cpu(ref->offs));
		printk(KERN_DEBUG "\tjhead          %u\n",
		       le32_to_cpu(ref->jhead));
		break;
	}
	case UBIFS_INO_NODE:
	{
		const struct ubifs_ino_node *ino = node;

		key_read(c, &ino->key, &key);
		printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
		printk(KERN_DEBUG "\tcreat_sqnum    %llu\n",
		       (unsigned long long)le64_to_cpu(ino->creat_sqnum));
		printk(KERN_DEBUG "\tsize           %llu\n",
		       (unsigned long long)le64_to_cpu(ino->size));
		printk(KERN_DEBUG "\tnlink          %u\n",
		       le32_to_cpu(ino->nlink));
		printk(KERN_DEBUG "\tatime          %lld.%u\n",
		       (long long)le64_to_cpu(ino->atime_sec),
		       le32_to_cpu(ino->atime_nsec));
		printk(KERN_DEBUG "\tmtime          %lld.%u\n",
		       (long long)le64_to_cpu(ino->mtime_sec),
		       le32_to_cpu(ino->mtime_nsec));
		printk(KERN_DEBUG "\tctime          %lld.%u\n",
		       (long long)le64_to_cpu(ino->ctime_sec),
		       le32_to_cpu(ino->ctime_nsec));
		printk(KERN_DEBUG "\tuid            %u\n",
		       le32_to_cpu(ino->uid));
		printk(KERN_DEBUG "\tgid            %u\n",
		       le32_to_cpu(ino->gid));
		printk(KERN_DEBUG "\tmode           %u\n",
		       le32_to_cpu(ino->mode));
		printk(KERN_DEBUG "\tflags          %#x\n",
		       le32_to_cpu(ino->flags));
		printk(KERN_DEBUG "\txattr_cnt      %u\n",
		       le32_to_cpu(ino->xattr_cnt));
		printk(KERN_DEBUG "\txattr_size     %u\n",
		       le32_to_cpu(ino->xattr_size));
		printk(KERN_DEBUG "\txattr_names    %u\n",
		       le32_to_cpu(ino->xattr_names));
		printk(KERN_DEBUG "\tcompr_type     %#x\n",
		       (int)le16_to_cpu(ino->compr_type));
		printk(KERN_DEBUG "\tdata len       %u\n",
		       le32_to_cpu(ino->data_len));
		break;
	}
	case UBIFS_DENT_NODE:
	case UBIFS_XENT_NODE:
	{
		const struct ubifs_dent_node *dent = node;
		int nlen = le16_to_cpu(dent->nlen);

		key_read(c, &dent->key, &key);
		printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
		printk(KERN_DEBUG "\tinum           %llu\n",
		       (unsigned long long)le64_to_cpu(dent->inum));
		printk(KERN_DEBUG "\ttype           %d\n", (int)dent->type);
		printk(KERN_DEBUG "\tnlen           %d\n", nlen);
		printk(KERN_DEBUG "\tname           ");

		if (nlen > UBIFS_MAX_NLEN)
			printk(KERN_DEBUG "(bad name length, not printing, "
					  "bad or corrupted node)");
		else {
			for (i = 0; i < nlen && dent->name[i]; i++)
				printk(KERN_CONT "%c", dent->name[i]);
		}
		printk(KERN_CONT "\n");

		break;
	}
	case UBIFS_DATA_NODE:
	{
		const struct ubifs_data_node *dn = node;
		int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;

		key_read(c, &dn->key, &key);
		printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
		printk(KERN_DEBUG "\tsize           %u\n",
		       le32_to_cpu(dn->size));
		printk(KERN_DEBUG "\tcompr_typ      %d\n",
		       (int)le16_to_cpu(dn->compr_type));
		printk(KERN_DEBUG "\tdata size      %d\n",
		       dlen);
		printk(KERN_DEBUG "\tdata:\n");
		print_hex_dump(KERN_DEBUG, "\t", DUMP_PREFIX_OFFSET, 32, 1,
			       (void *)&dn->data, dlen, 0);
		break;
	}
	case UBIFS_TRUN_NODE:
	{
		const struct ubifs_trun_node *trun = node;

		printk(KERN_DEBUG "\tinum           %u\n",
		       le32_to_cpu(trun->inum));
		printk(KERN_DEBUG "\told_size       %llu\n",
		       (unsigned long long)le64_to_cpu(trun->old_size));
		printk(KERN_DEBUG "\tnew_size       %llu\n",
		       (unsigned long long)le64_to_cpu(trun->new_size));
		break;
	}
	case UBIFS_IDX_NODE:
	{
		const struct ubifs_idx_node *idx = node;

		n = le16_to_cpu(idx->child_cnt);
		printk(KERN_DEBUG "\tchild_cnt      %d\n", n);
		printk(KERN_DEBUG "\tlevel          %d\n",
		       (int)le16_to_cpu(idx->level));
		printk(KERN_DEBUG "\tBranches:\n");

		for (i = 0; i < n && i < c->fanout - 1; i++) {
			const struct ubifs_branch *br;

			br = ubifs_idx_branch(c, idx, i);
			key_read(c, &br->key, &key);
			printk(KERN_DEBUG "\t%d: LEB %d:%d len %d key %s\n",
			       i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
			       le32_to_cpu(br->len), DBGKEY(&key));
		}
		break;
	}
	case UBIFS_CS_NODE:
		break;
	case UBIFS_ORPH_NODE:
	{
		const struct ubifs_orph_node *orph = node;

		printk(KERN_DEBUG "\tcommit number  %llu\n",
		       (unsigned long long)
				le64_to_cpu(orph->cmt_no) & LLONG_MAX);
		printk(KERN_DEBUG "\tlast node flag %llu\n",
		       (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
		n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
		printk(KERN_DEBUG "\t%d orphan inode numbers:\n", n);
		for (i = 0; i < n; i++)
			printk(KERN_DEBUG "\t  ino %llu\n",
			       (unsigned long long)le64_to_cpu(orph->inos[i]));
		break;
	}
	default:
		printk(KERN_DEBUG "node type %d was not recognized\n",
		       (int)ch->node_type);
	}
	spin_unlock(&dbg_lock);
}

void dbg_dump_budget_req(const struct ubifs_budget_req *req)
{
	spin_lock(&dbg_lock);
	printk(KERN_DEBUG "Budgeting request: new_ino %d, dirtied_ino %d\n",
	       req->new_ino, req->dirtied_ino);
	printk(KERN_DEBUG "\tnew_ino_d   %d, dirtied_ino_d %d\n",
	       req->new_ino_d, req->dirtied_ino_d);
	printk(KERN_DEBUG "\tnew_page    %d, dirtied_page %d\n",
	       req->new_page, req->dirtied_page);
	printk(KERN_DEBUG "\tnew_dent    %d, mod_dent     %d\n",
	       req->new_dent, req->mod_dent);
	printk(KERN_DEBUG "\tidx_growth  %d\n", req->idx_growth);
	printk(KERN_DEBUG "\tdata_growth %d dd_growth     %d\n",
	       req->data_growth, req->dd_growth);
	spin_unlock(&dbg_lock);
}

void dbg_dump_lstats(const struct ubifs_lp_stats *lst)
{
	spin_lock(&dbg_lock);
	printk(KERN_DEBUG "(pid %d) Lprops statistics: empty_lebs %d, "
	       "idx_lebs  %d\n", current->pid, lst->empty_lebs, lst->idx_lebs);
	printk(KERN_DEBUG "\ttaken_empty_lebs %d, total_free %lld, "
	       "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free,
	       lst->total_dirty);
	printk(KERN_DEBUG "\ttotal_used %lld, total_dark %lld, "
	       "total_dead %lld\n", lst->total_used, lst->total_dark,
	       lst->total_dead);
	spin_unlock(&dbg_lock);
}

void dbg_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
{
	int i;
	struct rb_node *rb;
	struct ubifs_bud *bud;
	struct ubifs_gced_idx_leb *idx_gc;
	long long available, outstanding, free;

	spin_lock(&c->space_lock);
	spin_lock(&dbg_lock);
	printk(KERN_DEBUG "(pid %d) Budgeting info: data budget sum %lld, "
	       "total budget sum %lld\n", current->pid,
	       bi->data_growth + bi->dd_growth,
	       bi->data_growth + bi->dd_growth + bi->idx_growth);
	printk(KERN_DEBUG "\tbudg_data_growth %lld, budg_dd_growth %lld, "
	       "budg_idx_growth %lld\n", bi->data_growth, bi->dd_growth,
	       bi->idx_growth);
	printk(KERN_DEBUG "\tmin_idx_lebs %d, old_idx_sz %llu, "
	       "uncommitted_idx %lld\n", bi->min_idx_lebs, bi->old_idx_sz,
	       bi->uncommitted_idx);
	printk(KERN_DEBUG "\tpage_budget %d, inode_budget %d, dent_budget %d\n",
	       bi->page_budget, bi->inode_budget, bi->dent_budget);
	printk(KERN_DEBUG "\tnospace %u, nospace_rp %u\n",
	       bi->nospace, bi->nospace_rp);
	printk(KERN_DEBUG "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
	       c->dark_wm, c->dead_wm, c->max_idx_node_sz);

	if (bi != &c->bi)
		/*
		 * If we are dumping saved budgeting data, do not print
		 * additional information which is about the current state, not
		 * the old one which corresponded to the saved budgeting data.
		 */
		goto out_unlock;

	printk(KERN_DEBUG "\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
	       c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
	printk(KERN_DEBUG "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
	       "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt),
	       atomic_long_read(&c->dirty_zn_cnt),
	       atomic_long_read(&c->clean_zn_cnt));
	printk(KERN_DEBUG "\tgc_lnum %d, ihead_lnum %d\n",
	       c->gc_lnum, c->ihead_lnum);

	/* If we are in R/O mode, journal heads do not exist */
	if (c->jheads)
		for (i = 0; i < c->jhead_cnt; i++)
			printk(KERN_DEBUG "\tjhead %s\t LEB %d\n",
			       dbg_jhead(c->jheads[i].wbuf.jhead),
			       c->jheads[i].wbuf.lnum);
	for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
		bud = rb_entry(rb, struct ubifs_bud, rb);
		printk(KERN_DEBUG "\tbud LEB %d\n", bud->lnum);
	}
	list_for_each_entry(bud, &c->old_buds, list)
		printk(KERN_DEBUG "\told bud LEB %d\n", bud->lnum);
	list_for_each_entry(idx_gc, &c->idx_gc, list)
		printk(KERN_DEBUG "\tGC'ed idx LEB %d unmap %d\n",
		       idx_gc->lnum, idx_gc->unmap);
	printk(KERN_DEBUG "\tcommit state %d\n", c->cmt_state);

	/* Print budgeting predictions */
	available = ubifs_calc_available(c, c->bi.min_idx_lebs);
	outstanding = c->bi.data_growth + c->bi.dd_growth;
	free = ubifs_get_free_space_nolock(c);
	printk(KERN_DEBUG "Budgeting predictions:\n");
	printk(KERN_DEBUG "\tavailable: %lld, outstanding %lld, free %lld\n",
	       available, outstanding, free);
out_unlock:
	spin_unlock(&dbg_lock);
	spin_unlock(&c->space_lock);
}

void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
{
	int i, spc, dark = 0, dead = 0;
	struct rb_node *rb;
	struct ubifs_bud *bud;

	spc = lp->free + lp->dirty;
	if (spc < c->dead_wm)
		dead = spc;
	else
		dark = ubifs_calc_dark(c, spc);

	if (lp->flags & LPROPS_INDEX)
		printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
		       "free + dirty %-8d flags %#x (", lp->lnum, lp->free,
		       lp->dirty, c->leb_size - spc, spc, lp->flags);
	else
		printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
		       "free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d "
		       "flags %#-4x (", lp->lnum, lp->free, lp->dirty,
		       c->leb_size - spc, spc, dark, dead,
		       (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);

	if (lp->flags & LPROPS_TAKEN) {
		if (lp->flags & LPROPS_INDEX)
			printk(KERN_CONT "index, taken");
		else
			printk(KERN_CONT "taken");
	} else {
		const char *s;

		if (lp->flags & LPROPS_INDEX) {
			switch (lp->flags & LPROPS_CAT_MASK) {
			case LPROPS_DIRTY_IDX:
				s = "dirty index";
				break;
			case LPROPS_FRDI_IDX:
				s = "freeable index";
				break;
			default:
				s = "index";
			}
		} else {
			switch (lp->flags & LPROPS_CAT_MASK) {
			case LPROPS_UNCAT:
				s = "not categorized";
				break;
			case LPROPS_DIRTY:
				s = "dirty";
				break;
			case LPROPS_FREE:
				s = "free";
				break;
			case LPROPS_EMPTY:
				s = "empty";
				break;
			case LPROPS_FREEABLE:
				s = "freeable";
				break;
			default:
				s = NULL;
				break;
			}
		}
		printk(KERN_CONT "%s", s);
	}

	for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
		bud = rb_entry(rb, struct ubifs_bud, rb);
		if (bud->lnum == lp->lnum) {
			int head = 0;
			for (i = 0; i < c->jhead_cnt; i++) {
				/*
				 * Note, if we are in R/O mode or in the middle
				 * of mounting/re-mounting, the write-buffers do
				 * not exist.
				 */
				if (c->jheads &&
				    lp->lnum == c->jheads[i].wbuf.lnum) {
					printk(KERN_CONT ", jhead %s",
					       dbg_jhead(i));
					head = 1;
				}
			}
			if (!head)
				printk(KERN_CONT ", bud of jhead %s",
				       dbg_jhead(bud->jhead));
		}
	}
	if (lp->lnum == c->gc_lnum)
		printk(KERN_CONT ", GC LEB");
	printk(KERN_CONT ")\n");
}

void dbg_dump_lprops(struct ubifs_info *c)
{
	int lnum, err;
	struct ubifs_lprops lp;
	struct ubifs_lp_stats lst;

	printk(KERN_DEBUG "(pid %d) start dumping LEB properties\n",
	       current->pid);
	ubifs_get_lp_stats(c, &lst);
	dbg_dump_lstats(&lst);

	for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
		err = ubifs_read_one_lp(c, lnum, &lp);
		if (err)
			ubifs_err("cannot read lprops for LEB %d", lnum);

		dbg_dump_lprop(c, &lp);
	}
	printk(KERN_DEBUG "(pid %d) finish dumping LEB properties\n",
	       current->pid);
}

void dbg_dump_lpt_info(struct ubifs_info *c)
{
	int i;

	spin_lock(&dbg_lock);
	printk(KERN_DEBUG "(pid %d) dumping LPT information\n", current->pid);
	printk(KERN_DEBUG "\tlpt_sz:        %lld\n", c->lpt_sz);
	printk(KERN_DEBUG "\tpnode_sz:      %d\n", c->pnode_sz);
	printk(KERN_DEBUG "\tnnode_sz:      %d\n", c->nnode_sz);
	printk(KERN_DEBUG "\tltab_sz:       %d\n", c->ltab_sz);
	printk(KERN_DEBUG "\tlsave_sz:      %d\n", c->lsave_sz);
	printk(KERN_DEBUG "\tbig_lpt:       %d\n", c->big_lpt);
	printk(KERN_DEBUG "\tlpt_hght:      %d\n", c->lpt_hght);
	printk(KERN_DEBUG "\tpnode_cnt:     %d\n", c->pnode_cnt);
	printk(KERN_DEBUG "\tnnode_cnt:     %d\n", c->nnode_cnt);
	printk(KERN_DEBUG "\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
	printk(KERN_DEBUG "\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
	printk(KERN_DEBUG "\tlsave_cnt:     %d\n", c->lsave_cnt);
	printk(KERN_DEBUG "\tspace_bits:    %d\n", c->space_bits);
	printk(KERN_DEBUG "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
	printk(KERN_DEBUG "\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
	printk(KERN_DEBUG "\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
	printk(KERN_DEBUG "\tpcnt_bits:     %d\n", c->pcnt_bits);
	printk(KERN_DEBUG "\tlnum_bits:     %d\n", c->lnum_bits);
	printk(KERN_DEBUG "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
	printk(KERN_DEBUG "\tLPT head is at %d:%d\n",
	       c->nhead_lnum, c->nhead_offs);
	printk(KERN_DEBUG "\tLPT ltab is at %d:%d\n",
	       c->ltab_lnum, c->ltab_offs);
	if (c->big_lpt)
		printk(KERN_DEBUG "\tLPT lsave is at %d:%d\n",
		       c->lsave_lnum, c->lsave_offs);
	for (i = 0; i < c->lpt_lebs; i++)
		printk(KERN_DEBUG "\tLPT LEB %d free %d dirty %d tgc %d "
		       "cmt %d\n", i + c->lpt_first, c->ltab[i].free,
		       c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt);
	spin_unlock(&dbg_lock);
}

void dbg_dump_leb(const struct ubifs_info *c, int lnum)
{
	struct ubifs_scan_leb *sleb;
	struct ubifs_scan_node *snod;
	void *buf;

	if (dbg_is_tst_rcvry(c))
		return;

	printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n",
	       current->pid, lnum);

	buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
	if (!buf) {
		ubifs_err("cannot allocate memory for dumping LEB %d", lnum);
		return;
	}

	sleb = ubifs_scan(c, lnum, 0, buf, 0);
	if (IS_ERR(sleb)) {
		ubifs_err("scan error %d", (int)PTR_ERR(sleb));
		goto out;
	}

	printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum,
	       sleb->nodes_cnt, sleb->endpt);

	list_for_each_entry(snod, &sleb->nodes, list) {
		cond_resched();
		printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", lnum,
		       snod->offs, snod->len);
		dbg_dump_node(c, snod->node);
	}

	printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n",
	       current->pid, lnum);
	ubifs_scan_destroy(sleb);

out:
	vfree(buf);
	return;
}

void dbg_dump_znode(const struct ubifs_info *c,
		    const struct ubifs_znode *znode)
{
	int n;
	const struct ubifs_zbranch *zbr;

	spin_lock(&dbg_lock);
	if (znode->parent)
		zbr = &znode->parent->zbranch[znode->iip];
	else
		zbr = &c->zroot;

	printk(KERN_DEBUG "znode %p, LEB %d:%d len %d parent %p iip %d level %d"
	       " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs,
	       zbr->len, znode->parent, znode->iip, znode->level,
	       znode->child_cnt, znode->flags);

	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
		spin_unlock(&dbg_lock);
		return;
	}

	printk(KERN_DEBUG "zbranches:\n");
	for (n = 0; n < znode->child_cnt; n++) {
		zbr = &znode->zbranch[n];
		if (znode->level > 0)
			printk(KERN_DEBUG "\t%d: znode %p LEB %d:%d len %d key "
					  "%s\n", n, zbr->znode, zbr->lnum,
					  zbr->offs, zbr->len,
					  DBGKEY(&zbr->key));
		else
			printk(KERN_DEBUG "\t%d: LNC %p LEB %d:%d len %d key "
					  "%s\n", n, zbr->znode, zbr->lnum,
					  zbr->offs, zbr->len,
					  DBGKEY(&zbr->key));
	}
	spin_unlock(&dbg_lock);
}

void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
{
	int i;

	printk(KERN_DEBUG "(pid %d) start dumping heap cat %d (%d elements)\n",
	       current->pid, cat, heap->cnt);
	for (i = 0; i < heap->cnt; i++) {
		struct ubifs_lprops *lprops = heap->arr[i];

		printk(KERN_DEBUG "\t%d. LEB %d hpos %d free %d dirty %d "
		       "flags %d\n", i, lprops->lnum, lprops->hpos,
		       lprops->free, lprops->dirty, lprops->flags);
	}
	printk(KERN_DEBUG "(pid %d) finish dumping heap\n", current->pid);
}

void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
		    struct ubifs_nnode *parent, int iip)
{
	int i;

	printk(KERN_DEBUG "(pid %d) dumping pnode:\n", current->pid);
	printk(KERN_DEBUG "\taddress %zx parent %zx cnext %zx\n",
	       (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
	printk(KERN_DEBUG "\tflags %lu iip %d level %d num %d\n",
	       pnode->flags, iip, pnode->level, pnode->num);
	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
		struct ubifs_lprops *lp = &pnode->lprops[i];

		printk(KERN_DEBUG "\t%d: free %d dirty %d flags %d lnum %d\n",
		       i, lp->free, lp->dirty, lp->flags, lp->lnum);
	}
}

void dbg_dump_tnc(struct ubifs_info *c)
{
	struct ubifs_znode *znode;
	int level;

	printk(KERN_DEBUG "\n");
	printk(KERN_DEBUG "(pid %d) start dumping TNC tree\n", current->pid);
	znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
	level = znode->level;
	printk(KERN_DEBUG "== Level %d ==\n", level);
	while (znode) {
		if (level != znode->level) {
			level = znode->level;
			printk(KERN_DEBUG "== Level %d ==\n", level);
		}
		dbg_dump_znode(c, znode);
		znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
	}
	printk(KERN_DEBUG "(pid %d) finish dumping TNC tree\n", current->pid);
}

static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
		      void *priv)
{
	dbg_dump_znode(c, znode);
	return 0;
}

/**
 * dbg_dump_index - dump the on-flash index.
 * @c: UBIFS file-system description object
 *
 * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()'
 * which dumps only in-memory znodes and does not read znodes which from flash.
 */
void dbg_dump_index(struct ubifs_info *c)
{
	dbg_walk_index(c, NULL, dump_znode, NULL);
}

/**
 * dbg_save_space_info - save information about flash space.
 * @c: UBIFS file-system description object
 *
 * This function saves information about UBIFS free space, dirty space, etc, in
 * order to check it later.
 */
void dbg_save_space_info(struct ubifs_info *c)
{
	struct ubifs_debug_info *d = c->dbg;
	int freeable_cnt;

	spin_lock(&c->space_lock);
	memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
	memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
	d->saved_idx_gc_cnt = c->idx_gc_cnt;

	/*
	 * We use a dirty hack here and zero out @c->freeable_cnt, because it
	 * affects the free space calculations, and UBIFS might not know about
	 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
	 * only when we read their lprops, and we do this only lazily, upon the
	 * need. So at any given point of time @c->freeable_cnt might be not
	 * exactly accurate.
	 *
	 * Just one example about the issue we hit when we did not zero
	 * @c->freeable_cnt.
	 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
	 *    amount of free space in @d->saved_free
	 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
	 *    information from flash, where we cache LEBs from various
	 *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
	 *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
	 *    -> 'ubifs_get_pnode()' -> 'update_cats()'
	 *    -> 'ubifs_add_to_cat()').
	 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
	 *    becomes %1.
	 * 4. We calculate the amount of free space when the re-mount is
	 *    finished in 'dbg_check_space_info()' and it does not match
	 *    @d->saved_free.
	 */
	freeable_cnt = c->freeable_cnt;
	c->freeable_cnt = 0;
	d->saved_free = ubifs_get_free_space_nolock(c);
	c->freeable_cnt = freeable_cnt;
	spin_unlock(&c->space_lock);
}

/**
 * dbg_check_space_info - check flash space information.
 * @c: UBIFS file-system description object
 *
 * This function compares current flash space information with the information
 * which was saved when the 'dbg_save_space_info()' function was called.
 * Returns zero if the information has not changed, and %-EINVAL it it has
 * changed.
 */
int dbg_check_space_info(struct ubifs_info *c)
{
	struct ubifs_debug_info *d = c->dbg;
	struct ubifs_lp_stats lst;
	long long free;
	int freeable_cnt;

	spin_lock(&c->space_lock);
	freeable_cnt = c->freeable_cnt;
	c->freeable_cnt = 0;
	free = ubifs_get_free_space_nolock(c);
	c->freeable_cnt = freeable_cnt;
	spin_unlock(&c->space_lock);

	if (free != d->saved_free) {
		ubifs_err("free space changed from %lld to %lld",
			  d->saved_free, free);
		goto out;
	}

	return 0;

out:
	ubifs_msg("saved lprops statistics dump");
	dbg_dump_lstats(&d->saved_lst);
	ubifs_msg("saved budgeting info dump");
	dbg_dump_budg(c, &d->saved_bi);
	ubifs_msg("saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
	ubifs_msg("current lprops statistics dump");
	ubifs_get_lp_stats(c, &lst);
	dbg_dump_lstats(&lst);
	ubifs_msg("current budgeting info dump");
	dbg_dump_budg(c, &c->bi);
	dump_stack();
	return -EINVAL;
}

/**
 * dbg_check_synced_i_size - check synchronized inode size.
 * @c: UBIFS file-system description object
 * @inode: inode to check
 *
 * If inode is clean, synchronized inode size has to be equivalent to current
 * inode size. This function has to be called only for locked inodes (@i_mutex
 * has to be locked). Returns %0 if synchronized inode size if correct, and
 * %-EINVAL if not.
 */
int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
{
	int err = 0;
	struct ubifs_inode *ui = ubifs_inode(inode);

	if (!dbg_is_chk_gen(c))
		return 0;
	if (!S_ISREG(inode->i_mode))
		return 0;

	mutex_lock(&ui->ui_mutex);
	spin_lock(&ui->ui_lock);
	if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
		ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
			  "is clean", ui->ui_size, ui->synced_i_size);
		ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
			  inode->i_mode, i_size_read(inode));
		dbg_dump_stack();
		err = -EINVAL;
	}
	spin_unlock(&ui->ui_lock);
	mutex_unlock(&ui->ui_mutex);
	return err;
}

/*
 * dbg_check_dir - check directory inode size and link count.
 * @c: UBIFS file-system description object
 * @dir: the directory to calculate size for
 * @size: the result is returned here
 *
 * This function makes sure that directory size and link count are correct.
 * Returns zero in case of success and a negative error code in case of
 * failure.
 *
 * Note, it is good idea to make sure the @dir->i_mutex is locked before
 * calling this function.
 */
int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
{
	unsigned int nlink = 2;
	union ubifs_key key;
	struct ubifs_dent_node *dent, *pdent = NULL;
	struct qstr nm = { .name = NULL };
	loff_t size = UBIFS_INO_NODE_SZ;

	if (!dbg_is_chk_gen(c))
		return 0;

	if (!S_ISDIR(dir->i_mode))
		return 0;

	lowest_dent_key(c, &key, dir->i_ino);
	while (1) {
		int err;

		dent = ubifs_tnc_next_ent(c, &key, &nm);
		if (IS_ERR(dent)) {
			err = PTR_ERR(dent);
			if (err == -ENOENT)
				break;
			return err;
		}

		nm.name = dent->name;
		nm.len = le16_to_cpu(dent->nlen);
		size += CALC_DENT_SIZE(nm.len);
		if (dent->type == UBIFS_ITYPE_DIR)
			nlink += 1;
		kfree(pdent);
		pdent = dent;
		key_read(c, &dent->key, &key);
	}
	kfree(pdent);

	if (i_size_read(dir) != size) {
		ubifs_err("directory inode %lu has size %llu, "
			  "but calculated size is %llu", dir->i_ino,
			  (unsigned long long)i_size_read(dir),
			  (unsigned long long)size);
		dbg_dump_inode(c, dir);
		dump_stack();
		return -EINVAL;
	}
	if (dir->i_nlink != nlink) {
		ubifs_err("directory inode %lu has nlink %u, but calculated "
			  "nlink is %u", dir->i_ino, dir->i_nlink, nlink);
		dbg_dump_inode(c, dir);
		dump_stack();
		return -EINVAL;
	}

	return 0;
}

/**
 * dbg_check_key_order - make sure that colliding keys are properly ordered.
 * @c: UBIFS file-system description object
 * @zbr1: first zbranch
 * @zbr2: following zbranch
 *
 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
 * names of the direntries/xentries which are referred by the keys. This
 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
 * sure the name of direntry/xentry referred by @zbr1 is less than
 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
 * and a negative error code in case of failure.
 */
static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
			       struct ubifs_zbranch *zbr2)
{
	int err, nlen1, nlen2, cmp;
	struct ubifs_dent_node *dent1, *dent2;
	union ubifs_key key;

	ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
	dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
	if (!dent1)
		return -ENOMEM;
	dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
	if (!dent2) {
		err = -ENOMEM;
		goto out_free;
	}

	err = ubifs_tnc_read_node(c, zbr1, dent1);
	if (err)
		goto out_free;
	err = ubifs_validate_entry(c, dent1);
	if (err)
		goto out_free;

	err = ubifs_tnc_read_node(c, zbr2, dent2);
	if (err)
		goto out_free;
	err = ubifs_validate_entry(c, dent2);
	if (err)
		goto out_free;

	/* Make sure node keys are the same as in zbranch */
	err = 1;
	key_read(c, &dent1->key, &key);
	if (keys_cmp(c, &zbr1->key, &key)) {
		dbg_err("1st entry at %d:%d has key %s", zbr1->lnum,
			zbr1->offs, DBGKEY(&key));
		dbg_err("but it should have key %s according to tnc",
			DBGKEY(&zbr1->key));
		dbg_dump_node(c, dent1);
		goto out_free;
	}

	key_read(c, &dent2->key, &key);
	if (keys_cmp(c, &zbr2->key, &key)) {
		dbg_err("2nd entry at %d:%d has key %s", zbr1->lnum,
			zbr1->offs, DBGKEY(&key));
		dbg_err("but it should have key %s according to tnc",
			DBGKEY(&zbr2->key));
		dbg_dump_node(c, dent2);
		goto out_free;
	}

	nlen1 = le16_to_cpu(dent1->nlen);
	nlen2 = le16_to_cpu(dent2->nlen);

	cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
	if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
		err = 0;
		goto out_free;
	}
	if (cmp == 0 && nlen1 == nlen2)
		dbg_err("2 xent/dent nodes with the same name");
	else
		dbg_err("bad order of colliding key %s",
			DBGKEY(&key));

	ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
	dbg_dump_node(c, dent1);
	ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
	dbg_dump_node(c, dent2);

out_free:
	kfree(dent2);
	kfree(dent1);
	return err;
}

/**
 * dbg_check_znode - check if znode is all right.
 * @c: UBIFS file-system description object
 * @zbr: zbranch which points to this znode
 *
 * This function makes sure that znode referred to by @zbr is all right.
 * Returns zero if it is, and %-EINVAL if it is not.
 */
static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
{
	struct ubifs_znode *znode = zbr->znode;
	struct ubifs_znode *zp = znode->parent;
	int n, err, cmp;

	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
		err = 1;
		goto out;
	}
	if (znode->level < 0) {
		err = 2;
		goto out;
	}
	if (znode->iip < 0 || znode->iip >= c->fanout) {
		err = 3;
		goto out;
	}

	if (zbr->len == 0)
		/* Only dirty zbranch may have no on-flash nodes */
		if (!ubifs_zn_dirty(znode)) {
			err = 4;
			goto out;
		}

	if (ubifs_zn_dirty(znode)) {
		/*
		 * If znode is dirty, its parent has to be dirty as well. The
		 * order of the operation is important, so we have to have
		 * memory barriers.
		 */
		smp_mb();
		if (zp && !ubifs_zn_dirty(zp)) {
			/*
			 * The dirty flag is atomic and is cleared outside the
			 * TNC mutex, so znode's dirty flag may now have
			 * been cleared. The child is always cleared before the
			 * parent, so we just need to check again.
			 */
			smp_mb();
			if (ubifs_zn_dirty(znode)) {
				err = 5;
				goto out;
			}
		}
	}

	if (zp) {
		const union ubifs_key *min, *max;

		if (znode->level != zp->level - 1) {
			err = 6;
			goto out;
		}

		/* Make sure the 'parent' pointer in our znode is correct */
		err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
		if (!err) {
			/* This zbranch does not exist in the parent */
			err = 7;
			goto out;
		}

		if (znode->iip >= zp->child_cnt) {
			err = 8;
			goto out;
		}

		if (znode->iip != n) {
			/* This may happen only in case of collisions */
			if (keys_cmp(c, &zp->zbranch[n].key,
				     &zp->zbranch[znode->iip].key)) {
				err = 9;
				goto out;
			}
			n = znode->iip;
		}

		/*
		 * Make sure that the first key in our znode is greater than or
		 * equal to the key in the pointing zbranch.
		 */
		min = &zbr->key;
		cmp = keys_cmp(c, min, &znode->zbranch[0].key);
		if (cmp == 1) {
			err = 10;
			goto out;
		}

		if (n + 1 < zp->child_cnt) {
			max = &zp->zbranch[n + 1].key;

			/*
			 * Make sure the last key in our znode is less or
			 * equivalent than the key in the zbranch which goes
			 * after our pointing zbranch.
			 */
			cmp = keys_cmp(c, max,
				&znode->zbranch[znode->child_cnt - 1].key);
			if (cmp == -1) {
				err = 11;
				goto out;
			}
		}
	} else {
		/* This may only be root znode */
		if (zbr != &c->zroot) {
			err = 12;
			goto out;
		}
	}

	/*
	 * Make sure that next key is greater or equivalent then the previous
	 * one.
	 */
	for (n = 1; n < znode->child_cnt; n++) {
		cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
			       &znode->zbranch[n].key);
		if (cmp > 0) {
			err = 13;
			goto out;
		}
		if (cmp == 0) {
			/* This can only be keys with colliding hash */
			if (!is_hash_key(c, &znode->zbranch[n].key)) {
				err = 14;
				goto out;
			}

			if (znode->level != 0 || c->replaying)
				continue;

			/*
			 * Colliding keys should follow binary order of
			 * corresponding xentry/dentry names.
			 */
			err = dbg_check_key_order(c, &znode->zbranch[n - 1],
						  &znode->zbranch[n]);
			if (err < 0)
				return err;
			if (err) {
				err = 15;
				goto out;
			}
		}
	}

	for (n = 0; n < znode->child_cnt; n++) {
		if (!znode->zbranch[n].znode &&
		    (znode->zbranch[n].lnum == 0 ||
		     znode->zbranch[n].len == 0)) {
			err = 16;
			goto out;
		}

		if (znode->zbranch[n].lnum != 0 &&
		    znode->zbranch[n].len == 0) {
			err = 17;
			goto out;
		}

		if (znode->zbranch[n].lnum == 0 &&
		    znode->zbranch[n].len != 0) {
			err = 18;
			goto out;
		}

		if (znode->zbranch[n].lnum == 0 &&
		    znode->zbranch[n].offs != 0) {
			err = 19;
			goto out;
		}

		if (znode->level != 0 && znode->zbranch[n].znode)
			if (znode->zbranch[n].znode->parent != znode) {
				err = 20;
				goto out;
			}
	}

	return 0;

out:
	ubifs_err("failed, error %d", err);
	ubifs_msg("dump of the znode");
	dbg_dump_znode(c, znode);
	if (zp) {
		ubifs_msg("dump of the parent znode");
		dbg_dump_znode(c, zp);
	}
	dump_stack();
	return -EINVAL;
}

/**
 * dbg_check_tnc - check TNC tree.
 * @c: UBIFS file-system description object
 * @extra: do extra checks that are possible at start commit
 *
 * This function traverses whole TNC tree and checks every znode. Returns zero
 * if everything is all right and %-EINVAL if something is wrong with TNC.
 */
int dbg_check_tnc(struct ubifs_info *c, int extra)
{
	struct ubifs_znode *znode;
	long clean_cnt = 0, dirty_cnt = 0;
	int err, last;

	if (!dbg_is_chk_tnc(c))
		return 0;

	ubifs_assert(mutex_is_locked(&c->tnc_mutex));
	if (!c->zroot.znode)
		return 0;

	znode = ubifs_tnc_postorder_first(c->zroot.znode);
	while (1) {
		struct ubifs_znode *prev;
		struct ubifs_zbranch *zbr;

		if (!znode->parent)
			zbr = &c->zroot;
		else
			zbr = &znode->parent->zbranch[znode->iip];

		err = dbg_check_znode(c, zbr);
		if (err)
			return err;

		if (extra) {
			if (ubifs_zn_dirty(znode))
				dirty_cnt += 1;
			else
				clean_cnt += 1;
		}

		prev = znode;
		znode = ubifs_tnc_postorder_next(znode);
		if (!znode)
			break;

		/*
		 * If the last key of this znode is equivalent to the first key
		 * of the next znode (collision), then check order of the keys.
		 */
		last = prev->child_cnt - 1;
		if (prev->level == 0 && znode->level == 0 && !c->replaying &&
		    !keys_cmp(c, &prev->zbranch[last].key,
			      &znode->zbranch[0].key)) {
			err = dbg_check_key_order(c, &prev->zbranch[last],
						  &znode->zbranch[0]);
			if (err < 0)
				return err;
			if (err) {
				ubifs_msg("first znode");
				dbg_dump_znode(c, prev);
				ubifs_msg("second znode");
				dbg_dump_znode(c, znode);
				return -EINVAL;
			}
		}
	}

	if (extra) {
		if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
			ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
				  atomic_long_read(&c->clean_zn_cnt),
				  clean_cnt);
			return -EINVAL;
		}
		if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
			ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
				  atomic_long_read(&c->dirty_zn_cnt),
				  dirty_cnt);
			return -EINVAL;
		}
	}

	return 0;
}

/**
 * dbg_walk_index - walk the on-flash index.
 * @c: UBIFS file-system description object
 * @leaf_cb: called for each leaf node
 * @znode_cb: called for each indexing node
 * @priv: private data which is passed to callbacks
 *
 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
 * node and @znode_cb for each indexing node. Returns zero in case of success
 * and a negative error code in case of failure.
 *
 * It would be better if this function removed every znode it pulled to into
 * the TNC, so that the behavior more closely matched the non-debugging
 * behavior.
 */
int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
		   dbg_znode_callback znode_cb, void *priv)
{
	int err;
	struct ubifs_zbranch *zbr;
	struct ubifs_znode *znode, *child;

	mutex_lock(&c->tnc_mutex);
	/* If the root indexing node is not in TNC - pull it */
	if (!c->zroot.znode) {
		c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
		if (IS_ERR(c->zroot.znode)) {
			err = PTR_ERR(c->zroot.znode);
			c->zroot.znode = NULL;
			goto out_unlock;
		}
	}

	/*
	 * We are going to traverse the indexing tree in the postorder manner.
	 * Go down and find the leftmost indexing node where we are going to
	 * start from.
	 */
	znode = c->zroot.znode;
	while (znode->level > 0) {
		zbr = &znode->zbranch[0];
		child = zbr->znode;
		if (!child) {
			child = ubifs_load_znode(c, zbr, znode, 0);
			if (IS_ERR(child)) {
				err = PTR_ERR(child);
				goto out_unlock;
			}
			zbr->znode = child;
		}

		znode = child;
	}

	/* Iterate over all indexing nodes */
	while (1) {
		int idx;

		cond_resched();

		if (znode_cb) {
			err = znode_cb(c, znode, priv);
			if (err) {
				ubifs_err("znode checking function returned "
					  "error %d", err);
				dbg_dump_znode(c, znode);
				goto out_dump;
			}
		}
		if (leaf_cb && znode->level == 0) {
			for (idx = 0; idx < znode->child_cnt; idx++) {
				zbr = &znode->zbranch[idx];
				err = leaf_cb(c, zbr, priv);
				if (err) {
					ubifs_err("leaf checking function "
						  "returned error %d, for leaf "
						  "at LEB %d:%d",
						  err, zbr->lnum, zbr->offs);
					goto out_dump;
				}
			}
		}

		if (!znode->parent)
			break;

		idx = znode->iip + 1;
		znode = znode->parent;
		if (idx < znode->child_cnt) {
			/* Switch to the next index in the parent */
			zbr = &znode->zbranch[idx];
			child = zbr->znode;
			if (!child) {
				child = ubifs_load_znode(c, zbr, znode, idx);
				if (IS_ERR(child)) {
					err = PTR_ERR(child);
					goto out_unlock;
				}
				zbr->znode = child;
			}
			znode = child;
		} else
			/*
			 * This is the last child, switch to the parent and
			 * continue.
			 */
			continue;

		/* Go to the lowest leftmost znode in the new sub-tree */
		while (znode->level > 0) {
			zbr = &znode->zbranch[0];
			child = zbr->znode;
			if (!child) {
				child = ubifs_load_znode(c, zbr, znode, 0);
				if (IS_ERR(child)) {
					err = PTR_ERR(child);
					goto out_unlock;
				}
				zbr->znode = child;
			}
			znode = child;
		}
	}

	mutex_unlock(&c->tnc_mutex);
	return 0;

out_dump:
	if (znode->parent)
		zbr = &znode->parent->zbranch[znode->iip];
	else
		zbr = &c->zroot;
	ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
	dbg_dump_znode(c, znode);
out_unlock:
	mutex_unlock(&c->tnc_mutex);
	return err;
}

/**
 * add_size - add znode size to partially calculated index size.
 * @c: UBIFS file-system description object
 * @znode: znode to add size for
 * @priv: partially calculated index size
 *
 * This is a helper function for 'dbg_check_idx_size()' which is called for
 * every indexing node and adds its size to the 'long long' variable pointed to
 * by @priv.
 */
static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
{
	long long *idx_size = priv;
	int add;

	add = ubifs_idx_node_sz(c, znode->child_cnt);
	add = ALIGN(add, 8);
	*idx_size += add;
	return 0;
}

/**
 * dbg_check_idx_size - check index size.
 * @c: UBIFS file-system description object
 * @idx_size: size to check
 *
 * This function walks the UBIFS index, calculates its size and checks that the
 * size is equivalent to @idx_size. Returns zero in case of success and a
 * negative error code in case of failure.
 */
int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
{
	int err;
	long long calc = 0;

	if (!dbg_is_chk_idx_sz(c))
		return 0;

	err = dbg_walk_index(c, NULL, add_size, &calc);
	if (err) {
		ubifs_err("error %d while walking the index", err);
		return err;
	}

	if (calc != idx_size) {
		ubifs_err("index size check failed: calculated size is %lld, "
			  "should be %lld", calc, idx_size);
		dump_stack();
		return -EINVAL;
	}

	return 0;
}

/**
 * struct fsck_inode - information about an inode used when checking the file-system.
 * @rb: link in the RB-tree of inodes
 * @inum: inode number
 * @mode: inode type, permissions, etc
 * @nlink: inode link count
 * @xattr_cnt: count of extended attributes
 * @references: how many directory/xattr entries refer this inode (calculated
 *              while walking the index)
 * @calc_cnt: for directory inode count of child directories
 * @size: inode size (read from on-flash inode)
 * @xattr_sz: summary size of all extended attributes (read from on-flash
 *            inode)
 * @calc_sz: for directories calculated directory size
 * @calc_xcnt: count of extended attributes
 * @calc_xsz: calculated summary size of all extended attributes
 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
 *             inode (read from on-flash inode)
 * @calc_xnms: calculated sum of lengths of all extended attribute names
 */
struct fsck_inode {
	struct rb_node rb;
	ino_t inum;
	umode_t mode;
	unsigned int nlink;
	unsigned int xattr_cnt;
	int references;
	int calc_cnt;
	long long size;
	unsigned int xattr_sz;
	long long calc_sz;
	long long calc_xcnt;
	long long calc_xsz;
	unsigned int xattr_nms;
	long long calc_xnms;
};

/**
 * struct fsck_data - private FS checking information.
 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
 */
struct fsck_data {
	struct rb_root inodes;
};

/**
 * add_inode - add inode information to RB-tree of inodes.
 * @c: UBIFS file-system description object
 * @fsckd: FS checking information
 * @ino: raw UBIFS inode to add
 *
 * This is a helper function for 'check_leaf()' which adds information about
 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
 * case of success and a negative error code in case of failure.
 */
static struct fsck_inode *add_inode(struct ubifs_info *c,
				    struct fsck_data *fsckd,
				    struct ubifs_ino_node *ino)
{
	struct rb_node **p, *parent = NULL;
	struct fsck_inode *fscki;
	ino_t inum = key_inum_flash(c, &ino->key);
	struct inode *inode;
	struct ubifs_inode *ui;

	p = &fsckd->inodes.rb_node;
	while (*p) {
		parent = *p;
		fscki = rb_entry(parent, struct fsck_inode, rb);
		if (inum < fscki->inum)
			p = &(*p)->rb_left;
		else if (inum > fscki->inum)
			p = &(*p)->rb_right;
		else
			return fscki;
	}

	if (inum > c->highest_inum) {
		ubifs_err("too high inode number, max. is %lu",
			  (unsigned long)c->highest_inum);
		return ERR_PTR(-EINVAL);
	}

	fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
	if (!fscki)
		return ERR_PTR(-ENOMEM);

	inode = ilookup(c->vfs_sb, inum);

	fscki->inum = inum;
	/*
	 * If the inode is present in the VFS inode cache, use it instead of
	 * the on-flash inode which might be out-of-date. E.g., the size might
	 * be out-of-date. If we do not do this, the following may happen, for
	 * example:
	 *   1. A power cut happens
	 *   2. We mount the file-system R/O, the replay process fixes up the
	 *      inode size in the VFS cache, but on on-flash.
	 *   3. 'check_leaf()' fails because it hits a data node beyond inode
	 *      size.
	 */
	if (!inode) {
		fscki->nlink = le32_to_cpu(ino->nlink);
		fscki->size = le64_to_cpu(ino->size);
		fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
		fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
		fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
		fscki->mode = le32_to_cpu(ino->mode);
	} else {
		ui = ubifs_inode(inode);
		fscki->nlink = inode->i_nlink;
		fscki->size = inode->i_size;
		fscki->xattr_cnt = ui->xattr_cnt;
		fscki->xattr_sz = ui->xattr_size;
		fscki->xattr_nms = ui->xattr_names;
		fscki->mode = inode->i_mode;
		iput(inode);
	}

	if (S_ISDIR(fscki->mode)) {
		fscki->calc_sz = UBIFS_INO_NODE_SZ;
		fscki->calc_cnt = 2;
	}

	rb_link_node(&fscki->rb, parent, p);
	rb_insert_color(&fscki->rb, &fsckd->inodes);

	return fscki;
}

/**
 * search_inode - search inode in the RB-tree of inodes.
 * @fsckd: FS checking information
 * @inum: inode number to search
 *
 * This is a helper function for 'check_leaf()' which searches inode @inum in
 * the RB-tree of inodes and returns an inode information pointer or %NULL if
 * the inode was not found.
 */
static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
{
	struct rb_node *p;
	struct fsck_inode *fscki;

	p = fsckd->inodes.rb_node;
	while (p) {
		fscki = rb_entry(p, struct fsck_inode, rb);
		if (inum < fscki->inum)
			p = p->rb_left;
		else if (inum > fscki->inum)
			p = p->rb_right;
		else
			return fscki;
	}
	return NULL;
}

/**
 * read_add_inode - read inode node and add it to RB-tree of inodes.
 * @c: UBIFS file-system description object
 * @fsckd: FS checking information
 * @inum: inode number to read
 *
 * This is a helper function for 'check_leaf()' which finds inode node @inum in
 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
 * information pointer in case of success and a negative error code in case of
 * failure.
 */
static struct fsck_inode *read_add_inode(struct ubifs_info *c,
					 struct fsck_data *fsckd, ino_t inum)
{
	int n, err;
	union ubifs_key key;
	struct ubifs_znode *znode;
	struct ubifs_zbranch *zbr;
	struct ubifs_ino_node *ino;
	struct fsck_inode *fscki;

	fscki = search_inode(fsckd, inum);
	if (fscki)
		return fscki;

	ino_key_init(c, &key, inum);
	err = ubifs_lookup_level0(c, &key, &znode, &n);
	if (!err) {
		ubifs_err("inode %lu not found in index", (unsigned long)inum);
		return ERR_PTR(-ENOENT);
	} else if (err < 0) {
		ubifs_err("error %d while looking up inode %lu",
			  err, (unsigned long)inum);
		return ERR_PTR(err);
	}

	zbr = &znode->zbranch[n];
	if (zbr->len < UBIFS_INO_NODE_SZ) {
		ubifs_err("bad node %lu node length %d",
			  (unsigned long)inum, zbr->len);
		return ERR_PTR(-EINVAL);
	}

	ino = kmalloc(zbr->len, GFP_NOFS);
	if (!ino)
		return ERR_PTR(-ENOMEM);

	err = ubifs_tnc_read_node(c, zbr, ino);
	if (err) {
		ubifs_err("cannot read inode node at LEB %d:%d, error %d",
			  zbr->lnum, zbr->offs, err);
		kfree(ino);
		return ERR_PTR(err);
	}

	fscki = add_inode(c, fsckd, ino);
	kfree(ino);
	if (IS_ERR(fscki)) {
		ubifs_err("error %ld while adding inode %lu node",
			  PTR_ERR(fscki), (unsigned long)inum);
		return fscki;
	}

	return fscki;
}

/**
 * check_leaf - check leaf node.
 * @c: UBIFS file-system description object
 * @zbr: zbranch of the leaf node to check
 * @priv: FS checking information
 *
 * This is a helper function for 'dbg_check_filesystem()' which is called for
 * every single leaf node while walking the indexing tree. It checks that the
 * leaf node referred from the indexing tree exists, has correct CRC, and does
 * some other basic validation. This function is also responsible for building
 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
 * calculates reference count, size, etc for each inode in order to later
 * compare them to the information stored inside the inodes and detect possible
 * inconsistencies. Returns zero in case of success and a negative error code
 * in case of failure.
 */
static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
		      void *priv)
{
	ino_t inum;
	void *node;
	struct ubifs_ch *ch;
	int err, type = key_type(c, &zbr->key);
	struct fsck_inode *fscki;

	if (zbr->len < UBIFS_CH_SZ) {
		ubifs_err("bad leaf length %d (LEB %d:%d)",
			  zbr->len, zbr->lnum, zbr->offs);
		return -EINVAL;
	}

	node = kmalloc(zbr->len, GFP_NOFS);
	if (!node)
		return -ENOMEM;

	err = ubifs_tnc_read_node(c, zbr, node);
	if (err) {
		ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
			  zbr->lnum, zbr->offs, err);
		goto out_free;
	}

	/* If this is an inode node, add it to RB-tree of inodes */
	if (type == UBIFS_INO_KEY) {
		fscki = add_inode(c, priv, node);
		if (IS_ERR(fscki)) {
			err = PTR_ERR(fscki);
			ubifs_err("error %d while adding inode node", err);
			goto out_dump;
		}
		goto out;
	}

	if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
	    type != UBIFS_DATA_KEY) {
		ubifs_err("unexpected node type %d at LEB %d:%d",
			  type, zbr->lnum, zbr->offs);
		err = -EINVAL;
		goto out_free;
	}

	ch = node;
	if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
		ubifs_err("too high sequence number, max. is %llu",
			  c->max_sqnum);
		err = -EINVAL;
		goto out_dump;
	}

	if (type == UBIFS_DATA_KEY) {
		long long blk_offs;
		struct ubifs_data_node *dn = node;

		/*
		 * Search the inode node this data node belongs to and insert
		 * it to the RB-tree of inodes.
		 */
		inum = key_inum_flash(c, &dn->key);
		fscki = read_add_inode(c, priv, inum);
		if (IS_ERR(fscki)) {
			err = PTR_ERR(fscki);
			ubifs_err("error %d while processing data node and "
				  "trying to find inode node %lu",
				  err, (unsigned long)inum);
			goto out_dump;
		}

		/* Make sure the data node is within inode size */
		blk_offs = key_block_flash(c, &dn->key);
		blk_offs <<= UBIFS_BLOCK_SHIFT;
		blk_offs += le32_to_cpu(dn->size);
		if (blk_offs > fscki->size) {
			ubifs_err("data node at LEB %d:%d is not within inode "
				  "size %lld", zbr->lnum, zbr->offs,
				  fscki->size);
			err = -EINVAL;
			goto out_dump;
		}
	} else {
		int nlen;
		struct ubifs_dent_node *dent = node;
		struct fsck_inode *fscki1;

		err = ubifs_validate_entry(c, dent);
		if (err)
			goto out_dump;

		/*
		 * Search the inode node this entry refers to and the parent
		 * inode node and insert them to the RB-tree of inodes.
		 */
		inum = le64_to_cpu(dent->inum);
		fscki = read_add_inode(c, priv, inum);
		if (IS_ERR(fscki)) {
			err = PTR_ERR(fscki);
			ubifs_err("error %d while processing entry node and "
				  "trying to find inode node %lu",
				  err, (unsigned long)inum);
			goto out_dump;
		}

		/* Count how many direntries or xentries refers this inode */
		fscki->references += 1;

		inum = key_inum_flash(c, &dent->key);
		fscki1 = read_add_inode(c, priv, inum);
		if (IS_ERR(fscki1)) {
			err = PTR_ERR(fscki1);
			ubifs_err("error %d while processing entry node and "
				  "trying to find parent inode node %lu",
				  err, (unsigned long)inum);
			goto out_dump;
		}

		nlen = le16_to_cpu(dent->nlen);
		if (type == UBIFS_XENT_KEY) {
			fscki1->calc_xcnt += 1;
			fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
			fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
			fscki1->calc_xnms += nlen;
		} else {
			fscki1->calc_sz += CALC_DENT_SIZE(nlen);
			if (dent->type == UBIFS_ITYPE_DIR)
				fscki1->calc_cnt += 1;
		}
	}

out:
	kfree(node);
	return 0;

out_dump:
	ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
	dbg_dump_node(c, node);
out_free:
	kfree(node);
	return err;
}

/**
 * free_inodes - free RB-tree of inodes.
 * @fsckd: FS checking information
 */
static void free_inodes(struct fsck_data *fsckd)
{
	struct rb_node *this = fsckd->inodes.rb_node;
	struct fsck_inode *fscki;

	while (this) {
		if (this->rb_left)
			this = this->rb_left;
		else if (this->rb_right)
			this = this->rb_right;
		else {
			fscki = rb_entry(this, struct fsck_inode, rb);
			this = rb_parent(this);
			if (this) {
				if (this->rb_left == &fscki->rb)
					this->rb_left = NULL;
				else
					this->rb_right = NULL;
			}
			kfree(fscki);
		}
	}
}

/**
 * check_inodes - checks all inodes.
 * @c: UBIFS file-system description object
 * @fsckd: FS checking information
 *
 * This is a helper function for 'dbg_check_filesystem()' which walks the
 * RB-tree of inodes after the index scan has been finished, and checks that
 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
 * %-EINVAL if not, and a negative error code in case of failure.
 */
static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
{
	int n, err;
	union ubifs_key key;
	struct ubifs_znode *znode;
	struct ubifs_zbranch *zbr;
	struct ubifs_ino_node *ino;
	struct fsck_inode *fscki;
	struct rb_node *this = rb_first(&fsckd->inodes);

	while (this) {
		fscki = rb_entry(this, struct fsck_inode, rb);
		this = rb_next(this);

		if (S_ISDIR(fscki->mode)) {
			/*
			 * Directories have to have exactly one reference (they
			 * cannot have hardlinks), although root inode is an
			 * exception.
			 */
			if (fscki->inum != UBIFS_ROOT_INO &&
			    fscki->references != 1) {
				ubifs_err("directory inode %lu has %d "
					  "direntries which refer it, but "
					  "should be 1",
					  (unsigned long)fscki->inum,
					  fscki->references);
				goto out_dump;
			}
			if (fscki->inum == UBIFS_ROOT_INO &&
			    fscki->references != 0) {
				ubifs_err("root inode %lu has non-zero (%d) "
					  "direntries which refer it",
					  (unsigned long)fscki->inum,
					  fscki->references);
				goto out_dump;
			}
			if (fscki->calc_sz != fscki->size) {
				ubifs_err("directory inode %lu size is %lld, "
					  "but calculated size is %lld",
					  (unsigned long)fscki->inum,
					  fscki->size, fscki->calc_sz);
				goto out_dump;
			}
			if (fscki->calc_cnt != fscki->nlink) {
				ubifs_err("directory inode %lu nlink is %d, "
					  "but calculated nlink is %d",
					  (unsigned long)fscki->inum,
					  fscki->nlink, fscki->calc_cnt);
				goto out_dump;
			}
		} else {
			if (fscki->references != fscki->nlink) {
				ubifs_err("inode %lu nlink is %d, but "
					  "calculated nlink is %d",
					  (unsigned long)fscki->inum,
					  fscki->nlink, fscki->references);
				goto out_dump;
			}
		}
		if (fscki->xattr_sz != fscki->calc_xsz) {
			ubifs_err("inode %lu has xattr size %u, but "
				  "calculated size is %lld",
				  (unsigned long)fscki->inum, fscki->xattr_sz,
				  fscki->calc_xsz);
			goto out_dump;
		}
		if (fscki->xattr_cnt != fscki->calc_xcnt) {
			ubifs_err("inode %lu has %u xattrs, but "
				  "calculated count is %lld",
				  (unsigned long)fscki->inum,
				  fscki->xattr_cnt, fscki->calc_xcnt);
			goto out_dump;
		}
		if (fscki->xattr_nms != fscki->calc_xnms) {
			ubifs_err("inode %lu has xattr names' size %u, but "
				  "calculated names' size is %lld",
				  (unsigned long)fscki->inum, fscki->xattr_nms,
				  fscki->calc_xnms);
			goto out_dump;
		}
	}

	return 0;

out_dump:
	/* Read the bad inode and dump it */
	ino_key_init(c, &key, fscki->inum);
	err = ubifs_lookup_level0(c, &key, &znode, &n);
	if (!err) {
		ubifs_err("inode %lu not found in index",
			  (unsigned long)fscki->inum);
		return -ENOENT;
	} else if (err < 0) {
		ubifs_err("error %d while looking up inode %lu",
			  err, (unsigned long)fscki->inum);
		return err;
	}

	zbr = &znode->zbranch[n];
	ino = kmalloc(zbr->len, GFP_NOFS);
	if (!ino)
		return -ENOMEM;

	err = ubifs_tnc_read_node(c, zbr, ino);
	if (err) {
		ubifs_err("cannot read inode node at LEB %d:%d, error %d",
			  zbr->lnum, zbr->offs, err);
		kfree(ino);
		return err;
	}

	ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
		  (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
	dbg_dump_node(c, ino);
	kfree(ino);
	return -EINVAL;
}

/**
 * dbg_check_filesystem - check the file-system.
 * @c: UBIFS file-system description object
 *
 * This function checks the file system, namely:
 * o makes sure that all leaf nodes exist and their CRCs are correct;
 * o makes sure inode nlink, size, xattr size/count are correct (for all
 *   inodes).
 *
 * The function reads whole indexing tree and all nodes, so it is pretty
 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
 * not, and a negative error code in case of failure.
 */
int dbg_check_filesystem(struct ubifs_info *c)
{
	int err;
	struct fsck_data fsckd;

	if (!dbg_is_chk_fs(c))
		return 0;

	fsckd.inodes = RB_ROOT;
	err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
	if (err)
		goto out_free;

	err = check_inodes(c, &fsckd);
	if (err)
		goto out_free;

	free_inodes(&fsckd);
	return 0;

out_free:
	ubifs_err("file-system check failed with error %d", err);
	dump_stack();
	free_inodes(&fsckd);
	return err;
}

/**
 * dbg_check_data_nodes_order - check that list of data nodes is sorted.
 * @c: UBIFS file-system description object
 * @head: the list of nodes ('struct ubifs_scan_node' objects)
 *
 * This function returns zero if the list of data nodes is sorted correctly,
 * and %-EINVAL if not.
 */
int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
{
	struct list_head *cur;
	struct ubifs_scan_node *sa, *sb;

	if (!dbg_is_chk_gen(c))
		return 0;

	for (cur = head->next; cur->next != head; cur = cur->next) {
		ino_t inuma, inumb;
		uint32_t blka, blkb;

		cond_resched();
		sa = container_of(cur, struct ubifs_scan_node, list);
		sb = container_of(cur->next, struct ubifs_scan_node, list);

		if (sa->type != UBIFS_DATA_NODE) {
			ubifs_err("bad node type %d", sa->type);
			dbg_dump_node(c, sa->node);
			return -EINVAL;
		}
		if (sb->type != UBIFS_DATA_NODE) {
			ubifs_err("bad node type %d", sb->type);
			dbg_dump_node(c, sb->node);
			return -EINVAL;
		}

		inuma = key_inum(c, &sa->key);
		inumb = key_inum(c, &sb->key);

		if (inuma < inumb)
			continue;
		if (inuma > inumb) {
			ubifs_err("larger inum %lu goes before inum %lu",
				  (unsigned long)inuma, (unsigned long)inumb);
			goto error_dump;
		}

		blka = key_block(c, &sa->key);
		blkb = key_block(c, &sb->key);

		if (blka > blkb) {
			ubifs_err("larger block %u goes before %u", blka, blkb);
			goto error_dump;
		}
		if (blka == blkb) {
			ubifs_err("two data nodes for the same block");
			goto error_dump;
		}
	}

	return 0;

error_dump:
	dbg_dump_node(c, sa->node);
	dbg_dump_node(c, sb->node);
	return -EINVAL;
}

/**
 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
 * @c: UBIFS file-system description object
 * @head: the list of nodes ('struct ubifs_scan_node' objects)
 *
 * This function returns zero if the list of non-data nodes is sorted correctly,
 * and %-EINVAL if not.
 */
int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
{
	struct list_head *cur;
	struct ubifs_scan_node *sa, *sb;

	if (!dbg_is_chk_gen(c))
		return 0;

	for (cur = head->next; cur->next != head; cur = cur->next) {
		ino_t inuma, inumb;
		uint32_t hasha, hashb;

		cond_resched();
		sa = container_of(cur, struct ubifs_scan_node, list);
		sb = container_of(cur->next, struct ubifs_scan_node, list);

		if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
		    sa->type != UBIFS_XENT_NODE) {
			ubifs_err("bad node type %d", sa->type);
			dbg_dump_node(c, sa->node);
			return -EINVAL;
		}
		if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
		    sa->type != UBIFS_XENT_NODE) {
			ubifs_err("bad node type %d", sb->type);
			dbg_dump_node(c, sb->node);
			return -EINVAL;
		}

		if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
			ubifs_err("non-inode node goes before inode node");
			goto error_dump;
		}

		if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
			continue;

		if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
			/* Inode nodes are sorted in descending size order */
			if (sa->len < sb->len) {
				ubifs_err("smaller inode node goes first");
				goto error_dump;
			}
			continue;
		}

		/*
		 * This is either a dentry or xentry, which should be sorted in
		 * ascending (parent ino, hash) order.
		 */
		inuma = key_inum(c, &sa->key);
		inumb = key_inum(c, &sb->key);

		if (inuma < inumb)
			continue;
		if (inuma > inumb) {
			ubifs_err("larger inum %lu goes before inum %lu",
				  (unsigned long)inuma, (unsigned long)inumb);
			goto error_dump;
		}

		hasha = key_block(c, &sa->key);
		hashb = key_block(c, &sb->key);

		if (hasha > hashb) {
			ubifs_err("larger hash %u goes before %u",
				  hasha, hashb);
			goto error_dump;
		}
	}

	return 0;

error_dump:
	ubifs_msg("dumping first node");
	dbg_dump_node(c, sa->node);
	ubifs_msg("dumping second node");
	dbg_dump_node(c, sb->node);
	return -EINVAL;
	return 0;
}

/* Failure mode for recovery testing */

#define chance(n, d) (simple_rand() <= (n) * 32768LL / (d))

struct failure_mode_info {
	struct list_head list;
	struct ubifs_info *c;
};

static LIST_HEAD(fmi_list);
static DEFINE_SPINLOCK(fmi_lock);

static unsigned int next;

static int simple_rand(void)
{
	if (next == 0)
		next = current->pid;
	next = next * 1103515245 + 12345;
	return (next >> 16) & 32767;
}

static void failure_mode_init(struct ubifs_info *c)
{
	struct failure_mode_info *fmi;

	fmi = kmalloc(sizeof(struct failure_mode_info), GFP_NOFS);
	if (!fmi) {
		ubifs_err("Failed to register failure mode - no memory");
		return;
	}
	fmi->c = c;
	spin_lock(&fmi_lock);
	list_add_tail(&fmi->list, &fmi_list);
	spin_unlock(&fmi_lock);
}

static void failure_mode_exit(struct ubifs_info *c)
{
	struct failure_mode_info *fmi, *tmp;

	spin_lock(&fmi_lock);
	list_for_each_entry_safe(fmi, tmp, &fmi_list, list)
		if (fmi->c == c) {
			list_del(&fmi->list);
			kfree(fmi);
		}
	spin_unlock(&fmi_lock);
}

static struct ubifs_info *dbg_find_info(struct ubi_volume_desc *desc)
{
	struct failure_mode_info *fmi;

	spin_lock(&fmi_lock);
	list_for_each_entry(fmi, &fmi_list, list)
		if (fmi->c->ubi == desc) {
			struct ubifs_info *c = fmi->c;

			spin_unlock(&fmi_lock);
			return c;
		}
	spin_unlock(&fmi_lock);
	return NULL;
}

static int in_failure_mode(struct ubi_volume_desc *desc)
{
	struct ubifs_info *c = dbg_find_info(desc);

	if (c && dbg_is_tst_rcvry(c))
		return c->dbg->failure_mode;
	return 0;
}

static int do_fail(struct ubi_volume_desc *desc, int lnum, int write)
{
	struct ubifs_info *c = dbg_find_info(desc);
	struct ubifs_debug_info *d;

	if (!c || !dbg_is_tst_rcvry(c))
		return 0;
	d = c->dbg;
	if (d->failure_mode)
		return 1;
	if (!d->fail_cnt) {
		/* First call - decide delay to failure */
		if (chance(1, 2)) {
			unsigned int delay = 1 << (simple_rand() >> 11);

			if (chance(1, 2)) {
				d->fail_delay = 1;
				d->fail_timeout = jiffies +
						  msecs_to_jiffies(delay);
				dbg_rcvry("failing after %ums", delay);
			} else {
				d->fail_delay = 2;
				d->fail_cnt_max = delay;
				dbg_rcvry("failing after %u calls", delay);
			}
		}
		d->fail_cnt += 1;
	}
	/* Determine if failure delay has expired */
	if (d->fail_delay == 1) {
		if (time_before(jiffies, d->fail_timeout))
			return 0;
	} else if (d->fail_delay == 2)
		if (d->fail_cnt++ < d->fail_cnt_max)
			return 0;
	if (lnum == UBIFS_SB_LNUM) {
		if (write) {
			if (chance(1, 2))
				return 0;
		} else if (chance(19, 20))
			return 0;
		dbg_rcvry("failing in super block LEB %d", lnum);
	} else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
		if (chance(19, 20))
			return 0;
		dbg_rcvry("failing in master LEB %d", lnum);
	} else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
		if (write) {
			if (chance(99, 100))
				return 0;
		} else if (chance(399, 400))
			return 0;
		dbg_rcvry("failing in log LEB %d", lnum);
	} else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
		if (write) {
			if (chance(7, 8))
				return 0;
		} else if (chance(19, 20))
			return 0;
		dbg_rcvry("failing in LPT LEB %d", lnum);
	} else if (lnum >= c->orph_first && lnum <= c->orph_last) {
		if (write) {
			if (chance(1, 2))
				return 0;
		} else if (chance(9, 10))
			return 0;
		dbg_rcvry("failing in orphan LEB %d", lnum);
	} else if (lnum == c->ihead_lnum) {
		if (chance(99, 100))
			return 0;
		dbg_rcvry("failing in index head LEB %d", lnum);
	} else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
		if (chance(9, 10))
			return 0;
		dbg_rcvry("failing in GC head LEB %d", lnum);
	} else if (write && !RB_EMPTY_ROOT(&c->buds) &&
		   !ubifs_search_bud(c, lnum)) {
		if (chance(19, 20))
			return 0;
		dbg_rcvry("failing in non-bud LEB %d", lnum);
	} else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
		   c->cmt_state == COMMIT_RUNNING_REQUIRED) {
		if (chance(999, 1000))
			return 0;
		dbg_rcvry("failing in bud LEB %d commit running", lnum);
	} else {
		if (chance(9999, 10000))
			return 0;
		dbg_rcvry("failing in bud LEB %d commit not running", lnum);
	}
	ubifs_err("*** SETTING FAILURE MODE ON (LEB %d) ***", lnum);
	d->failure_mode = 1;
	dump_stack();
	return 1;
}

static void cut_data(const void *buf, int len)
{
	int flen, i;
	unsigned char *p = (void *)buf;

	flen = (len * (long long)simple_rand()) >> 15;
	for (i = flen; i < len; i++)
		p[i] = 0xff;
}

int dbg_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset,
		 int len, int check)
{
	if (in_failure_mode(desc))
		return -EROFS;
	return ubi_leb_read(desc, lnum, buf, offset, len, check);
}

int dbg_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf,
		  int offset, int len, int dtype)
{
	int err, failing;

	if (in_failure_mode(desc))
		return -EROFS;
	failing = do_fail(desc, lnum, 1);
	if (failing)
		cut_data(buf, len);
	err = ubi_leb_write(desc, lnum, buf, offset, len, dtype);
	if (err)
		return err;
	if (failing)
		return -EROFS;
	return 0;
}

int dbg_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf,
		   int len, int dtype)
{
	int err;

	if (do_fail(desc, lnum, 1))
		return -EROFS;
	err = ubi_leb_change(desc, lnum, buf, len, dtype);
	if (err)
		return err;
	if (do_fail(desc, lnum, 1))
		return -EROFS;
	return 0;
}

int dbg_leb_erase(struct ubi_volume_desc *desc, int lnum)
{
	int err;

	if (do_fail(desc, lnum, 0))
		return -EROFS;
	err = ubi_leb_erase(desc, lnum);
	if (err)
		return err;
	if (do_fail(desc, lnum, 0))
		return -EROFS;
	return 0;
}

int dbg_leb_unmap(struct ubi_volume_desc *desc, int lnum)
{
	int err;

	if (do_fail(desc, lnum, 0))
		return -EROFS;
	err = ubi_leb_unmap(desc, lnum);
	if (err)
		return err;
	if (do_fail(desc, lnum, 0))
		return -EROFS;
	return 0;
}

int dbg_is_mapped(struct ubi_volume_desc *desc, int lnum)
{
	if (in_failure_mode(desc))
		return -EROFS;
	return ubi_is_mapped(desc, lnum);
}

int dbg_leb_map(struct ubi_volume_desc *desc, int lnum, int dtype)
{
	int err;

	if (do_fail(desc, lnum, 0))
		return -EROFS;
	err = ubi_leb_map(desc, lnum, dtype);
	if (err)
		return err;
	if (do_fail(desc, lnum, 0))
		return -EROFS;
	return 0;
}

/**
 * ubifs_debugging_init - initialize UBIFS debugging.
 * @c: UBIFS file-system description object
 *
 * This function initializes debugging-related data for the file system.
 * Returns zero in case of success and a negative error code in case of
 * failure.
 */
int ubifs_debugging_init(struct ubifs_info *c)
{
	c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
	if (!c->dbg)
		return -ENOMEM;

	failure_mode_init(c);
	return 0;
}

/**
 * ubifs_debugging_exit - free debugging data.
 * @c: UBIFS file-system description object
 */
void ubifs_debugging_exit(struct ubifs_info *c)
{
	failure_mode_exit(c);
	kfree(c->dbg);
}

/*
 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
 * contain the stuff specific to particular file-system mounts.
 */
static struct dentry *dfs_rootdir;

/**
 * dbg_debugfs_init - initialize debugfs file-system.
 *
 * UBIFS uses debugfs file-system to expose various debugging knobs to
 * user-space. This function creates "ubifs" directory in the debugfs
 * file-system. Returns zero in case of success and a negative error code in
 * case of failure.
 */
int dbg_debugfs_init(void)
{
	dfs_rootdir = debugfs_create_dir("ubifs", NULL);
	if (IS_ERR_OR_NULL(dfs_rootdir)) {
		int err = dfs_rootdir ? PTR_ERR(dfs_rootdir) : -ENODEV;
		ubifs_err("cannot create \"ubifs\" debugfs directory, "
			  "error %d\n", err);
		return err;
	}

	return 0;
}

/**
 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
 */
void dbg_debugfs_exit(void)
{
	debugfs_remove(dfs_rootdir);
}

static int open_debugfs_file(struct inode *inode, struct file *file)
{
	file->private_data = inode->i_private;
	return nonseekable_open(inode, file);
}

static ssize_t write_debugfs_file(struct file *file, const char __user *buf,
				  size_t count, loff_t *ppos)
{
	struct ubifs_info *c = file->private_data;
	struct ubifs_debug_info *d = c->dbg;

	if (file->f_path.dentry == d->dfs_dump_lprops)
		dbg_dump_lprops(c);
	else if (file->f_path.dentry == d->dfs_dump_budg)
		dbg_dump_budg(c, &c->bi);
	else if (file->f_path.dentry == d->dfs_dump_tnc) {
		mutex_lock(&c->tnc_mutex);
		dbg_dump_tnc(c);
		mutex_unlock(&c->tnc_mutex);
	} else
		return -EINVAL;

	return count;
}

static const struct file_operations dfs_fops = {
	.open = open_debugfs_file,
	.write = write_debugfs_file,
	.owner = THIS_MODULE,
	.llseek = no_llseek,
};

/**
 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
 * @c: UBIFS file-system description object
 *
 * This function creates all debugfs files for this instance of UBIFS. Returns
 * zero in case of success and a negative error code in case of failure.
 *
 * Note, the only reason we have not merged this function with the
 * 'ubifs_debugging_init()' function is because it is better to initialize
 * debugfs interfaces at the very end of the mount process, and remove them at
 * the very beginning of the mount process.
 */
int dbg_debugfs_init_fs(struct ubifs_info *c)
{
	int err, n;
	const char *fname;
	struct dentry *dent;
	struct ubifs_debug_info *d = c->dbg;

	n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
		     c->vi.ubi_num, c->vi.vol_id);
	if (n == UBIFS_DFS_DIR_LEN) {
		/* The array size is too small */
		fname = UBIFS_DFS_DIR_NAME;
		dent = ERR_PTR(-EINVAL);
		goto out;
	}

	fname = d->dfs_dir_name;
	dent = debugfs_create_dir(fname, dfs_rootdir);
	if (IS_ERR_OR_NULL(dent))
		goto out;
	d->dfs_dir = dent;

	fname = "dump_lprops";
	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
	if (IS_ERR_OR_NULL(dent))
		goto out_remove;
	d->dfs_dump_lprops = dent;

	fname = "dump_budg";
	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
	if (IS_ERR_OR_NULL(dent))
		goto out_remove;
	d->dfs_dump_budg = dent;

	fname = "dump_tnc";
	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
	if (IS_ERR_OR_NULL(dent))
		goto out_remove;
	d->dfs_dump_tnc = dent;

	return 0;

out_remove:
	debugfs_remove_recursive(d->dfs_dir);
out:
	err = dent ? PTR_ERR(dent) : -ENODEV;
	ubifs_err("cannot create \"%s\" debugfs filr or directory, error %d\n",
		  fname, err);
	return err;
}

/**
 * dbg_debugfs_exit_fs - remove all debugfs files.
 * @c: UBIFS file-system description object
 */
void dbg_debugfs_exit_fs(struct ubifs_info *c)
{
	debugfs_remove_recursive(c->dbg->dfs_dir);
}

#endif /* CONFIG_UBIFS_FS_DEBUG */