summaryrefslogtreecommitdiffstats
path: root/fs/xfs/libxfs/xfs_ialloc_btree.c
blob: 5a945ae21b5dbb10d509ee6ea0d2476861a9f5e8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
 * All Rights Reserved.
 */
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_bit.h"
#include "xfs_mount.h"
#include "xfs_btree.h"
#include "xfs_btree_staging.h"
#include "xfs_ialloc.h"
#include "xfs_ialloc_btree.h"
#include "xfs_alloc.h"
#include "xfs_error.h"
#include "xfs_trace.h"
#include "xfs_trans.h"
#include "xfs_rmap.h"
#include "xfs_ag.h"

static struct kmem_cache	*xfs_inobt_cur_cache;

STATIC int
xfs_inobt_get_minrecs(
	struct xfs_btree_cur	*cur,
	int			level)
{
	return M_IGEO(cur->bc_mp)->inobt_mnr[level != 0];
}

STATIC struct xfs_btree_cur *
xfs_inobt_dup_cursor(
	struct xfs_btree_cur	*cur)
{
	return xfs_inobt_init_cursor(cur->bc_ag.pag, cur->bc_tp,
			cur->bc_ag.agbp, cur->bc_btnum);
}

STATIC void
xfs_inobt_set_root(
	struct xfs_btree_cur		*cur,
	const union xfs_btree_ptr	*nptr,
	int				inc)	/* level change */
{
	struct xfs_buf		*agbp = cur->bc_ag.agbp;
	struct xfs_agi		*agi = agbp->b_addr;

	agi->agi_root = nptr->s;
	be32_add_cpu(&agi->agi_level, inc);
	xfs_ialloc_log_agi(cur->bc_tp, agbp, XFS_AGI_ROOT | XFS_AGI_LEVEL);
}

STATIC void
xfs_finobt_set_root(
	struct xfs_btree_cur		*cur,
	const union xfs_btree_ptr	*nptr,
	int				inc)	/* level change */
{
	struct xfs_buf		*agbp = cur->bc_ag.agbp;
	struct xfs_agi		*agi = agbp->b_addr;

	agi->agi_free_root = nptr->s;
	be32_add_cpu(&agi->agi_free_level, inc);
	xfs_ialloc_log_agi(cur->bc_tp, agbp,
			   XFS_AGI_FREE_ROOT | XFS_AGI_FREE_LEVEL);
}

/* Update the inode btree block counter for this btree. */
static inline void
xfs_inobt_mod_blockcount(
	struct xfs_btree_cur	*cur,
	int			howmuch)
{
	struct xfs_buf		*agbp = cur->bc_ag.agbp;
	struct xfs_agi		*agi = agbp->b_addr;

	if (!xfs_has_inobtcounts(cur->bc_mp))
		return;

	if (cur->bc_btnum == XFS_BTNUM_FINO)
		be32_add_cpu(&agi->agi_fblocks, howmuch);
	else if (cur->bc_btnum == XFS_BTNUM_INO)
		be32_add_cpu(&agi->agi_iblocks, howmuch);
	xfs_ialloc_log_agi(cur->bc_tp, agbp, XFS_AGI_IBLOCKS);
}

STATIC int
__xfs_inobt_alloc_block(
	struct xfs_btree_cur		*cur,
	const union xfs_btree_ptr	*start,
	union xfs_btree_ptr		*new,
	int				*stat,
	enum xfs_ag_resv_type		resv)
{
	xfs_alloc_arg_t		args;		/* block allocation args */
	int			error;		/* error return value */
	xfs_agblock_t		sbno = be32_to_cpu(start->s);

	memset(&args, 0, sizeof(args));
	args.tp = cur->bc_tp;
	args.mp = cur->bc_mp;
	args.pag = cur->bc_ag.pag;
	args.oinfo = XFS_RMAP_OINFO_INOBT;
	args.minlen = 1;
	args.maxlen = 1;
	args.prod = 1;
	args.resv = resv;

	error = xfs_alloc_vextent_near_bno(&args,
			XFS_AGB_TO_FSB(args.mp, args.pag->pag_agno, sbno));
	if (error)
		return error;

	if (args.fsbno == NULLFSBLOCK) {
		*stat = 0;
		return 0;
	}
	ASSERT(args.len == 1);

	new->s = cpu_to_be32(XFS_FSB_TO_AGBNO(args.mp, args.fsbno));
	*stat = 1;
	xfs_inobt_mod_blockcount(cur, 1);
	return 0;
}

STATIC int
xfs_inobt_alloc_block(
	struct xfs_btree_cur		*cur,
	const union xfs_btree_ptr	*start,
	union xfs_btree_ptr		*new,
	int				*stat)
{
	return __xfs_inobt_alloc_block(cur, start, new, stat, XFS_AG_RESV_NONE);
}

STATIC int
xfs_finobt_alloc_block(
	struct xfs_btree_cur		*cur,
	const union xfs_btree_ptr	*start,
	union xfs_btree_ptr		*new,
	int				*stat)
{
	if (cur->bc_mp->m_finobt_nores)
		return xfs_inobt_alloc_block(cur, start, new, stat);
	return __xfs_inobt_alloc_block(cur, start, new, stat,
			XFS_AG_RESV_METADATA);
}

STATIC int
__xfs_inobt_free_block(
	struct xfs_btree_cur	*cur,
	struct xfs_buf		*bp,
	enum xfs_ag_resv_type	resv)
{
	xfs_fsblock_t		fsbno;

	xfs_inobt_mod_blockcount(cur, -1);
	fsbno = XFS_DADDR_TO_FSB(cur->bc_mp, xfs_buf_daddr(bp));
	return xfs_free_extent(cur->bc_tp, cur->bc_ag.pag,
			XFS_FSB_TO_AGBNO(cur->bc_mp, fsbno), 1,
			&XFS_RMAP_OINFO_INOBT, resv);
}

STATIC int
xfs_inobt_free_block(
	struct xfs_btree_cur	*cur,
	struct xfs_buf		*bp)
{
	return __xfs_inobt_free_block(cur, bp, XFS_AG_RESV_NONE);
}

STATIC int
xfs_finobt_free_block(
	struct xfs_btree_cur	*cur,
	struct xfs_buf		*bp)
{
	if (cur->bc_mp->m_finobt_nores)
		return xfs_inobt_free_block(cur, bp);
	return __xfs_inobt_free_block(cur, bp, XFS_AG_RESV_METADATA);
}

STATIC int
xfs_inobt_get_maxrecs(
	struct xfs_btree_cur	*cur,
	int			level)
{
	return M_IGEO(cur->bc_mp)->inobt_mxr[level != 0];
}

STATIC void
xfs_inobt_init_key_from_rec(
	union xfs_btree_key		*key,
	const union xfs_btree_rec	*rec)
{
	key->inobt.ir_startino = rec->inobt.ir_startino;
}

STATIC void
xfs_inobt_init_high_key_from_rec(
	union xfs_btree_key		*key,
	const union xfs_btree_rec	*rec)
{
	__u32				x;

	x = be32_to_cpu(rec->inobt.ir_startino);
	x += XFS_INODES_PER_CHUNK - 1;
	key->inobt.ir_startino = cpu_to_be32(x);
}

STATIC void
xfs_inobt_init_rec_from_cur(
	struct xfs_btree_cur	*cur,
	union xfs_btree_rec	*rec)
{
	rec->inobt.ir_startino = cpu_to_be32(cur->bc_rec.i.ir_startino);
	if (xfs_has_sparseinodes(cur->bc_mp)) {
		rec->inobt.ir_u.sp.ir_holemask =
					cpu_to_be16(cur->bc_rec.i.ir_holemask);
		rec->inobt.ir_u.sp.ir_count = cur->bc_rec.i.ir_count;
		rec->inobt.ir_u.sp.ir_freecount = cur->bc_rec.i.ir_freecount;
	} else {
		/* ir_holemask/ir_count not supported on-disk */
		rec->inobt.ir_u.f.ir_freecount =
					cpu_to_be32(cur->bc_rec.i.ir_freecount);
	}
	rec->inobt.ir_free = cpu_to_be64(cur->bc_rec.i.ir_free);
}

/*
 * initial value of ptr for lookup
 */
STATIC void
xfs_inobt_init_ptr_from_cur(
	struct xfs_btree_cur	*cur,
	union xfs_btree_ptr	*ptr)
{
	struct xfs_agi		*agi = cur->bc_ag.agbp->b_addr;

	ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agi->agi_seqno));

	ptr->s = agi->agi_root;
}

STATIC void
xfs_finobt_init_ptr_from_cur(
	struct xfs_btree_cur	*cur,
	union xfs_btree_ptr	*ptr)
{
	struct xfs_agi		*agi = cur->bc_ag.agbp->b_addr;

	ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agi->agi_seqno));
	ptr->s = agi->agi_free_root;
}

STATIC int64_t
xfs_inobt_key_diff(
	struct xfs_btree_cur		*cur,
	const union xfs_btree_key	*key)
{
	return (int64_t)be32_to_cpu(key->inobt.ir_startino) -
			  cur->bc_rec.i.ir_startino;
}

STATIC int64_t
xfs_inobt_diff_two_keys(
	struct xfs_btree_cur		*cur,
	const union xfs_btree_key	*k1,
	const union xfs_btree_key	*k2,
	const union xfs_btree_key	*mask)
{
	ASSERT(!mask || mask->inobt.ir_startino);

	return (int64_t)be32_to_cpu(k1->inobt.ir_startino) -
			be32_to_cpu(k2->inobt.ir_startino);
}

static xfs_failaddr_t
xfs_inobt_verify(
	struct xfs_buf		*bp)
{
	struct xfs_mount	*mp = bp->b_mount;
	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
	xfs_failaddr_t		fa;
	unsigned int		level;

	if (!xfs_verify_magic(bp, block->bb_magic))
		return __this_address;

	/*
	 * During growfs operations, we can't verify the exact owner as the
	 * perag is not fully initialised and hence not attached to the buffer.
	 *
	 * Similarly, during log recovery we will have a perag structure
	 * attached, but the agi information will not yet have been initialised
	 * from the on disk AGI. We don't currently use any of this information,
	 * but beware of the landmine (i.e. need to check
	 * xfs_perag_initialised_agi(pag)) if we ever do.
	 */
	if (xfs_has_crc(mp)) {
		fa = xfs_btree_sblock_v5hdr_verify(bp);
		if (fa)
			return fa;
	}

	/* level verification */
	level = be16_to_cpu(block->bb_level);
	if (level >= M_IGEO(mp)->inobt_maxlevels)
		return __this_address;

	return xfs_btree_sblock_verify(bp,
			M_IGEO(mp)->inobt_mxr[level != 0]);
}

static void
xfs_inobt_read_verify(
	struct xfs_buf	*bp)
{
	xfs_failaddr_t	fa;

	if (!xfs_btree_sblock_verify_crc(bp))
		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
	else {
		fa = xfs_inobt_verify(bp);
		if (fa)
			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
	}

	if (bp->b_error)
		trace_xfs_btree_corrupt(bp, _RET_IP_);
}

static void
xfs_inobt_write_verify(
	struct xfs_buf	*bp)
{
	xfs_failaddr_t	fa;

	fa = xfs_inobt_verify(bp);
	if (fa) {
		trace_xfs_btree_corrupt(bp, _RET_IP_);
		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
		return;
	}
	xfs_btree_sblock_calc_crc(bp);

}

const struct xfs_buf_ops xfs_inobt_buf_ops = {
	.name = "xfs_inobt",
	.magic = { cpu_to_be32(XFS_IBT_MAGIC), cpu_to_be32(XFS_IBT_CRC_MAGIC) },
	.verify_read = xfs_inobt_read_verify,
	.verify_write = xfs_inobt_write_verify,
	.verify_struct = xfs_inobt_verify,
};

const struct xfs_buf_ops xfs_finobt_buf_ops = {
	.name = "xfs_finobt",
	.magic = { cpu_to_be32(XFS_FIBT_MAGIC),
		   cpu_to_be32(XFS_FIBT_CRC_MAGIC) },
	.verify_read = xfs_inobt_read_verify,
	.verify_write = xfs_inobt_write_verify,
	.verify_struct = xfs_inobt_verify,
};

STATIC int
xfs_inobt_keys_inorder(
	struct xfs_btree_cur		*cur,
	const union xfs_btree_key	*k1,
	const union xfs_btree_key	*k2)
{
	return be32_to_cpu(k1->inobt.ir_startino) <
		be32_to_cpu(k2->inobt.ir_startino);
}

STATIC int
xfs_inobt_recs_inorder(
	struct xfs_btree_cur		*cur,
	const union xfs_btree_rec	*r1,
	const union xfs_btree_rec	*r2)
{
	return be32_to_cpu(r1->inobt.ir_startino) + XFS_INODES_PER_CHUNK <=
		be32_to_cpu(r2->inobt.ir_startino);
}

STATIC enum xbtree_key_contig
xfs_inobt_keys_contiguous(
	struct xfs_btree_cur		*cur,
	const union xfs_btree_key	*key1,
	const union xfs_btree_key	*key2,
	const union xfs_btree_key	*mask)
{
	ASSERT(!mask || mask->inobt.ir_startino);

	return xbtree_key_contig(be32_to_cpu(key1->inobt.ir_startino),
				 be32_to_cpu(key2->inobt.ir_startino));
}

static const struct xfs_btree_ops xfs_inobt_ops = {
	.rec_len		= sizeof(xfs_inobt_rec_t),
	.key_len		= sizeof(xfs_inobt_key_t),

	.dup_cursor		= xfs_inobt_dup_cursor,
	.set_root		= xfs_inobt_set_root,
	.alloc_block		= xfs_inobt_alloc_block,
	.free_block		= xfs_inobt_free_block,
	.get_minrecs		= xfs_inobt_get_minrecs,
	.get_maxrecs		= xfs_inobt_get_maxrecs,
	.init_key_from_rec	= xfs_inobt_init_key_from_rec,
	.init_high_key_from_rec	= xfs_inobt_init_high_key_from_rec,
	.init_rec_from_cur	= xfs_inobt_init_rec_from_cur,
	.init_ptr_from_cur	= xfs_inobt_init_ptr_from_cur,
	.key_diff		= xfs_inobt_key_diff,
	.buf_ops		= &xfs_inobt_buf_ops,
	.diff_two_keys		= xfs_inobt_diff_two_keys,
	.keys_inorder		= xfs_inobt_keys_inorder,
	.recs_inorder		= xfs_inobt_recs_inorder,
	.keys_contiguous	= xfs_inobt_keys_contiguous,
};

static const struct xfs_btree_ops xfs_finobt_ops = {
	.rec_len		= sizeof(xfs_inobt_rec_t),
	.key_len		= sizeof(xfs_inobt_key_t),

	.dup_cursor		= xfs_inobt_dup_cursor,
	.set_root		= xfs_finobt_set_root,
	.alloc_block		= xfs_finobt_alloc_block,
	.free_block		= xfs_finobt_free_block,
	.get_minrecs		= xfs_inobt_get_minrecs,
	.get_maxrecs		= xfs_inobt_get_maxrecs,
	.init_key_from_rec	= xfs_inobt_init_key_from_rec,
	.init_high_key_from_rec	= xfs_inobt_init_high_key_from_rec,
	.init_rec_from_cur	= xfs_inobt_init_rec_from_cur,
	.init_ptr_from_cur	= xfs_finobt_init_ptr_from_cur,
	.key_diff		= xfs_inobt_key_diff,
	.buf_ops		= &xfs_finobt_buf_ops,
	.diff_two_keys		= xfs_inobt_diff_two_keys,
	.keys_inorder		= xfs_inobt_keys_inorder,
	.recs_inorder		= xfs_inobt_recs_inorder,
	.keys_contiguous	= xfs_inobt_keys_contiguous,
};

/*
 * Initialize a new inode btree cursor.
 */
static struct xfs_btree_cur *
xfs_inobt_init_common(
	struct xfs_perag	*pag,
	struct xfs_trans	*tp,		/* transaction pointer */
	xfs_btnum_t		btnum)		/* ialloc or free ino btree */
{
	struct xfs_mount	*mp = pag->pag_mount;
	struct xfs_btree_cur	*cur;

	cur = xfs_btree_alloc_cursor(mp, tp, btnum,
			M_IGEO(mp)->inobt_maxlevels, xfs_inobt_cur_cache);
	if (btnum == XFS_BTNUM_INO) {
		cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_ibt_2);
		cur->bc_ops = &xfs_inobt_ops;
	} else {
		cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_fibt_2);
		cur->bc_ops = &xfs_finobt_ops;
	}

	if (xfs_has_crc(mp))
		cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;

	cur->bc_ag.pag = xfs_perag_hold(pag);
	return cur;
}

/* Create an inode btree cursor. */
struct xfs_btree_cur *
xfs_inobt_init_cursor(
	struct xfs_perag	*pag,
	struct xfs_trans	*tp,
	struct xfs_buf		*agbp,
	xfs_btnum_t		btnum)
{
	struct xfs_btree_cur	*cur;
	struct xfs_agi		*agi = agbp->b_addr;

	cur = xfs_inobt_init_common(pag, tp, btnum);
	if (btnum == XFS_BTNUM_INO)
		cur->bc_nlevels = be32_to_cpu(agi->agi_level);
	else
		cur->bc_nlevels = be32_to_cpu(agi->agi_free_level);
	cur->bc_ag.agbp = agbp;
	return cur;
}

/* Create an inode btree cursor with a fake root for staging. */
struct xfs_btree_cur *
xfs_inobt_stage_cursor(
	struct xfs_perag	*pag,
	struct xbtree_afakeroot	*afake,
	xfs_btnum_t		btnum)
{
	struct xfs_btree_cur	*cur;

	cur = xfs_inobt_init_common(pag, NULL, btnum);
	xfs_btree_stage_afakeroot(cur, afake);
	return cur;
}

/*
 * Install a new inobt btree root.  Caller is responsible for invalidating
 * and freeing the old btree blocks.
 */
void
xfs_inobt_commit_staged_btree(
	struct xfs_btree_cur	*cur,
	struct xfs_trans	*tp,
	struct xfs_buf		*agbp)
{
	struct xfs_agi		*agi = agbp->b_addr;
	struct xbtree_afakeroot	*afake = cur->bc_ag.afake;
	int			fields;

	ASSERT(cur->bc_flags & XFS_BTREE_STAGING);

	if (cur->bc_btnum == XFS_BTNUM_INO) {
		fields = XFS_AGI_ROOT | XFS_AGI_LEVEL;
		agi->agi_root = cpu_to_be32(afake->af_root);
		agi->agi_level = cpu_to_be32(afake->af_levels);
		if (xfs_has_inobtcounts(cur->bc_mp)) {
			agi->agi_iblocks = cpu_to_be32(afake->af_blocks);
			fields |= XFS_AGI_IBLOCKS;
		}
		xfs_ialloc_log_agi(tp, agbp, fields);
		xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_inobt_ops);
	} else {
		fields = XFS_AGI_FREE_ROOT | XFS_AGI_FREE_LEVEL;
		agi->agi_free_root = cpu_to_be32(afake->af_root);
		agi->agi_free_level = cpu_to_be32(afake->af_levels);
		if (xfs_has_inobtcounts(cur->bc_mp)) {
			agi->agi_fblocks = cpu_to_be32(afake->af_blocks);
			fields |= XFS_AGI_IBLOCKS;
		}
		xfs_ialloc_log_agi(tp, agbp, fields);
		xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_finobt_ops);
	}
}

/* Calculate number of records in an inode btree block. */
static inline unsigned int
xfs_inobt_block_maxrecs(
	unsigned int		blocklen,
	bool			leaf)
{
	if (leaf)
		return blocklen / sizeof(xfs_inobt_rec_t);
	return blocklen / (sizeof(xfs_inobt_key_t) + sizeof(xfs_inobt_ptr_t));
}

/*
 * Calculate number of records in an inobt btree block.
 */
int
xfs_inobt_maxrecs(
	struct xfs_mount	*mp,
	int			blocklen,
	int			leaf)
{
	blocklen -= XFS_INOBT_BLOCK_LEN(mp);
	return xfs_inobt_block_maxrecs(blocklen, leaf);
}

/*
 * Maximum number of inode btree records per AG.  Pretend that we can fill an
 * entire AG completely full of inodes except for the AG headers.
 */
#define XFS_MAX_INODE_RECORDS \
	((XFS_MAX_AG_BYTES - (4 * BBSIZE)) / XFS_DINODE_MIN_SIZE) / \
			XFS_INODES_PER_CHUNK

/* Compute the max possible height for the inode btree. */
static inline unsigned int
xfs_inobt_maxlevels_ondisk(void)
{
	unsigned int		minrecs[2];
	unsigned int		blocklen;

	blocklen = min(XFS_MIN_BLOCKSIZE - XFS_BTREE_SBLOCK_LEN,
		       XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN);

	minrecs[0] = xfs_inobt_block_maxrecs(blocklen, true) / 2;
	minrecs[1] = xfs_inobt_block_maxrecs(blocklen, false) / 2;

	return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_INODE_RECORDS);
}

/* Compute the max possible height for the free inode btree. */
static inline unsigned int
xfs_finobt_maxlevels_ondisk(void)
{
	unsigned int		minrecs[2];
	unsigned int		blocklen;

	blocklen = XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN;

	minrecs[0] = xfs_inobt_block_maxrecs(blocklen, true) / 2;
	minrecs[1] = xfs_inobt_block_maxrecs(blocklen, false) / 2;

	return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_INODE_RECORDS);
}

/* Compute the max possible height for either inode btree. */
unsigned int
xfs_iallocbt_maxlevels_ondisk(void)
{
	return max(xfs_inobt_maxlevels_ondisk(),
		   xfs_finobt_maxlevels_ondisk());
}

/*
 * Convert the inode record holemask to an inode allocation bitmap. The inode
 * allocation bitmap is inode granularity and specifies whether an inode is
 * physically allocated on disk (not whether the inode is considered allocated
 * or free by the fs).
 *
 * A bit value of 1 means the inode is allocated, a value of 0 means it is free.
 */
uint64_t
xfs_inobt_irec_to_allocmask(
	const struct xfs_inobt_rec_incore	*rec)
{
	uint64_t			bitmap = 0;
	uint64_t			inodespbit;
	int				nextbit;
	uint				allocbitmap;

	/*
	 * The holemask has 16-bits for a 64 inode record. Therefore each
	 * holemask bit represents multiple inodes. Create a mask of bits to set
	 * in the allocmask for each holemask bit.
	 */
	inodespbit = (1 << XFS_INODES_PER_HOLEMASK_BIT) - 1;

	/*
	 * Allocated inodes are represented by 0 bits in holemask. Invert the 0
	 * bits to 1 and convert to a uint so we can use xfs_next_bit(). Mask
	 * anything beyond the 16 holemask bits since this casts to a larger
	 * type.
	 */
	allocbitmap = ~rec->ir_holemask & ((1 << XFS_INOBT_HOLEMASK_BITS) - 1);

	/*
	 * allocbitmap is the inverted holemask so every set bit represents
	 * allocated inodes. To expand from 16-bit holemask granularity to
	 * 64-bit (e.g., bit-per-inode), set inodespbit bits in the target
	 * bitmap for every holemask bit.
	 */
	nextbit = xfs_next_bit(&allocbitmap, 1, 0);
	while (nextbit != -1) {
		ASSERT(nextbit < (sizeof(rec->ir_holemask) * NBBY));

		bitmap |= (inodespbit <<
			   (nextbit * XFS_INODES_PER_HOLEMASK_BIT));

		nextbit = xfs_next_bit(&allocbitmap, 1, nextbit + 1);
	}

	return bitmap;
}

#if defined(DEBUG) || defined(XFS_WARN)
/*
 * Verify that an in-core inode record has a valid inode count.
 */
int
xfs_inobt_rec_check_count(
	struct xfs_mount		*mp,
	struct xfs_inobt_rec_incore	*rec)
{
	int				inocount = 0;
	int				nextbit = 0;
	uint64_t			allocbmap;
	int				wordsz;

	wordsz = sizeof(allocbmap) / sizeof(unsigned int);
	allocbmap = xfs_inobt_irec_to_allocmask(rec);

	nextbit = xfs_next_bit((uint *) &allocbmap, wordsz, nextbit);
	while (nextbit != -1) {
		inocount++;
		nextbit = xfs_next_bit((uint *) &allocbmap, wordsz,
				       nextbit + 1);
	}

	if (inocount != rec->ir_count)
		return -EFSCORRUPTED;

	return 0;
}
#endif	/* DEBUG */

static xfs_extlen_t
xfs_inobt_max_size(
	struct xfs_perag	*pag)
{
	struct xfs_mount	*mp = pag->pag_mount;
	xfs_agblock_t		agblocks = pag->block_count;

	/* Bail out if we're uninitialized, which can happen in mkfs. */
	if (M_IGEO(mp)->inobt_mxr[0] == 0)
		return 0;

	/*
	 * The log is permanently allocated, so the space it occupies will
	 * never be available for the kinds of things that would require btree
	 * expansion.  We therefore can pretend the space isn't there.
	 */
	if (xfs_ag_contains_log(mp, pag->pag_agno))
		agblocks -= mp->m_sb.sb_logblocks;

	return xfs_btree_calc_size(M_IGEO(mp)->inobt_mnr,
				(uint64_t)agblocks * mp->m_sb.sb_inopblock /
					XFS_INODES_PER_CHUNK);
}

/* Read AGI and create inobt cursor. */
int
xfs_inobt_cur(
	struct xfs_perag	*pag,
	struct xfs_trans	*tp,
	xfs_btnum_t		which,
	struct xfs_btree_cur	**curpp,
	struct xfs_buf		**agi_bpp)
{
	struct xfs_btree_cur	*cur;
	int			error;

	ASSERT(*agi_bpp == NULL);
	ASSERT(*curpp == NULL);

	error = xfs_ialloc_read_agi(pag, tp, agi_bpp);
	if (error)
		return error;

	cur = xfs_inobt_init_cursor(pag, tp, *agi_bpp, which);
	*curpp = cur;
	return 0;
}

static int
xfs_inobt_count_blocks(
	struct xfs_perag	*pag,
	struct xfs_trans	*tp,
	xfs_btnum_t		btnum,
	xfs_extlen_t		*tree_blocks)
{
	struct xfs_buf		*agbp = NULL;
	struct xfs_btree_cur	*cur = NULL;
	int			error;

	error = xfs_inobt_cur(pag, tp, btnum, &cur, &agbp);
	if (error)
		return error;

	error = xfs_btree_count_blocks(cur, tree_blocks);
	xfs_btree_del_cursor(cur, error);
	xfs_trans_brelse(tp, agbp);

	return error;
}

/* Read finobt block count from AGI header. */
static int
xfs_finobt_read_blocks(
	struct xfs_perag	*pag,
	struct xfs_trans	*tp,
	xfs_extlen_t		*tree_blocks)
{
	struct xfs_buf		*agbp;
	struct xfs_agi		*agi;
	int			error;

	error = xfs_ialloc_read_agi(pag, tp, &agbp);
	if (error)
		return error;

	agi = agbp->b_addr;
	*tree_blocks = be32_to_cpu(agi->agi_fblocks);
	xfs_trans_brelse(tp, agbp);
	return 0;
}

/*
 * Figure out how many blocks to reserve and how many are used by this btree.
 */
int
xfs_finobt_calc_reserves(
	struct xfs_perag	*pag,
	struct xfs_trans	*tp,
	xfs_extlen_t		*ask,
	xfs_extlen_t		*used)
{
	xfs_extlen_t		tree_len = 0;
	int			error;

	if (!xfs_has_finobt(pag->pag_mount))
		return 0;

	if (xfs_has_inobtcounts(pag->pag_mount))
		error = xfs_finobt_read_blocks(pag, tp, &tree_len);
	else
		error = xfs_inobt_count_blocks(pag, tp, XFS_BTNUM_FINO,
				&tree_len);
	if (error)
		return error;

	*ask += xfs_inobt_max_size(pag);
	*used += tree_len;
	return 0;
}

/* Calculate the inobt btree size for some records. */
xfs_extlen_t
xfs_iallocbt_calc_size(
	struct xfs_mount	*mp,
	unsigned long long	len)
{
	return xfs_btree_calc_size(M_IGEO(mp)->inobt_mnr, len);
}

int __init
xfs_inobt_init_cur_cache(void)
{
	xfs_inobt_cur_cache = kmem_cache_create("xfs_inobt_cur",
			xfs_btree_cur_sizeof(xfs_inobt_maxlevels_ondisk()),
			0, 0, NULL);

	if (!xfs_inobt_cur_cache)
		return -ENOMEM;
	return 0;
}

void
xfs_inobt_destroy_cur_cache(void)
{
	kmem_cache_destroy(xfs_inobt_cur_cache);
	xfs_inobt_cur_cache = NULL;
}