1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
|
/*
* Copyright 2015 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#ifndef _DRM_GPU_SCHEDULER_H_
#define _DRM_GPU_SCHEDULER_H_
#include <drm/spsc_queue.h>
#include <linux/dma-fence.h>
#include <linux/completion.h>
#define MAX_WAIT_SCHED_ENTITY_Q_EMPTY msecs_to_jiffies(1000)
struct drm_gpu_scheduler;
struct drm_sched_rq;
enum drm_sched_priority {
DRM_SCHED_PRIORITY_MIN,
DRM_SCHED_PRIORITY_LOW = DRM_SCHED_PRIORITY_MIN,
DRM_SCHED_PRIORITY_NORMAL,
DRM_SCHED_PRIORITY_HIGH_SW,
DRM_SCHED_PRIORITY_HIGH_HW,
DRM_SCHED_PRIORITY_KERNEL,
DRM_SCHED_PRIORITY_MAX,
DRM_SCHED_PRIORITY_INVALID = -1,
DRM_SCHED_PRIORITY_UNSET = -2
};
/**
* struct drm_sched_entity - A wrapper around a job queue (typically
* attached to the DRM file_priv).
*
* @list: used to append this struct to the list of entities in the
* runqueue.
* @rq: runqueue on which this entity is currently scheduled.
* @rq_list: a list of run queues on which jobs from this entity can
* be scheduled
* @num_rq_list: number of run queues in the rq_list
* @rq_lock: lock to modify the runqueue to which this entity belongs.
* @job_queue: the list of jobs of this entity.
* @fence_seq: a linearly increasing seqno incremented with each
* new &drm_sched_fence which is part of the entity.
* @fence_context: a unique context for all the fences which belong
* to this entity.
* The &drm_sched_fence.scheduled uses the
* fence_context but &drm_sched_fence.finished uses
* fence_context + 1.
* @dependency: the dependency fence of the job which is on the top
* of the job queue.
* @cb: callback for the dependency fence above.
* @guilty: points to ctx's guilty.
* @fini_status: contains the exit status in case the process was signalled.
* @last_scheduled: points to the finished fence of the last scheduled job.
* @last_user: last group leader pushing a job into the entity.
* @stopped: Marks the enity as removed from rq and destined for termination.
* @entity_idle: Signals when enityt is not in use
*
* Entities will emit jobs in order to their corresponding hardware
* ring, and the scheduler will alternate between entities based on
* scheduling policy.
*/
struct drm_sched_entity {
struct list_head list;
struct drm_sched_rq *rq;
unsigned int num_sched_list;
struct drm_gpu_scheduler **sched_list;
enum drm_sched_priority priority;
spinlock_t rq_lock;
struct spsc_queue job_queue;
atomic_t fence_seq;
uint64_t fence_context;
struct dma_fence *dependency;
struct dma_fence_cb cb;
atomic_t *guilty;
struct dma_fence *last_scheduled;
struct task_struct *last_user;
bool stopped;
struct completion entity_idle;
};
/**
* struct drm_sched_rq - queue of entities to be scheduled.
*
* @lock: to modify the entities list.
* @sched: the scheduler to which this rq belongs to.
* @entities: list of the entities to be scheduled.
* @current_entity: the entity which is to be scheduled.
*
* Run queue is a set of entities scheduling command submissions for
* one specific ring. It implements the scheduling policy that selects
* the next entity to emit commands from.
*/
struct drm_sched_rq {
spinlock_t lock;
struct drm_gpu_scheduler *sched;
struct list_head entities;
struct drm_sched_entity *current_entity;
};
/**
* struct drm_sched_fence - fences corresponding to the scheduling of a job.
*/
struct drm_sched_fence {
/**
* @scheduled: this fence is what will be signaled by the scheduler
* when the job is scheduled.
*/
struct dma_fence scheduled;
/**
* @finished: this fence is what will be signaled by the scheduler
* when the job is completed.
*
* When setting up an out fence for the job, you should use
* this, since it's available immediately upon
* drm_sched_job_init(), and the fence returned by the driver
* from run_job() won't be created until the dependencies have
* resolved.
*/
struct dma_fence finished;
/**
* @parent: the fence returned by &drm_sched_backend_ops.run_job
* when scheduling the job on hardware. We signal the
* &drm_sched_fence.finished fence once parent is signalled.
*/
struct dma_fence *parent;
/**
* @sched: the scheduler instance to which the job having this struct
* belongs to.
*/
struct drm_gpu_scheduler *sched;
/**
* @lock: the lock used by the scheduled and the finished fences.
*/
spinlock_t lock;
/**
* @owner: job owner for debugging
*/
void *owner;
};
struct drm_sched_fence *to_drm_sched_fence(struct dma_fence *f);
/**
* struct drm_sched_job - A job to be run by an entity.
*
* @queue_node: used to append this struct to the queue of jobs in an entity.
* @sched: the scheduler instance on which this job is scheduled.
* @s_fence: contains the fences for the scheduling of job.
* @finish_cb: the callback for the finished fence.
* @node: used to append this struct to the @drm_gpu_scheduler.ring_mirror_list.
* @id: a unique id assigned to each job scheduled on the scheduler.
* @karma: increment on every hang caused by this job. If this exceeds the hang
* limit of the scheduler then the job is marked guilty and will not
* be scheduled further.
* @s_priority: the priority of the job.
* @entity: the entity to which this job belongs.
* @cb: the callback for the parent fence in s_fence.
*
* A job is created by the driver using drm_sched_job_init(), and
* should call drm_sched_entity_push_job() once it wants the scheduler
* to schedule the job.
*/
struct drm_sched_job {
struct spsc_node queue_node;
struct drm_gpu_scheduler *sched;
struct drm_sched_fence *s_fence;
struct dma_fence_cb finish_cb;
struct list_head node;
uint64_t id;
atomic_t karma;
enum drm_sched_priority s_priority;
struct drm_sched_entity *entity;
struct dma_fence_cb cb;
};
static inline bool drm_sched_invalidate_job(struct drm_sched_job *s_job,
int threshold)
{
return (s_job && atomic_inc_return(&s_job->karma) > threshold);
}
/**
* struct drm_sched_backend_ops
*
* Define the backend operations called by the scheduler,
* these functions should be implemented in driver side.
*/
struct drm_sched_backend_ops {
/**
* @dependency: Called when the scheduler is considering scheduling
* this job next, to get another struct dma_fence for this job to
* block on. Once it returns NULL, run_job() may be called.
*/
struct dma_fence *(*dependency)(struct drm_sched_job *sched_job,
struct drm_sched_entity *s_entity);
/**
* @run_job: Called to execute the job once all of the dependencies
* have been resolved. This may be called multiple times, if
* timedout_job() has happened and drm_sched_job_recovery()
* decides to try it again.
*/
struct dma_fence *(*run_job)(struct drm_sched_job *sched_job);
/**
* @timedout_job: Called when a job has taken too long to execute,
* to trigger GPU recovery.
*/
void (*timedout_job)(struct drm_sched_job *sched_job);
/**
* @free_job: Called once the job's finished fence has been signaled
* and it's time to clean it up.
*/
void (*free_job)(struct drm_sched_job *sched_job);
};
/**
* struct drm_gpu_scheduler
*
* @ops: backend operations provided by the driver.
* @hw_submission_limit: the max size of the hardware queue.
* @timeout: the time after which a job is removed from the scheduler.
* @name: name of the ring for which this scheduler is being used.
* @sched_rq: priority wise array of run queues.
* @wake_up_worker: the wait queue on which the scheduler sleeps until a job
* is ready to be scheduled.
* @job_scheduled: once @drm_sched_entity_do_release is called the scheduler
* waits on this wait queue until all the scheduled jobs are
* finished.
* @hw_rq_count: the number of jobs currently in the hardware queue.
* @job_id_count: used to assign unique id to the each job.
* @work_tdr: schedules a delayed call to @drm_sched_job_timedout after the
* timeout interval is over.
* @thread: the kthread on which the scheduler which run.
* @ring_mirror_list: the list of jobs which are currently in the job queue.
* @job_list_lock: lock to protect the ring_mirror_list.
* @hang_limit: once the hangs by a job crosses this limit then it is marked
* guilty and it will be considered for scheduling further.
* @num_jobs: the number of jobs in queue in the scheduler
* @ready: marks if the underlying HW is ready to work
* @free_guilty: A hit to time out handler to free the guilty job.
*
* One scheduler is implemented for each hardware ring.
*/
struct drm_gpu_scheduler {
const struct drm_sched_backend_ops *ops;
uint32_t hw_submission_limit;
long timeout;
const char *name;
struct drm_sched_rq sched_rq[DRM_SCHED_PRIORITY_MAX];
wait_queue_head_t wake_up_worker;
wait_queue_head_t job_scheduled;
atomic_t hw_rq_count;
atomic64_t job_id_count;
struct delayed_work work_tdr;
struct task_struct *thread;
struct list_head ring_mirror_list;
spinlock_t job_list_lock;
int hang_limit;
atomic_t num_jobs;
bool ready;
bool free_guilty;
};
int drm_sched_init(struct drm_gpu_scheduler *sched,
const struct drm_sched_backend_ops *ops,
uint32_t hw_submission, unsigned hang_limit, long timeout,
const char *name);
void drm_sched_fini(struct drm_gpu_scheduler *sched);
int drm_sched_job_init(struct drm_sched_job *job,
struct drm_sched_entity *entity,
void *owner);
void drm_sched_job_cleanup(struct drm_sched_job *job);
void drm_sched_wakeup(struct drm_gpu_scheduler *sched);
void drm_sched_stop(struct drm_gpu_scheduler *sched, struct drm_sched_job *bad);
void drm_sched_start(struct drm_gpu_scheduler *sched, bool full_recovery);
void drm_sched_resubmit_jobs(struct drm_gpu_scheduler *sched);
void drm_sched_increase_karma(struct drm_sched_job *bad);
bool drm_sched_dependency_optimized(struct dma_fence* fence,
struct drm_sched_entity *entity);
void drm_sched_fault(struct drm_gpu_scheduler *sched);
void drm_sched_job_kickout(struct drm_sched_job *s_job);
void drm_sched_rq_add_entity(struct drm_sched_rq *rq,
struct drm_sched_entity *entity);
void drm_sched_rq_remove_entity(struct drm_sched_rq *rq,
struct drm_sched_entity *entity);
int drm_sched_entity_init(struct drm_sched_entity *entity,
enum drm_sched_priority priority,
struct drm_gpu_scheduler **sched_list,
unsigned int num_rq_list,
atomic_t *guilty);
long drm_sched_entity_flush(struct drm_sched_entity *entity, long timeout);
void drm_sched_entity_fini(struct drm_sched_entity *entity);
void drm_sched_entity_destroy(struct drm_sched_entity *entity);
void drm_sched_entity_select_rq(struct drm_sched_entity *entity);
struct drm_sched_job *drm_sched_entity_pop_job(struct drm_sched_entity *entity);
void drm_sched_entity_push_job(struct drm_sched_job *sched_job,
struct drm_sched_entity *entity);
void drm_sched_entity_set_priority(struct drm_sched_entity *entity,
enum drm_sched_priority priority);
bool drm_sched_entity_is_ready(struct drm_sched_entity *entity);
struct drm_sched_fence *drm_sched_fence_create(
struct drm_sched_entity *s_entity, void *owner);
void drm_sched_fence_scheduled(struct drm_sched_fence *fence);
void drm_sched_fence_finished(struct drm_sched_fence *fence);
unsigned long drm_sched_suspend_timeout(struct drm_gpu_scheduler *sched);
void drm_sched_resume_timeout(struct drm_gpu_scheduler *sched,
unsigned long remaining);
#endif
|