summaryrefslogtreecommitdiffstats
path: root/kernel/futex/waitwake.c
blob: b109a0810a2c688308b9376b66c62be5a8a6eb9a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
// SPDX-License-Identifier: GPL-2.0-or-later

#include <linux/sched/task.h>
#include <linux/sched/signal.h>
#include <linux/freezer.h>

#include "futex.h"

/*
 * READ this before attempting to hack on futexes!
 *
 * Basic futex operation and ordering guarantees
 * =============================================
 *
 * The waiter reads the futex value in user space and calls
 * futex_wait(). This function computes the hash bucket and acquires
 * the hash bucket lock. After that it reads the futex user space value
 * again and verifies that the data has not changed. If it has not changed
 * it enqueues itself into the hash bucket, releases the hash bucket lock
 * and schedules.
 *
 * The waker side modifies the user space value of the futex and calls
 * futex_wake(). This function computes the hash bucket and acquires the
 * hash bucket lock. Then it looks for waiters on that futex in the hash
 * bucket and wakes them.
 *
 * In futex wake up scenarios where no tasks are blocked on a futex, taking
 * the hb spinlock can be avoided and simply return. In order for this
 * optimization to work, ordering guarantees must exist so that the waiter
 * being added to the list is acknowledged when the list is concurrently being
 * checked by the waker, avoiding scenarios like the following:
 *
 * CPU 0                               CPU 1
 * val = *futex;
 * sys_futex(WAIT, futex, val);
 *   futex_wait(futex, val);
 *   uval = *futex;
 *                                     *futex = newval;
 *                                     sys_futex(WAKE, futex);
 *                                       futex_wake(futex);
 *                                       if (queue_empty())
 *                                         return;
 *   if (uval == val)
 *      lock(hash_bucket(futex));
 *      queue();
 *     unlock(hash_bucket(futex));
 *     schedule();
 *
 * This would cause the waiter on CPU 0 to wait forever because it
 * missed the transition of the user space value from val to newval
 * and the waker did not find the waiter in the hash bucket queue.
 *
 * The correct serialization ensures that a waiter either observes
 * the changed user space value before blocking or is woken by a
 * concurrent waker:
 *
 * CPU 0                                 CPU 1
 * val = *futex;
 * sys_futex(WAIT, futex, val);
 *   futex_wait(futex, val);
 *
 *   waiters++; (a)
 *   smp_mb(); (A) <-- paired with -.
 *                                  |
 *   lock(hash_bucket(futex));      |
 *                                  |
 *   uval = *futex;                 |
 *                                  |        *futex = newval;
 *                                  |        sys_futex(WAKE, futex);
 *                                  |          futex_wake(futex);
 *                                  |
 *                                  `--------> smp_mb(); (B)
 *   if (uval == val)
 *     queue();
 *     unlock(hash_bucket(futex));
 *     schedule();                         if (waiters)
 *                                           lock(hash_bucket(futex));
 *   else                                    wake_waiters(futex);
 *     waiters--; (b)                        unlock(hash_bucket(futex));
 *
 * Where (A) orders the waiters increment and the futex value read through
 * atomic operations (see futex_hb_waiters_inc) and where (B) orders the write
 * to futex and the waiters read (see futex_hb_waiters_pending()).
 *
 * This yields the following case (where X:=waiters, Y:=futex):
 *
 *	X = Y = 0
 *
 *	w[X]=1		w[Y]=1
 *	MB		MB
 *	r[Y]=y		r[X]=x
 *
 * Which guarantees that x==0 && y==0 is impossible; which translates back into
 * the guarantee that we cannot both miss the futex variable change and the
 * enqueue.
 *
 * Note that a new waiter is accounted for in (a) even when it is possible that
 * the wait call can return error, in which case we backtrack from it in (b).
 * Refer to the comment in futex_q_lock().
 *
 * Similarly, in order to account for waiters being requeued on another
 * address we always increment the waiters for the destination bucket before
 * acquiring the lock. It then decrements them again  after releasing it -
 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
 * will do the additional required waiter count housekeeping. This is done for
 * double_lock_hb() and double_unlock_hb(), respectively.
 */

/*
 * The hash bucket lock must be held when this is called.
 * Afterwards, the futex_q must not be accessed. Callers
 * must ensure to later call wake_up_q() for the actual
 * wakeups to occur.
 */
void futex_wake_mark(struct wake_q_head *wake_q, struct futex_q *q)
{
	struct task_struct *p = q->task;

	if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
		return;

	get_task_struct(p);
	__futex_unqueue(q);
	/*
	 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
	 * is written, without taking any locks. This is possible in the event
	 * of a spurious wakeup, for example. A memory barrier is required here
	 * to prevent the following store to lock_ptr from getting ahead of the
	 * plist_del in __futex_unqueue().
	 */
	smp_store_release(&q->lock_ptr, NULL);

	/*
	 * Queue the task for later wakeup for after we've released
	 * the hb->lock.
	 */
	wake_q_add_safe(wake_q, p);
}

/*
 * Wake up waiters matching bitset queued on this futex (uaddr).
 */
int futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
{
	struct futex_hash_bucket *hb;
	struct futex_q *this, *next;
	union futex_key key = FUTEX_KEY_INIT;
	int ret;
	DEFINE_WAKE_Q(wake_q);

	if (!bitset)
		return -EINVAL;

	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
	if (unlikely(ret != 0))
		return ret;

	if ((flags & FLAGS_STRICT) && !nr_wake)
		return 0;

	hb = futex_hash(&key);

	/* Make sure we really have tasks to wakeup */
	if (!futex_hb_waiters_pending(hb))
		return ret;

	spin_lock(&hb->lock);

	plist_for_each_entry_safe(this, next, &hb->chain, list) {
		if (futex_match (&this->key, &key)) {
			if (this->pi_state || this->rt_waiter) {
				ret = -EINVAL;
				break;
			}

			/* Check if one of the bits is set in both bitsets */
			if (!(this->bitset & bitset))
				continue;

			futex_wake_mark(&wake_q, this);
			if (++ret >= nr_wake)
				break;
		}
	}

	spin_unlock(&hb->lock);
	wake_up_q(&wake_q);
	return ret;
}

static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
{
	unsigned int op =	  (encoded_op & 0x70000000) >> 28;
	unsigned int cmp =	  (encoded_op & 0x0f000000) >> 24;
	int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
	int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
	int oldval, ret;

	if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
		if (oparg < 0 || oparg > 31) {
			char comm[sizeof(current->comm)];
			/*
			 * kill this print and return -EINVAL when userspace
			 * is sane again
			 */
			pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
					get_task_comm(comm, current), oparg);
			oparg &= 31;
		}
		oparg = 1 << oparg;
	}

	pagefault_disable();
	ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
	pagefault_enable();
	if (ret)
		return ret;

	switch (cmp) {
	case FUTEX_OP_CMP_EQ:
		return oldval == cmparg;
	case FUTEX_OP_CMP_NE:
		return oldval != cmparg;
	case FUTEX_OP_CMP_LT:
		return oldval < cmparg;
	case FUTEX_OP_CMP_GE:
		return oldval >= cmparg;
	case FUTEX_OP_CMP_LE:
		return oldval <= cmparg;
	case FUTEX_OP_CMP_GT:
		return oldval > cmparg;
	default:
		return -ENOSYS;
	}
}

/*
 * Wake up all waiters hashed on the physical page that is mapped
 * to this virtual address:
 */
int futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
		  int nr_wake, int nr_wake2, int op)
{
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
	struct futex_hash_bucket *hb1, *hb2;
	struct futex_q *this, *next;
	int ret, op_ret;
	DEFINE_WAKE_Q(wake_q);

retry:
	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
	if (unlikely(ret != 0))
		return ret;
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
	if (unlikely(ret != 0))
		return ret;

	hb1 = futex_hash(&key1);
	hb2 = futex_hash(&key2);

retry_private:
	double_lock_hb(hb1, hb2);
	op_ret = futex_atomic_op_inuser(op, uaddr2);
	if (unlikely(op_ret < 0)) {
		double_unlock_hb(hb1, hb2);

		if (!IS_ENABLED(CONFIG_MMU) ||
		    unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
			/*
			 * we don't get EFAULT from MMU faults if we don't have
			 * an MMU, but we might get them from range checking
			 */
			ret = op_ret;
			return ret;
		}

		if (op_ret == -EFAULT) {
			ret = fault_in_user_writeable(uaddr2);
			if (ret)
				return ret;
		}

		cond_resched();
		if (!(flags & FLAGS_SHARED))
			goto retry_private;
		goto retry;
	}

	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
		if (futex_match (&this->key, &key1)) {
			if (this->pi_state || this->rt_waiter) {
				ret = -EINVAL;
				goto out_unlock;
			}
			futex_wake_mark(&wake_q, this);
			if (++ret >= nr_wake)
				break;
		}
	}

	if (op_ret > 0) {
		op_ret = 0;
		plist_for_each_entry_safe(this, next, &hb2->chain, list) {
			if (futex_match (&this->key, &key2)) {
				if (this->pi_state || this->rt_waiter) {
					ret = -EINVAL;
					goto out_unlock;
				}
				futex_wake_mark(&wake_q, this);
				if (++op_ret >= nr_wake2)
					break;
			}
		}
		ret += op_ret;
	}

out_unlock:
	double_unlock_hb(hb1, hb2);
	wake_up_q(&wake_q);
	return ret;
}

static long futex_wait_restart(struct restart_block *restart);

/**
 * futex_wait_queue() - futex_queue() and wait for wakeup, timeout, or signal
 * @hb:		the futex hash bucket, must be locked by the caller
 * @q:		the futex_q to queue up on
 * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
 */
void futex_wait_queue(struct futex_hash_bucket *hb, struct futex_q *q,
			    struct hrtimer_sleeper *timeout)
{
	/*
	 * The task state is guaranteed to be set before another task can
	 * wake it. set_current_state() is implemented using smp_store_mb() and
	 * futex_queue() calls spin_unlock() upon completion, both serializing
	 * access to the hash list and forcing another memory barrier.
	 */
	set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
	futex_queue(q, hb);

	/* Arm the timer */
	if (timeout)
		hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);

	/*
	 * If we have been removed from the hash list, then another task
	 * has tried to wake us, and we can skip the call to schedule().
	 */
	if (likely(!plist_node_empty(&q->list))) {
		/*
		 * If the timer has already expired, current will already be
		 * flagged for rescheduling. Only call schedule if there
		 * is no timeout, or if it has yet to expire.
		 */
		if (!timeout || timeout->task)
			schedule();
	}
	__set_current_state(TASK_RUNNING);
}

/**
 * unqueue_multiple - Remove various futexes from their hash bucket
 * @v:	   The list of futexes to unqueue
 * @count: Number of futexes in the list
 *
 * Helper to unqueue a list of futexes. This can't fail.
 *
 * Return:
 *  - >=0 - Index of the last futex that was awoken;
 *  - -1  - No futex was awoken
 */
static int unqueue_multiple(struct futex_vector *v, int count)
{
	int ret = -1, i;

	for (i = 0; i < count; i++) {
		if (!futex_unqueue(&v[i].q))
			ret = i;
	}

	return ret;
}

/**
 * futex_wait_multiple_setup - Prepare to wait and enqueue multiple futexes
 * @vs:		The futex list to wait on
 * @count:	The size of the list
 * @woken:	Index of the last woken futex, if any. Used to notify the
 *		caller that it can return this index to userspace (return parameter)
 *
 * Prepare multiple futexes in a single step and enqueue them. This may fail if
 * the futex list is invalid or if any futex was already awoken. On success the
 * task is ready to interruptible sleep.
 *
 * Return:
 *  -  1 - One of the futexes was woken by another thread
 *  -  0 - Success
 *  - <0 - -EFAULT, -EWOULDBLOCK or -EINVAL
 */
static int futex_wait_multiple_setup(struct futex_vector *vs, int count, int *woken)
{
	struct futex_hash_bucket *hb;
	bool retry = false;
	int ret, i;
	u32 uval;

	/*
	 * Enqueuing multiple futexes is tricky, because we need to enqueue
	 * each futex on the list before dealing with the next one to avoid
	 * deadlocking on the hash bucket. But, before enqueuing, we need to
	 * make sure that current->state is TASK_INTERRUPTIBLE, so we don't
	 * lose any wake events, which cannot be done before the get_futex_key
	 * of the next key, because it calls get_user_pages, which can sleep.
	 * Thus, we fetch the list of futexes keys in two steps, by first
	 * pinning all the memory keys in the futex key, and only then we read
	 * each key and queue the corresponding futex.
	 *
	 * Private futexes doesn't need to recalculate hash in retry, so skip
	 * get_futex_key() when retrying.
	 */
retry:
	for (i = 0; i < count; i++) {
		if (!(vs[i].w.flags & FLAGS_SHARED) && retry)
			continue;

		ret = get_futex_key(u64_to_user_ptr(vs[i].w.uaddr),
				    vs[i].w.flags & FLAGS_SHARED,
				    &vs[i].q.key, FUTEX_READ);

		if (unlikely(ret))
			return ret;
	}

	set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);

	for (i = 0; i < count; i++) {
		u32 __user *uaddr = (u32 __user *)(unsigned long)vs[i].w.uaddr;
		struct futex_q *q = &vs[i].q;
		u32 val = (u32)vs[i].w.val;

		hb = futex_q_lock(q);
		ret = futex_get_value_locked(&uval, uaddr);

		if (!ret && uval == val) {
			/*
			 * The bucket lock can't be held while dealing with the
			 * next futex. Queue each futex at this moment so hb can
			 * be unlocked.
			 */
			futex_queue(q, hb);
			continue;
		}

		futex_q_unlock(hb);
		__set_current_state(TASK_RUNNING);

		/*
		 * Even if something went wrong, if we find out that a futex
		 * was woken, we don't return error and return this index to
		 * userspace
		 */
		*woken = unqueue_multiple(vs, i);
		if (*woken >= 0)
			return 1;

		if (ret) {
			/*
			 * If we need to handle a page fault, we need to do so
			 * without any lock and any enqueued futex (otherwise
			 * we could lose some wakeup). So we do it here, after
			 * undoing all the work done so far. In success, we
			 * retry all the work.
			 */
			if (get_user(uval, uaddr))
				return -EFAULT;

			retry = true;
			goto retry;
		}

		if (uval != val)
			return -EWOULDBLOCK;
	}

	return 0;
}

/**
 * futex_sleep_multiple - Check sleeping conditions and sleep
 * @vs:    List of futexes to wait for
 * @count: Length of vs
 * @to:    Timeout
 *
 * Sleep if and only if the timeout hasn't expired and no futex on the list has
 * been woken up.
 */
static void futex_sleep_multiple(struct futex_vector *vs, unsigned int count,
				 struct hrtimer_sleeper *to)
{
	if (to && !to->task)
		return;

	for (; count; count--, vs++) {
		if (!READ_ONCE(vs->q.lock_ptr))
			return;
	}

	schedule();
}

/**
 * futex_wait_multiple - Prepare to wait on and enqueue several futexes
 * @vs:		The list of futexes to wait on
 * @count:	The number of objects
 * @to:		Timeout before giving up and returning to userspace
 *
 * Entry point for the FUTEX_WAIT_MULTIPLE futex operation, this function
 * sleeps on a group of futexes and returns on the first futex that is
 * wake, or after the timeout has elapsed.
 *
 * Return:
 *  - >=0 - Hint to the futex that was awoken
 *  - <0  - On error
 */
int futex_wait_multiple(struct futex_vector *vs, unsigned int count,
			struct hrtimer_sleeper *to)
{
	int ret, hint = 0;

	if (to)
		hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);

	while (1) {
		ret = futex_wait_multiple_setup(vs, count, &hint);
		if (ret) {
			if (ret > 0) {
				/* A futex was woken during setup */
				ret = hint;
			}
			return ret;
		}

		futex_sleep_multiple(vs, count, to);

		__set_current_state(TASK_RUNNING);

		ret = unqueue_multiple(vs, count);
		if (ret >= 0)
			return ret;

		if (to && !to->task)
			return -ETIMEDOUT;
		else if (signal_pending(current))
			return -ERESTARTSYS;
		/*
		 * The final case is a spurious wakeup, for
		 * which just retry.
		 */
	}
}

/**
 * futex_wait_setup() - Prepare to wait on a futex
 * @uaddr:	the futex userspace address
 * @val:	the expected value
 * @flags:	futex flags (FLAGS_SHARED, etc.)
 * @q:		the associated futex_q
 * @hb:		storage for hash_bucket pointer to be returned to caller
 *
 * Setup the futex_q and locate the hash_bucket.  Get the futex value and
 * compare it with the expected value.  Handle atomic faults internally.
 * Return with the hb lock held on success, and unlocked on failure.
 *
 * Return:
 *  -  0 - uaddr contains val and hb has been locked;
 *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
 */
int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
		     struct futex_q *q, struct futex_hash_bucket **hb)
{
	u32 uval;
	int ret;

	/*
	 * Access the page AFTER the hash-bucket is locked.
	 * Order is important:
	 *
	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
	 *
	 * The basic logical guarantee of a futex is that it blocks ONLY
	 * if cond(var) is known to be true at the time of blocking, for
	 * any cond.  If we locked the hash-bucket after testing *uaddr, that
	 * would open a race condition where we could block indefinitely with
	 * cond(var) false, which would violate the guarantee.
	 *
	 * On the other hand, we insert q and release the hash-bucket only
	 * after testing *uaddr.  This guarantees that futex_wait() will NOT
	 * absorb a wakeup if *uaddr does not match the desired values
	 * while the syscall executes.
	 */
retry:
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
	if (unlikely(ret != 0))
		return ret;

retry_private:
	*hb = futex_q_lock(q);

	ret = futex_get_value_locked(&uval, uaddr);

	if (ret) {
		futex_q_unlock(*hb);

		ret = get_user(uval, uaddr);
		if (ret)
			return ret;

		if (!(flags & FLAGS_SHARED))
			goto retry_private;

		goto retry;
	}

	if (uval != val) {
		futex_q_unlock(*hb);
		ret = -EWOULDBLOCK;
	}

	return ret;
}

int __futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
		 struct hrtimer_sleeper *to, u32 bitset)
{
	struct futex_q q = futex_q_init;
	struct futex_hash_bucket *hb;
	int ret;

	if (!bitset)
		return -EINVAL;

	q.bitset = bitset;

retry:
	/*
	 * Prepare to wait on uaddr. On success, it holds hb->lock and q
	 * is initialized.
	 */
	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
	if (ret)
		return ret;

	/* futex_queue and wait for wakeup, timeout, or a signal. */
	futex_wait_queue(hb, &q, to);

	/* If we were woken (and unqueued), we succeeded, whatever. */
	if (!futex_unqueue(&q))
		return 0;

	if (to && !to->task)
		return -ETIMEDOUT;

	/*
	 * We expect signal_pending(current), but we might be the
	 * victim of a spurious wakeup as well.
	 */
	if (!signal_pending(current))
		goto retry;

	return -ERESTARTSYS;
}

int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val, ktime_t *abs_time, u32 bitset)
{
	struct hrtimer_sleeper timeout, *to;
	struct restart_block *restart;
	int ret;

	to = futex_setup_timer(abs_time, &timeout, flags,
			       current->timer_slack_ns);

	ret = __futex_wait(uaddr, flags, val, to, bitset);

	/* No timeout, nothing to clean up. */
	if (!to)
		return ret;

	hrtimer_cancel(&to->timer);
	destroy_hrtimer_on_stack(&to->timer);

	if (ret == -ERESTARTSYS) {
		restart = &current->restart_block;
		restart->futex.uaddr = uaddr;
		restart->futex.val = val;
		restart->futex.time = *abs_time;
		restart->futex.bitset = bitset;
		restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;

		return set_restart_fn(restart, futex_wait_restart);
	}

	return ret;
}

static long futex_wait_restart(struct restart_block *restart)
{
	u32 __user *uaddr = restart->futex.uaddr;
	ktime_t t, *tp = NULL;

	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
		t = restart->futex.time;
		tp = &t;
	}
	restart->fn = do_no_restart_syscall;

	return (long)futex_wait(uaddr, restart->futex.flags,
				restart->futex.val, tp, restart->futex.bitset);
}