summaryrefslogtreecommitdiffstats
path: root/kernel/power/energy_model.c
blob: b192b0ac8c6ee4a1d09feabb6a314aad714fa553 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
// SPDX-License-Identifier: GPL-2.0
/*
 * Energy Model of devices
 *
 * Copyright (c) 2018-2021, Arm ltd.
 * Written by: Quentin Perret, Arm ltd.
 * Improvements provided by: Lukasz Luba, Arm ltd.
 */

#define pr_fmt(fmt) "energy_model: " fmt

#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/cpumask.h>
#include <linux/debugfs.h>
#include <linux/energy_model.h>
#include <linux/sched/topology.h>
#include <linux/slab.h>

/*
 * Mutex serializing the registrations of performance domains and letting
 * callbacks defined by drivers sleep.
 */
static DEFINE_MUTEX(em_pd_mutex);

static void em_cpufreq_update_efficiencies(struct device *dev,
					   struct em_perf_state *table);
static void em_check_capacity_update(void);
static void em_update_workfn(struct work_struct *work);
static DECLARE_DELAYED_WORK(em_update_work, em_update_workfn);

static bool _is_cpu_device(struct device *dev)
{
	return (dev->bus == &cpu_subsys);
}

#ifdef CONFIG_DEBUG_FS
static struct dentry *rootdir;

static void em_debug_create_ps(struct em_perf_state *ps, struct dentry *pd)
{
	struct dentry *d;
	char name[24];

	snprintf(name, sizeof(name), "ps:%lu", ps->frequency);

	/* Create per-ps directory */
	d = debugfs_create_dir(name, pd);
	debugfs_create_ulong("frequency", 0444, d, &ps->frequency);
	debugfs_create_ulong("power", 0444, d, &ps->power);
	debugfs_create_ulong("cost", 0444, d, &ps->cost);
	debugfs_create_ulong("performance", 0444, d, &ps->performance);
	debugfs_create_ulong("inefficient", 0444, d, &ps->flags);
}

static int em_debug_cpus_show(struct seq_file *s, void *unused)
{
	seq_printf(s, "%*pbl\n", cpumask_pr_args(to_cpumask(s->private)));

	return 0;
}
DEFINE_SHOW_ATTRIBUTE(em_debug_cpus);

static int em_debug_flags_show(struct seq_file *s, void *unused)
{
	struct em_perf_domain *pd = s->private;

	seq_printf(s, "%#lx\n", pd->flags);

	return 0;
}
DEFINE_SHOW_ATTRIBUTE(em_debug_flags);

static void em_debug_create_pd(struct device *dev)
{
	struct dentry *d;
	int i;

	/* Create the directory of the performance domain */
	d = debugfs_create_dir(dev_name(dev), rootdir);

	if (_is_cpu_device(dev))
		debugfs_create_file("cpus", 0444, d, dev->em_pd->cpus,
				    &em_debug_cpus_fops);

	debugfs_create_file("flags", 0444, d, dev->em_pd,
			    &em_debug_flags_fops);

	/* Create a sub-directory for each performance state */
	for (i = 0; i < dev->em_pd->nr_perf_states; i++)
		em_debug_create_ps(&dev->em_pd->table[i], d);

}

static void em_debug_remove_pd(struct device *dev)
{
	debugfs_lookup_and_remove(dev_name(dev), rootdir);
}

static int __init em_debug_init(void)
{
	/* Create /sys/kernel/debug/energy_model directory */
	rootdir = debugfs_create_dir("energy_model", NULL);

	return 0;
}
fs_initcall(em_debug_init);
#else /* CONFIG_DEBUG_FS */
static void em_debug_create_pd(struct device *dev) {}
static void em_debug_remove_pd(struct device *dev) {}
#endif

static void em_destroy_table_rcu(struct rcu_head *rp)
{
	struct em_perf_table __rcu *table;

	table = container_of(rp, struct em_perf_table, rcu);
	kfree(table);
}

static void em_release_table_kref(struct kref *kref)
{
	struct em_perf_table __rcu *table;

	/* It was the last owner of this table so we can free */
	table = container_of(kref, struct em_perf_table, kref);

	call_rcu(&table->rcu, em_destroy_table_rcu);
}

/**
 * em_table_free() - Handles safe free of the EM table when needed
 * @table : EM table which is going to be freed
 *
 * No return values.
 */
void em_table_free(struct em_perf_table __rcu *table)
{
	kref_put(&table->kref, em_release_table_kref);
}

/**
 * em_table_alloc() - Allocate a new EM table
 * @pd		: EM performance domain for which this must be done
 *
 * Allocate a new EM table and initialize its kref to indicate that it
 * has a user.
 * Returns allocated table or NULL.
 */
struct em_perf_table __rcu *em_table_alloc(struct em_perf_domain *pd)
{
	struct em_perf_table __rcu *table;
	int table_size;

	table_size = sizeof(struct em_perf_state) * pd->nr_perf_states;

	table = kzalloc(sizeof(*table) + table_size, GFP_KERNEL);
	if (!table)
		return NULL;

	kref_init(&table->kref);

	return table;
}

static void em_init_performance(struct device *dev, struct em_perf_domain *pd,
				struct em_perf_state *table, int nr_states)
{
	u64 fmax, max_cap;
	int i, cpu;

	/* This is needed only for CPUs and EAS skip other devices */
	if (!_is_cpu_device(dev))
		return;

	cpu = cpumask_first(em_span_cpus(pd));

	/*
	 * Calculate the performance value for each frequency with
	 * linear relationship. The final CPU capacity might not be ready at
	 * boot time, but the EM will be updated a bit later with correct one.
	 */
	fmax = (u64) table[nr_states - 1].frequency;
	max_cap = (u64) arch_scale_cpu_capacity(cpu);
	for (i = 0; i < nr_states; i++)
		table[i].performance = div64_u64(max_cap * table[i].frequency,
						 fmax);
}

static int em_compute_costs(struct device *dev, struct em_perf_state *table,
			    struct em_data_callback *cb, int nr_states,
			    unsigned long flags)
{
	unsigned long prev_cost = ULONG_MAX;
	u64 fmax;
	int i, ret;

	/* Compute the cost of each performance state. */
	fmax = (u64) table[nr_states - 1].frequency;
	for (i = nr_states - 1; i >= 0; i--) {
		unsigned long power_res, cost;

		if ((flags & EM_PERF_DOMAIN_ARTIFICIAL) && cb->get_cost) {
			ret = cb->get_cost(dev, table[i].frequency, &cost);
			if (ret || !cost || cost > EM_MAX_POWER) {
				dev_err(dev, "EM: invalid cost %lu %d\n",
					cost, ret);
				return -EINVAL;
			}
		} else {
			power_res = table[i].power;
			cost = div64_u64(fmax * power_res, table[i].frequency);
		}

		table[i].cost = cost;

		if (table[i].cost >= prev_cost) {
			table[i].flags = EM_PERF_STATE_INEFFICIENT;
			dev_dbg(dev, "EM: OPP:%lu is inefficient\n",
				table[i].frequency);
		} else {
			prev_cost = table[i].cost;
		}
	}

	return 0;
}

static int em_allocate_perf_table(struct em_perf_domain *pd,
				  int nr_states)
{
	pd->table = kcalloc(nr_states, sizeof(struct em_perf_state),
			    GFP_KERNEL);
	if (!pd->table)
		return -ENOMEM;

	return 0;
}

/**
 * em_dev_update_perf_domain() - Update runtime EM table for a device
 * @dev		: Device for which the EM is to be updated
 * @new_table	: The new EM table that is going to be used from now
 *
 * Update EM runtime modifiable table for the @dev using the provided @table.
 *
 * This function uses a mutex to serialize writers, so it must not be called
 * from a non-sleeping context.
 *
 * Return 0 on success or an error code on failure.
 */
int em_dev_update_perf_domain(struct device *dev,
			      struct em_perf_table __rcu *new_table)
{
	struct em_perf_table __rcu *old_table;
	struct em_perf_domain *pd;

	if (!dev)
		return -EINVAL;

	/* Serialize update/unregister or concurrent updates */
	mutex_lock(&em_pd_mutex);

	if (!dev->em_pd) {
		mutex_unlock(&em_pd_mutex);
		return -EINVAL;
	}
	pd = dev->em_pd;

	kref_get(&new_table->kref);

	old_table = pd->em_table;
	rcu_assign_pointer(pd->em_table, new_table);

	em_cpufreq_update_efficiencies(dev, new_table->state);

	em_table_free(old_table);

	mutex_unlock(&em_pd_mutex);
	return 0;
}
EXPORT_SYMBOL_GPL(em_dev_update_perf_domain);

static int em_create_runtime_table(struct em_perf_domain *pd)
{
	struct em_perf_table __rcu *table;
	int table_size;

	table = em_table_alloc(pd);
	if (!table)
		return -ENOMEM;

	/* Initialize runtime table with existing data */
	table_size = sizeof(struct em_perf_state) * pd->nr_perf_states;
	memcpy(table->state, pd->table, table_size);

	rcu_assign_pointer(pd->em_table, table);

	return 0;
}

static int em_create_perf_table(struct device *dev, struct em_perf_domain *pd,
				struct em_perf_state *table,
				struct em_data_callback *cb,
				unsigned long flags)
{
	unsigned long power, freq, prev_freq = 0;
	int nr_states = pd->nr_perf_states;
	int i, ret;

	/* Build the list of performance states for this performance domain */
	for (i = 0, freq = 0; i < nr_states; i++, freq++) {
		/*
		 * active_power() is a driver callback which ceils 'freq' to
		 * lowest performance state of 'dev' above 'freq' and updates
		 * 'power' and 'freq' accordingly.
		 */
		ret = cb->active_power(dev, &power, &freq);
		if (ret) {
			dev_err(dev, "EM: invalid perf. state: %d\n",
				ret);
			return -EINVAL;
		}

		/*
		 * We expect the driver callback to increase the frequency for
		 * higher performance states.
		 */
		if (freq <= prev_freq) {
			dev_err(dev, "EM: non-increasing freq: %lu\n",
				freq);
			return -EINVAL;
		}

		/*
		 * The power returned by active_state() is expected to be
		 * positive and be in range.
		 */
		if (!power || power > EM_MAX_POWER) {
			dev_err(dev, "EM: invalid power: %lu\n",
				power);
			return -EINVAL;
		}

		table[i].power = power;
		table[i].frequency = prev_freq = freq;
	}

	em_init_performance(dev, pd, table, nr_states);

	ret = em_compute_costs(dev, table, cb, nr_states, flags);
	if (ret)
		return -EINVAL;

	return 0;
}

static int em_create_pd(struct device *dev, int nr_states,
			struct em_data_callback *cb, cpumask_t *cpus,
			unsigned long flags)
{
	struct em_perf_domain *pd;
	struct device *cpu_dev;
	int cpu, ret, num_cpus;

	if (_is_cpu_device(dev)) {
		num_cpus = cpumask_weight(cpus);

		/* Prevent max possible energy calculation to not overflow */
		if (num_cpus > EM_MAX_NUM_CPUS) {
			dev_err(dev, "EM: too many CPUs, overflow possible\n");
			return -EINVAL;
		}

		pd = kzalloc(sizeof(*pd) + cpumask_size(), GFP_KERNEL);
		if (!pd)
			return -ENOMEM;

		cpumask_copy(em_span_cpus(pd), cpus);
	} else {
		pd = kzalloc(sizeof(*pd), GFP_KERNEL);
		if (!pd)
			return -ENOMEM;
	}

	pd->nr_perf_states = nr_states;

	ret = em_allocate_perf_table(pd, nr_states);
	if (ret)
		goto free_pd;

	ret = em_create_perf_table(dev, pd, pd->table, cb, flags);
	if (ret)
		goto free_pd_table;

	ret = em_create_runtime_table(pd);
	if (ret)
		goto free_pd_table;

	if (_is_cpu_device(dev))
		for_each_cpu(cpu, cpus) {
			cpu_dev = get_cpu_device(cpu);
			cpu_dev->em_pd = pd;
		}

	dev->em_pd = pd;

	return 0;

free_pd_table:
	kfree(pd->table);
free_pd:
	kfree(pd);
	return -EINVAL;
}

static void
em_cpufreq_update_efficiencies(struct device *dev, struct em_perf_state *table)
{
	struct em_perf_domain *pd = dev->em_pd;
	struct cpufreq_policy *policy;
	int found = 0;
	int i, cpu;

	if (!_is_cpu_device(dev))
		return;

	/* Try to get a CPU which is active and in this PD */
	cpu = cpumask_first_and(em_span_cpus(pd), cpu_active_mask);
	if (cpu >= nr_cpu_ids) {
		dev_warn(dev, "EM: No online CPU for CPUFreq policy\n");
		return;
	}

	policy = cpufreq_cpu_get(cpu);
	if (!policy) {
		dev_warn(dev, "EM: Access to CPUFreq policy failed\n");
		return;
	}

	for (i = 0; i < pd->nr_perf_states; i++) {
		if (!(table[i].flags & EM_PERF_STATE_INEFFICIENT))
			continue;

		if (!cpufreq_table_set_inefficient(policy, table[i].frequency))
			found++;
	}

	cpufreq_cpu_put(policy);

	if (!found)
		return;

	/*
	 * Efficiencies have been installed in CPUFreq, inefficient frequencies
	 * will be skipped. The EM can do the same.
	 */
	pd->flags |= EM_PERF_DOMAIN_SKIP_INEFFICIENCIES;
}

/**
 * em_pd_get() - Return the performance domain for a device
 * @dev : Device to find the performance domain for
 *
 * Returns the performance domain to which @dev belongs, or NULL if it doesn't
 * exist.
 */
struct em_perf_domain *em_pd_get(struct device *dev)
{
	if (IS_ERR_OR_NULL(dev))
		return NULL;

	return dev->em_pd;
}
EXPORT_SYMBOL_GPL(em_pd_get);

/**
 * em_cpu_get() - Return the performance domain for a CPU
 * @cpu : CPU to find the performance domain for
 *
 * Returns the performance domain to which @cpu belongs, or NULL if it doesn't
 * exist.
 */
struct em_perf_domain *em_cpu_get(int cpu)
{
	struct device *cpu_dev;

	cpu_dev = get_cpu_device(cpu);
	if (!cpu_dev)
		return NULL;

	return em_pd_get(cpu_dev);
}
EXPORT_SYMBOL_GPL(em_cpu_get);

/**
 * em_dev_register_perf_domain() - Register the Energy Model (EM) for a device
 * @dev		: Device for which the EM is to register
 * @nr_states	: Number of performance states to register
 * @cb		: Callback functions providing the data of the Energy Model
 * @cpus	: Pointer to cpumask_t, which in case of a CPU device is
 *		obligatory. It can be taken from i.e. 'policy->cpus'. For other
 *		type of devices this should be set to NULL.
 * @microwatts	: Flag indicating that the power values are in micro-Watts or
 *		in some other scale. It must be set properly.
 *
 * Create Energy Model tables for a performance domain using the callbacks
 * defined in cb.
 *
 * The @microwatts is important to set with correct value. Some kernel
 * sub-systems might rely on this flag and check if all devices in the EM are
 * using the same scale.
 *
 * If multiple clients register the same performance domain, all but the first
 * registration will be ignored.
 *
 * Return 0 on success
 */
int em_dev_register_perf_domain(struct device *dev, unsigned int nr_states,
				struct em_data_callback *cb, cpumask_t *cpus,
				bool microwatts)
{
	unsigned long cap, prev_cap = 0;
	unsigned long flags = 0;
	int cpu, ret;

	if (!dev || !nr_states || !cb)
		return -EINVAL;

	/*
	 * Use a mutex to serialize the registration of performance domains and
	 * let the driver-defined callback functions sleep.
	 */
	mutex_lock(&em_pd_mutex);

	if (dev->em_pd) {
		ret = -EEXIST;
		goto unlock;
	}

	if (_is_cpu_device(dev)) {
		if (!cpus) {
			dev_err(dev, "EM: invalid CPU mask\n");
			ret = -EINVAL;
			goto unlock;
		}

		for_each_cpu(cpu, cpus) {
			if (em_cpu_get(cpu)) {
				dev_err(dev, "EM: exists for CPU%d\n", cpu);
				ret = -EEXIST;
				goto unlock;
			}
			/*
			 * All CPUs of a domain must have the same
			 * micro-architecture since they all share the same
			 * table.
			 */
			cap = arch_scale_cpu_capacity(cpu);
			if (prev_cap && prev_cap != cap) {
				dev_err(dev, "EM: CPUs of %*pbl must have the same capacity\n",
					cpumask_pr_args(cpus));

				ret = -EINVAL;
				goto unlock;
			}
			prev_cap = cap;
		}
	}

	if (microwatts)
		flags |= EM_PERF_DOMAIN_MICROWATTS;
	else if (cb->get_cost)
		flags |= EM_PERF_DOMAIN_ARTIFICIAL;

	ret = em_create_pd(dev, nr_states, cb, cpus, flags);
	if (ret)
		goto unlock;

	dev->em_pd->flags |= flags;

	em_cpufreq_update_efficiencies(dev, dev->em_pd->table);

	em_debug_create_pd(dev);
	dev_info(dev, "EM: created perf domain\n");

unlock:
	mutex_unlock(&em_pd_mutex);

	if (_is_cpu_device(dev))
		em_check_capacity_update();

	return ret;
}
EXPORT_SYMBOL_GPL(em_dev_register_perf_domain);

/**
 * em_dev_unregister_perf_domain() - Unregister Energy Model (EM) for a device
 * @dev		: Device for which the EM is registered
 *
 * Unregister the EM for the specified @dev (but not a CPU device).
 */
void em_dev_unregister_perf_domain(struct device *dev)
{
	if (IS_ERR_OR_NULL(dev) || !dev->em_pd)
		return;

	if (_is_cpu_device(dev))
		return;

	/*
	 * The mutex separates all register/unregister requests and protects
	 * from potential clean-up/setup issues in the debugfs directories.
	 * The debugfs directory name is the same as device's name.
	 */
	mutex_lock(&em_pd_mutex);
	em_debug_remove_pd(dev);

	kfree(dev->em_pd->table);

	em_table_free(dev->em_pd->em_table);

	kfree(dev->em_pd);
	dev->em_pd = NULL;
	mutex_unlock(&em_pd_mutex);
}
EXPORT_SYMBOL_GPL(em_dev_unregister_perf_domain);

/*
 * Adjustment of CPU performance values after boot, when all CPUs capacites
 * are correctly calculated.
 */
static void em_adjust_new_capacity(struct device *dev,
				   struct em_perf_domain *pd,
				   u64 max_cap)
{
	struct em_perf_table __rcu *em_table;
	struct em_perf_state *ps, *new_ps;
	int ret, ps_size;

	em_table = em_table_alloc(pd);
	if (!em_table) {
		dev_warn(dev, "EM: allocation failed\n");
		return;
	}

	new_ps = em_table->state;

	rcu_read_lock();
	ps = em_perf_state_from_pd(pd);
	/* Initialize data based on old table */
	ps_size = sizeof(struct em_perf_state) * pd->nr_perf_states;
	memcpy(new_ps, ps, ps_size);

	rcu_read_unlock();

	em_init_performance(dev, pd, new_ps, pd->nr_perf_states);
	ret = em_compute_costs(dev, new_ps, NULL, pd->nr_perf_states,
			       pd->flags);
	if (ret) {
		dev_warn(dev, "EM: compute costs failed\n");
		return;
	}

	ret = em_dev_update_perf_domain(dev, em_table);
	if (ret)
		dev_warn(dev, "EM: update failed %d\n", ret);

	/*
	 * This is one-time-update, so give up the ownership in this updater.
	 * The EM framework has incremented the usage counter and from now
	 * will keep the reference (then free the memory when needed).
	 */
	em_table_free(em_table);
}

static void em_check_capacity_update(void)
{
	cpumask_var_t cpu_done_mask;
	struct em_perf_state *table;
	struct em_perf_domain *pd;
	unsigned long cpu_capacity;
	int cpu;

	if (!zalloc_cpumask_var(&cpu_done_mask, GFP_KERNEL)) {
		pr_warn("no free memory\n");
		return;
	}

	/* Check if CPUs capacity has changed than update EM */
	for_each_possible_cpu(cpu) {
		struct cpufreq_policy *policy;
		unsigned long em_max_perf;
		struct device *dev;
		int nr_states;

		if (cpumask_test_cpu(cpu, cpu_done_mask))
			continue;

		policy = cpufreq_cpu_get(cpu);
		if (!policy) {
			pr_debug("Accessing cpu%d policy failed\n", cpu);
			schedule_delayed_work(&em_update_work,
					      msecs_to_jiffies(1000));
			break;
		}
		cpufreq_cpu_put(policy);

		pd = em_cpu_get(cpu);
		if (!pd || em_is_artificial(pd))
			continue;

		cpumask_or(cpu_done_mask, cpu_done_mask,
			   em_span_cpus(pd));

		nr_states = pd->nr_perf_states;
		cpu_capacity = arch_scale_cpu_capacity(cpu);

		rcu_read_lock();
		table = em_perf_state_from_pd(pd);
		em_max_perf = table[pd->nr_perf_states - 1].performance;
		rcu_read_unlock();

		/*
		 * Check if the CPU capacity has been adjusted during boot
		 * and trigger the update for new performance values.
		 */
		if (em_max_perf == cpu_capacity)
			continue;

		pr_debug("updating cpu%d cpu_cap=%lu old capacity=%lu\n",
			 cpu, cpu_capacity, em_max_perf);

		dev = get_cpu_device(cpu);
		em_adjust_new_capacity(dev, pd, cpu_capacity);
	}

	free_cpumask_var(cpu_done_mask);
}

static void em_update_workfn(struct work_struct *work)
{
	em_check_capacity_update();
}