summaryrefslogtreecommitdiffstats
path: root/kernel/sched/syscalls.c
blob: ae1b42775ef95c5f0ffc41d0491c4903f213db69 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
// SPDX-License-Identifier: GPL-2.0-only
/*
 *  kernel/sched/syscalls.c
 *
 *  Core kernel scheduler syscalls related code
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *  Copyright (C) 1998-2024  Ingo Molnar, Red Hat
 */
#include <linux/sched.h>
#include <linux/cpuset.h>
#include <linux/sched/debug.h>

#include <uapi/linux/sched/types.h>

#include "sched.h"
#include "autogroup.h"

static inline int __normal_prio(int policy, int rt_prio, int nice)
{
	int prio;

	if (dl_policy(policy))
		prio = MAX_DL_PRIO - 1;
	else if (rt_policy(policy))
		prio = MAX_RT_PRIO - 1 - rt_prio;
	else
		prio = NICE_TO_PRIO(nice);

	return prio;
}

/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
static inline int normal_prio(struct task_struct *p)
{
	return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
static int effective_prio(struct task_struct *p)
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

void set_user_nice(struct task_struct *p, long nice)
{
	bool queued, running;
	struct rq *rq;
	int old_prio;

	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	CLASS(task_rq_lock, rq_guard)(p);
	rq = rq_guard.rq;

	update_rq_clock(rq);

	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it won't have any effect on scheduling until the task is
	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
	 */
	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
		p->static_prio = NICE_TO_PRIO(nice);
		return;
	}

	queued = task_on_rq_queued(p);
	running = task_current(rq, p);
	if (queued)
		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
	if (running)
		put_prev_task(rq, p);

	p->static_prio = NICE_TO_PRIO(nice);
	set_load_weight(p, true);
	old_prio = p->prio;
	p->prio = effective_prio(p);

	if (queued)
		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
	if (running)
		set_next_task(rq, p);

	/*
	 * If the task increased its priority or is running and
	 * lowered its priority, then reschedule its CPU:
	 */
	p->sched_class->prio_changed(rq, p, old_prio);
}
EXPORT_SYMBOL(set_user_nice);

/*
 * is_nice_reduction - check if nice value is an actual reduction
 *
 * Similar to can_nice() but does not perform a capability check.
 *
 * @p: task
 * @nice: nice value
 */
static bool is_nice_reduction(const struct task_struct *p, const int nice)
{
	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
	int nice_rlim = nice_to_rlimit(nice);

	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE));
}

/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
int can_nice(const struct task_struct *p, const int nice)
{
	return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE);
}

#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
SYSCALL_DEFINE1(nice, int, increment)
{
	long nice, retval;

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
	nice = task_nice(current) + increment;

	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * Return: The priority value as seen by users in /proc.
 *
 * sched policy         return value   kernel prio    user prio/nice
 *
 * normal, batch, idle     [0 ... 39]  [100 ... 139]          0/[-20 ... 19]
 * fifo, rr             [-2 ... -100]     [98 ... 0]  [1 ... 99]
 * deadline                     -101             -1           0
 */
int task_prio(const struct task_struct *p)
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * idle_cpu - is a given CPU idle currently?
 * @cpu: the processor in question.
 *
 * Return: 1 if the CPU is currently idle. 0 otherwise.
 */
int idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (rq->ttwu_pending)
		return 0;
#endif

	return 1;
}

/**
 * available_idle_cpu - is a given CPU idle for enqueuing work.
 * @cpu: the CPU in question.
 *
 * Return: 1 if the CPU is currently idle. 0 otherwise.
 */
int available_idle_cpu(int cpu)
{
	if (!idle_cpu(cpu))
		return 0;

	if (vcpu_is_preempted(cpu))
		return 0;

	return 1;
}

/**
 * idle_task - return the idle task for a given CPU.
 * @cpu: the processor in question.
 *
 * Return: The idle task for the CPU @cpu.
 */
struct task_struct *idle_task(int cpu)
{
	return cpu_rq(cpu)->idle;
}

#ifdef CONFIG_SCHED_CORE
int sched_core_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (sched_core_enabled(rq) && rq->curr == rq->idle)
		return 1;

	return idle_cpu(cpu);
}

#endif

#ifdef CONFIG_SMP
/*
 * This function computes an effective utilization for the given CPU, to be
 * used for frequency selection given the linear relation: f = u * f_max.
 *
 * The scheduler tracks the following metrics:
 *
 *   cpu_util_{cfs,rt,dl,irq}()
 *   cpu_bw_dl()
 *
 * Where the cfs,rt and dl util numbers are tracked with the same metric and
 * synchronized windows and are thus directly comparable.
 *
 * The cfs,rt,dl utilization are the running times measured with rq->clock_task
 * which excludes things like IRQ and steal-time. These latter are then accrued
 * in the IRQ utilization.
 *
 * The DL bandwidth number OTOH is not a measured metric but a value computed
 * based on the task model parameters and gives the minimal utilization
 * required to meet deadlines.
 */
unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
				 unsigned long *min,
				 unsigned long *max)
{
	unsigned long util, irq, scale;
	struct rq *rq = cpu_rq(cpu);

	scale = arch_scale_cpu_capacity(cpu);

	/*
	 * Early check to see if IRQ/steal time saturates the CPU, can be
	 * because of inaccuracies in how we track these -- see
	 * update_irq_load_avg().
	 */
	irq = cpu_util_irq(rq);
	if (unlikely(irq >= scale)) {
		if (min)
			*min = scale;
		if (max)
			*max = scale;
		return scale;
	}

	if (min) {
		/*
		 * The minimum utilization returns the highest level between:
		 * - the computed DL bandwidth needed with the IRQ pressure which
		 *   steals time to the deadline task.
		 * - The minimum performance requirement for CFS and/or RT.
		 */
		*min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN));

		/*
		 * When an RT task is runnable and uclamp is not used, we must
		 * ensure that the task will run at maximum compute capacity.
		 */
		if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt))
			*min = max(*min, scale);
	}

	/*
	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
	 * CFS tasks and we use the same metric to track the effective
	 * utilization (PELT windows are synchronized) we can directly add them
	 * to obtain the CPU's actual utilization.
	 */
	util = util_cfs + cpu_util_rt(rq);
	util += cpu_util_dl(rq);

	/*
	 * The maximum hint is a soft bandwidth requirement, which can be lower
	 * than the actual utilization because of uclamp_max requirements.
	 */
	if (max)
		*max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX));

	if (util >= scale)
		return scale;

	/*
	 * There is still idle time; further improve the number by using the
	 * IRQ metric. Because IRQ/steal time is hidden from the task clock we
	 * need to scale the task numbers:
	 *
	 *              max - irq
	 *   U' = irq + --------- * U
	 *                 max
	 */
	util = scale_irq_capacity(util, irq, scale);
	util += irq;

	return min(scale, util);
}

unsigned long sched_cpu_util(int cpu)
{
	return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL);
}
#endif /* CONFIG_SMP */

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 *
 * The task of @pid, if found. %NULL otherwise.
 */
static struct task_struct *find_process_by_pid(pid_t pid)
{
	return pid ? find_task_by_vpid(pid) : current;
}

static struct task_struct *find_get_task(pid_t pid)
{
	struct task_struct *p;
	guard(rcu)();

	p = find_process_by_pid(pid);
	if (likely(p))
		get_task_struct(p);

	return p;
}

DEFINE_CLASS(find_get_task, struct task_struct *, if (_T) put_task_struct(_T),
	     find_get_task(pid), pid_t pid)

/*
 * sched_setparam() passes in -1 for its policy, to let the functions
 * it calls know not to change it.
 */
#define SETPARAM_POLICY	-1

static void __setscheduler_params(struct task_struct *p,
		const struct sched_attr *attr)
{
	int policy = attr->sched_policy;

	if (policy == SETPARAM_POLICY)
		policy = p->policy;

	p->policy = policy;

	if (dl_policy(policy))
		__setparam_dl(p, attr);
	else if (fair_policy(policy))
		p->static_prio = NICE_TO_PRIO(attr->sched_nice);

	/*
	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
	 * !rt_policy. Always setting this ensures that things like
	 * getparam()/getattr() don't report silly values for !rt tasks.
	 */
	p->rt_priority = attr->sched_priority;
	p->normal_prio = normal_prio(p);
	set_load_weight(p, true);
}

/*
 * Check the target process has a UID that matches the current process's:
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	guard(rcu)();

	pcred = __task_cred(p);
	return (uid_eq(cred->euid, pcred->euid) ||
		uid_eq(cred->euid, pcred->uid));
}

#ifdef CONFIG_UCLAMP_TASK

static int uclamp_validate(struct task_struct *p,
			   const struct sched_attr *attr)
{
	int util_min = p->uclamp_req[UCLAMP_MIN].value;
	int util_max = p->uclamp_req[UCLAMP_MAX].value;

	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
		util_min = attr->sched_util_min;

		if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
			return -EINVAL;
	}

	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
		util_max = attr->sched_util_max;

		if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
			return -EINVAL;
	}

	if (util_min != -1 && util_max != -1 && util_min > util_max)
		return -EINVAL;

	/*
	 * We have valid uclamp attributes; make sure uclamp is enabled.
	 *
	 * We need to do that here, because enabling static branches is a
	 * blocking operation which obviously cannot be done while holding
	 * scheduler locks.
	 */
	static_branch_enable(&sched_uclamp_used);

	return 0;
}

static bool uclamp_reset(const struct sched_attr *attr,
			 enum uclamp_id clamp_id,
			 struct uclamp_se *uc_se)
{
	/* Reset on sched class change for a non user-defined clamp value. */
	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
	    !uc_se->user_defined)
		return true;

	/* Reset on sched_util_{min,max} == -1. */
	if (clamp_id == UCLAMP_MIN &&
	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
	    attr->sched_util_min == -1) {
		return true;
	}

	if (clamp_id == UCLAMP_MAX &&
	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
	    attr->sched_util_max == -1) {
		return true;
	}

	return false;
}

static void __setscheduler_uclamp(struct task_struct *p,
				  const struct sched_attr *attr)
{
	enum uclamp_id clamp_id;

	for_each_clamp_id(clamp_id) {
		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
		unsigned int value;

		if (!uclamp_reset(attr, clamp_id, uc_se))
			continue;

		/*
		 * RT by default have a 100% boost value that could be modified
		 * at runtime.
		 */
		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
			value = sysctl_sched_uclamp_util_min_rt_default;
		else
			value = uclamp_none(clamp_id);

		uclamp_se_set(uc_se, value, false);

	}

	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
		return;

	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
	    attr->sched_util_min != -1) {
		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
			      attr->sched_util_min, true);
	}

	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
	    attr->sched_util_max != -1) {
		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
			      attr->sched_util_max, true);
	}
}

#else /* !CONFIG_UCLAMP_TASK: */

static inline int uclamp_validate(struct task_struct *p,
				  const struct sched_attr *attr)
{
	return -EOPNOTSUPP;
}
static void __setscheduler_uclamp(struct task_struct *p,
				  const struct sched_attr *attr) { }
#endif

/*
 * Allow unprivileged RT tasks to decrease priority.
 * Only issue a capable test if needed and only once to avoid an audit
 * event on permitted non-privileged operations:
 */
static int user_check_sched_setscheduler(struct task_struct *p,
					 const struct sched_attr *attr,
					 int policy, int reset_on_fork)
{
	if (fair_policy(policy)) {
		if (attr->sched_nice < task_nice(p) &&
		    !is_nice_reduction(p, attr->sched_nice))
			goto req_priv;
	}

	if (rt_policy(policy)) {
		unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);

		/* Can't set/change the rt policy: */
		if (policy != p->policy && !rlim_rtprio)
			goto req_priv;

		/* Can't increase priority: */
		if (attr->sched_priority > p->rt_priority &&
		    attr->sched_priority > rlim_rtprio)
			goto req_priv;
	}

	/*
	 * Can't set/change SCHED_DEADLINE policy at all for now
	 * (safest behavior); in the future we would like to allow
	 * unprivileged DL tasks to increase their relative deadline
	 * or reduce their runtime (both ways reducing utilization)
	 */
	if (dl_policy(policy))
		goto req_priv;

	/*
	 * Treat SCHED_IDLE as nice 20. Only allow a switch to
	 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
	 */
	if (task_has_idle_policy(p) && !idle_policy(policy)) {
		if (!is_nice_reduction(p, task_nice(p)))
			goto req_priv;
	}

	/* Can't change other user's priorities: */
	if (!check_same_owner(p))
		goto req_priv;

	/* Normal users shall not reset the sched_reset_on_fork flag: */
	if (p->sched_reset_on_fork && !reset_on_fork)
		goto req_priv;

	return 0;

req_priv:
	if (!capable(CAP_SYS_NICE))
		return -EPERM;

	return 0;
}

int __sched_setscheduler(struct task_struct *p,
			 const struct sched_attr *attr,
			 bool user, bool pi)
{
	int oldpolicy = -1, policy = attr->sched_policy;
	int retval, oldprio, newprio, queued, running;
	const struct sched_class *prev_class;
	struct balance_callback *head;
	struct rq_flags rf;
	int reset_on_fork;
	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
	struct rq *rq;
	bool cpuset_locked = false;

	/* The pi code expects interrupts enabled */
	BUG_ON(pi && in_interrupt());
recheck:
	/* Double check policy once rq lock held: */
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
		policy = oldpolicy = p->policy;
	} else {
		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);

		if (!valid_policy(policy))
			return -EINVAL;
	}

	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
		return -EINVAL;

	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
	 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
	 */
	if (attr->sched_priority > MAX_RT_PRIO-1)
		return -EINVAL;
	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
	    (rt_policy(policy) != (attr->sched_priority != 0)))
		return -EINVAL;

	if (user) {
		retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork);
		if (retval)
			return retval;

		if (attr->sched_flags & SCHED_FLAG_SUGOV)
			return -EINVAL;

		retval = security_task_setscheduler(p);
		if (retval)
			return retval;
	}

	/* Update task specific "requested" clamps */
	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
		retval = uclamp_validate(p, attr);
		if (retval)
			return retval;
	}

	/*
	 * SCHED_DEADLINE bandwidth accounting relies on stable cpusets
	 * information.
	 */
	if (dl_policy(policy) || dl_policy(p->policy)) {
		cpuset_locked = true;
		cpuset_lock();
	}

	/*
	 * Make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 *
	 * To be able to change p->policy safely, the appropriate
	 * runqueue lock must be held.
	 */
	rq = task_rq_lock(p, &rf);
	update_rq_clock(rq);

	/*
	 * Changing the policy of the stop threads its a very bad idea:
	 */
	if (p == rq->stop) {
		retval = -EINVAL;
		goto unlock;
	}

	/*
	 * If not changing anything there's no need to proceed further,
	 * but store a possible modification of reset_on_fork.
	 */
	if (unlikely(policy == p->policy)) {
		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
			goto change;
		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
			goto change;
		if (dl_policy(policy) && dl_param_changed(p, attr))
			goto change;
		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
			goto change;

		p->sched_reset_on_fork = reset_on_fork;
		retval = 0;
		goto unlock;
	}
change:

	if (user) {
#ifdef CONFIG_RT_GROUP_SCHED
		/*
		 * Do not allow real-time tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
			retval = -EPERM;
			goto unlock;
		}
#endif
#ifdef CONFIG_SMP
		if (dl_bandwidth_enabled() && dl_policy(policy) &&
				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
			cpumask_t *span = rq->rd->span;

			/*
			 * Don't allow tasks with an affinity mask smaller than
			 * the entire root_domain to become SCHED_DEADLINE. We
			 * will also fail if there's no bandwidth available.
			 */
			if (!cpumask_subset(span, p->cpus_ptr) ||
			    rq->rd->dl_bw.bw == 0) {
				retval = -EPERM;
				goto unlock;
			}
		}
#endif
	}

	/* Re-check policy now with rq lock held: */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
		task_rq_unlock(rq, p, &rf);
		if (cpuset_locked)
			cpuset_unlock();
		goto recheck;
	}

	/*
	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
	 * is available.
	 */
	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
		retval = -EBUSY;
		goto unlock;
	}

	p->sched_reset_on_fork = reset_on_fork;
	oldprio = p->prio;

	newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
	if (pi) {
		/*
		 * Take priority boosted tasks into account. If the new
		 * effective priority is unchanged, we just store the new
		 * normal parameters and do not touch the scheduler class and
		 * the runqueue. This will be done when the task deboost
		 * itself.
		 */
		newprio = rt_effective_prio(p, newprio);
		if (newprio == oldprio)
			queue_flags &= ~DEQUEUE_MOVE;
	}

	queued = task_on_rq_queued(p);
	running = task_current(rq, p);
	if (queued)
		dequeue_task(rq, p, queue_flags);
	if (running)
		put_prev_task(rq, p);

	prev_class = p->sched_class;

	if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
		__setscheduler_params(p, attr);
		__setscheduler_prio(p, newprio);
	}
	__setscheduler_uclamp(p, attr);

	if (queued) {
		/*
		 * We enqueue to tail when the priority of a task is
		 * increased (user space view).
		 */
		if (oldprio < p->prio)
			queue_flags |= ENQUEUE_HEAD;

		enqueue_task(rq, p, queue_flags);
	}
	if (running)
		set_next_task(rq, p);

	check_class_changed(rq, p, prev_class, oldprio);

	/* Avoid rq from going away on us: */
	preempt_disable();
	head = splice_balance_callbacks(rq);
	task_rq_unlock(rq, p, &rf);

	if (pi) {
		if (cpuset_locked)
			cpuset_unlock();
		rt_mutex_adjust_pi(p);
	}

	/* Run balance callbacks after we've adjusted the PI chain: */
	balance_callbacks(rq, head);
	preempt_enable();

	return 0;

unlock:
	task_rq_unlock(rq, p, &rf);
	if (cpuset_locked)
		cpuset_unlock();
	return retval;
}

static int _sched_setscheduler(struct task_struct *p, int policy,
			       const struct sched_param *param, bool check)
{
	struct sched_attr attr = {
		.sched_policy   = policy,
		.sched_priority = param->sched_priority,
		.sched_nice	= PRIO_TO_NICE(p->static_prio),
	};

	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
		policy &= ~SCHED_RESET_ON_FORK;
		attr.sched_policy = policy;
	}

	return __sched_setscheduler(p, &attr, check, true);
}
/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Use sched_set_fifo(), read its comment.
 *
 * Return: 0 on success. An error code otherwise.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       const struct sched_param *param)
{
	return _sched_setscheduler(p, policy, param, true);
}

int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
{
	return __sched_setscheduler(p, attr, true, true);
}

int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
{
	return __sched_setscheduler(p, attr, false, true);
}
EXPORT_SYMBOL_GPL(sched_setattr_nocheck);

/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernel-space.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 *
 * Return: 0 on success. An error code otherwise.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       const struct sched_param *param)
{
	return _sched_setscheduler(p, policy, param, false);
}

/*
 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
 * incapable of resource management, which is the one thing an OS really should
 * be doing.
 *
 * This is of course the reason it is limited to privileged users only.
 *
 * Worse still; it is fundamentally impossible to compose static priority
 * workloads. You cannot take two correctly working static prio workloads
 * and smash them together and still expect them to work.
 *
 * For this reason 'all' FIFO tasks the kernel creates are basically at:
 *
 *   MAX_RT_PRIO / 2
 *
 * The administrator _MUST_ configure the system, the kernel simply doesn't
 * know enough information to make a sensible choice.
 */
void sched_set_fifo(struct task_struct *p)
{
	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
}
EXPORT_SYMBOL_GPL(sched_set_fifo);

/*
 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
 */
void sched_set_fifo_low(struct task_struct *p)
{
	struct sched_param sp = { .sched_priority = 1 };
	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
}
EXPORT_SYMBOL_GPL(sched_set_fifo_low);

void sched_set_normal(struct task_struct *p, int nice)
{
	struct sched_attr attr = {
		.sched_policy = SCHED_NORMAL,
		.sched_nice = nice,
	};
	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
}
EXPORT_SYMBOL_GPL(sched_set_normal);

static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
{
	struct sched_param lparam;

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;

	CLASS(find_get_task, p)(pid);
	if (!p)
		return -ESRCH;

	return sched_setscheduler(p, policy, &lparam);
}

/*
 * Mimics kernel/events/core.c perf_copy_attr().
 */
static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
{
	u32 size;
	int ret;

	/* Zero the full structure, so that a short copy will be nice: */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	/* ABI compatibility quirk: */
	if (!size)
		size = SCHED_ATTR_SIZE_VER0;
	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
		goto err_size;

	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
	if (ret) {
		if (ret == -E2BIG)
			goto err_size;
		return ret;
	}

	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
	    size < SCHED_ATTR_SIZE_VER1)
		return -EINVAL;

	/*
	 * XXX: Do we want to be lenient like existing syscalls; or do we want
	 * to be strict and return an error on out-of-bounds values?
	 */
	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);

	return 0;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	return -E2BIG;
}

static void get_params(struct task_struct *p, struct sched_attr *attr)
{
	if (task_has_dl_policy(p))
		__getparam_dl(p, attr);
	else if (task_has_rt_policy(p))
		attr->sched_priority = p->rt_priority;
	else
		attr->sched_nice = task_nice(p);
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Return: 0 on success. An error code otherwise.
 */
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
{
	if (policy < 0)
		return -EINVAL;

	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 *
 * Return: 0 on success. An error code otherwise.
 */
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
{
	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
}

/**
 * sys_sched_setattr - same as above, but with extended sched_attr
 * @pid: the pid in question.
 * @uattr: structure containing the extended parameters.
 * @flags: for future extension.
 */
SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
			       unsigned int, flags)
{
	struct sched_attr attr;
	int retval;

	if (!uattr || pid < 0 || flags)
		return -EINVAL;

	retval = sched_copy_attr(uattr, &attr);
	if (retval)
		return retval;

	if ((int)attr.sched_policy < 0)
		return -EINVAL;
	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
		attr.sched_policy = SETPARAM_POLICY;

	CLASS(find_get_task, p)(pid);
	if (!p)
		return -ESRCH;

	if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
		get_params(p, &attr);

	return sched_setattr(p, &attr);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 *
 * Return: On success, the policy of the thread. Otherwise, a negative error
 * code.
 */
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
{
	struct task_struct *p;
	int retval;

	if (pid < 0)
		return -EINVAL;

	guard(rcu)();
	p = find_process_by_pid(pid);
	if (!p)
		return -ESRCH;

	retval = security_task_getscheduler(p);
	if (!retval) {
		retval = p->policy;
		if (p->sched_reset_on_fork)
			retval |= SCHED_RESET_ON_FORK;
	}
	return retval;
}

/**
 * sys_sched_getparam - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 *
 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
 * code.
 */
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
{
	struct sched_param lp = { .sched_priority = 0 };
	struct task_struct *p;
	int retval;

	if (!param || pid < 0)
		return -EINVAL;

	scoped_guard (rcu) {
		p = find_process_by_pid(pid);
		if (!p)
			return -ESRCH;

		retval = security_task_getscheduler(p);
		if (retval)
			return retval;

		if (task_has_rt_policy(p))
			lp.sched_priority = p->rt_priority;
	}

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	return copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
}

/*
 * Copy the kernel size attribute structure (which might be larger
 * than what user-space knows about) to user-space.
 *
 * Note that all cases are valid: user-space buffer can be larger or
 * smaller than the kernel-space buffer. The usual case is that both
 * have the same size.
 */
static int
sched_attr_copy_to_user(struct sched_attr __user *uattr,
			struct sched_attr *kattr,
			unsigned int usize)
{
	unsigned int ksize = sizeof(*kattr);

	if (!access_ok(uattr, usize))
		return -EFAULT;

	/*
	 * sched_getattr() ABI forwards and backwards compatibility:
	 *
	 * If usize == ksize then we just copy everything to user-space and all is good.
	 *
	 * If usize < ksize then we only copy as much as user-space has space for,
	 * this keeps ABI compatibility as well. We skip the rest.
	 *
	 * If usize > ksize then user-space is using a newer version of the ABI,
	 * which part the kernel doesn't know about. Just ignore it - tooling can
	 * detect the kernel's knowledge of attributes from the attr->size value
	 * which is set to ksize in this case.
	 */
	kattr->size = min(usize, ksize);

	if (copy_to_user(uattr, kattr, kattr->size))
		return -EFAULT;

	return 0;
}

/**
 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
 * @pid: the pid in question.
 * @uattr: structure containing the extended parameters.
 * @usize: sizeof(attr) for fwd/bwd comp.
 * @flags: for future extension.
 */
SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
		unsigned int, usize, unsigned int, flags)
{
	struct sched_attr kattr = { };
	struct task_struct *p;
	int retval;

	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
	    usize < SCHED_ATTR_SIZE_VER0 || flags)
		return -EINVAL;

	scoped_guard (rcu) {
		p = find_process_by_pid(pid);
		if (!p)
			return -ESRCH;

		retval = security_task_getscheduler(p);
		if (retval)
			return retval;

		kattr.sched_policy = p->policy;
		if (p->sched_reset_on_fork)
			kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
		get_params(p, &kattr);
		kattr.sched_flags &= SCHED_FLAG_ALL;

#ifdef CONFIG_UCLAMP_TASK
		/*
		 * This could race with another potential updater, but this is fine
		 * because it'll correctly read the old or the new value. We don't need
		 * to guarantee who wins the race as long as it doesn't return garbage.
		 */
		kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
		kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
#endif
	}

	return sched_attr_copy_to_user(uattr, &kattr, usize);
}

#ifdef CONFIG_SMP
int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
{
	/*
	 * If the task isn't a deadline task or admission control is
	 * disabled then we don't care about affinity changes.
	 */
	if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
		return 0;

	/*
	 * Since bandwidth control happens on root_domain basis,
	 * if admission test is enabled, we only admit -deadline
	 * tasks allowed to run on all the CPUs in the task's
	 * root_domain.
	 */
	guard(rcu)();
	if (!cpumask_subset(task_rq(p)->rd->span, mask))
		return -EBUSY;

	return 0;
}
#endif /* CONFIG_SMP */

int __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx)
{
	int retval;
	cpumask_var_t cpus_allowed, new_mask;

	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
		return -ENOMEM;

	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}

	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, ctx->new_mask, cpus_allowed);

	ctx->new_mask = new_mask;
	ctx->flags |= SCA_CHECK;

	retval = dl_task_check_affinity(p, new_mask);
	if (retval)
		goto out_free_new_mask;

	retval = __set_cpus_allowed_ptr(p, ctx);
	if (retval)
		goto out_free_new_mask;

	cpuset_cpus_allowed(p, cpus_allowed);
	if (!cpumask_subset(new_mask, cpus_allowed)) {
		/*
		 * We must have raced with a concurrent cpuset update.
		 * Just reset the cpumask to the cpuset's cpus_allowed.
		 */
		cpumask_copy(new_mask, cpus_allowed);

		/*
		 * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr()
		 * will restore the previous user_cpus_ptr value.
		 *
		 * In the unlikely event a previous user_cpus_ptr exists,
		 * we need to further restrict the mask to what is allowed
		 * by that old user_cpus_ptr.
		 */
		if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) {
			bool empty = !cpumask_and(new_mask, new_mask,
						  ctx->user_mask);

			if (WARN_ON_ONCE(empty))
				cpumask_copy(new_mask, cpus_allowed);
		}
		__set_cpus_allowed_ptr(p, ctx);
		retval = -EINVAL;
	}

out_free_new_mask:
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
	return retval;
}

long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
{
	struct affinity_context ac;
	struct cpumask *user_mask;
	int retval;

	CLASS(find_get_task, p)(pid);
	if (!p)
		return -ESRCH;

	if (p->flags & PF_NO_SETAFFINITY)
		return -EINVAL;

	if (!check_same_owner(p)) {
		guard(rcu)();
		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE))
			return -EPERM;
	}

	retval = security_task_setscheduler(p);
	if (retval)
		return retval;

	/*
	 * With non-SMP configs, user_cpus_ptr/user_mask isn't used and
	 * alloc_user_cpus_ptr() returns NULL.
	 */
	user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE);
	if (user_mask) {
		cpumask_copy(user_mask, in_mask);
	} else if (IS_ENABLED(CONFIG_SMP)) {
		return -ENOMEM;
	}

	ac = (struct affinity_context){
		.new_mask  = in_mask,
		.user_mask = user_mask,
		.flags     = SCA_USER,
	};

	retval = __sched_setaffinity(p, &ac);
	kfree(ac.user_mask);

	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     struct cpumask *new_mask)
{
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the CPU affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new CPU mask
 *
 * Return: 0 on success. An error code otherwise.
 */
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
{
	cpumask_var_t new_mask;
	int retval;

	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;

	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
}

long sched_getaffinity(pid_t pid, struct cpumask *mask)
{
	struct task_struct *p;
	int retval;

	guard(rcu)();
	p = find_process_by_pid(pid);
	if (!p)
		return -ESRCH;

	retval = security_task_getscheduler(p);
	if (retval)
		return retval;

	guard(raw_spinlock_irqsave)(&p->pi_lock);
	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);

	return 0;
}

/**
 * sys_sched_getaffinity - get the CPU affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current CPU mask
 *
 * Return: size of CPU mask copied to user_mask_ptr on success. An
 * error code otherwise.
 */
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
{
	int ret;
	cpumask_var_t mask;

	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
		return -EINVAL;

	if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;

	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
		unsigned int retlen = min(len, cpumask_size());

		if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen))
			ret = -EFAULT;
		else
			ret = retlen;
	}
	free_cpumask_var(mask);

	return ret;
}

static void do_sched_yield(void)
{
	struct rq_flags rf;
	struct rq *rq;

	rq = this_rq_lock_irq(&rf);

	schedstat_inc(rq->yld_count);
	current->sched_class->yield_task(rq);

	preempt_disable();
	rq_unlock_irq(rq, &rf);
	sched_preempt_enable_no_resched();

	schedule();
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
 *
 * Return: 0.
 */
SYSCALL_DEFINE0(sched_yield)
{
	do_sched_yield();
	return 0;
}

/**
 * yield - yield the current processor to other threads.
 *
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, it's already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
 *	yield();
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	do_sched_yield();
}
EXPORT_SYMBOL(yield);

/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
 * @p: target task
 * @preempt: whether task preemption is allowed or not
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
 * Return:
 *	true (>0) if we indeed boosted the target task.
 *	false (0) if we failed to boost the target.
 *	-ESRCH if there's no task to yield to.
 */
int __sched yield_to(struct task_struct *p, bool preempt)
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	int yielded = 0;

	scoped_guard (irqsave) {
		rq = this_rq();

again:
		p_rq = task_rq(p);
		/*
		 * If we're the only runnable task on the rq and target rq also
		 * has only one task, there's absolutely no point in yielding.
		 */
		if (rq->nr_running == 1 && p_rq->nr_running == 1)
			return -ESRCH;

		guard(double_rq_lock)(rq, p_rq);
		if (task_rq(p) != p_rq)
			goto again;

		if (!curr->sched_class->yield_to_task)
			return 0;

		if (curr->sched_class != p->sched_class)
			return 0;

		if (task_on_cpu(p_rq, p) || !task_is_running(p))
			return 0;

		yielded = curr->sched_class->yield_to_task(rq, p);
		if (yielded) {
			schedstat_inc(rq->yld_count);
			/*
			 * Make p's CPU reschedule; pick_next_entity
			 * takes care of fairness.
			 */
			if (preempt && rq != p_rq)
				resched_curr(p_rq);
		}
	}

	if (yielded)
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * Return: On success, this syscall returns the maximum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
 */
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_RT_PRIO-1;
		break;
	case SCHED_DEADLINE:
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * Return: On success, this syscall returns the minimum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
 */
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_DEADLINE:
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		ret = 0;
	}
	return ret;
}

static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
{
	unsigned int time_slice = 0;
	int retval;

	if (pid < 0)
		return -EINVAL;

	scoped_guard (rcu) {
		struct task_struct *p = find_process_by_pid(pid);
		if (!p)
			return -ESRCH;

		retval = security_task_getscheduler(p);
		if (retval)
			return retval;

		scoped_guard (task_rq_lock, p) {
			struct rq *rq = scope.rq;
			if (p->sched_class->get_rr_interval)
				time_slice = p->sched_class->get_rr_interval(rq, p);
		}
	}

	jiffies_to_timespec64(time_slice, t);
	return 0;
}

/**
 * sys_sched_rr_get_interval - return the default time-slice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the time-slice value.
 *
 * this syscall writes the default time-slice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 *
 * Return: On success, 0 and the time-slice is in @interval. Otherwise,
 * an error code.
 */
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
		struct __kernel_timespec __user *, interval)
{
	struct timespec64 t;
	int retval = sched_rr_get_interval(pid, &t);

	if (retval == 0)
		retval = put_timespec64(&t, interval);

	return retval;
}

#ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
		struct old_timespec32 __user *, interval)
{
	struct timespec64 t;
	int retval = sched_rr_get_interval(pid, &t);

	if (retval == 0)
		retval = put_old_timespec32(&t, interval);
	return retval;
}
#endif